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REGULARIZATION OF TWO-TERM DIFFERENTIAL EQUATIONS
WITH SINGULAR COEFFICIENTS BY QUASIDERIVATIVES

A. S. Goryunov and V. A. Mikhailets UDC 517.984.5

We propose a regularization of the formal differential expression

l.y/ D imy.m/.t/C q.t/y.t/; t 2 .a; b/;

of order m � 3 by quasiderivatives. It is assumed that the distribution coefficient q has the antideriva-
tive Q 2 L .Œa; b�IC/ : In the symmetric case .Q D Q/; we describe self-adjoint and maximal dis-
sipative/accumulative extensions of the minimal operator and its generalized resolvents. In the general
(nonself-adjoint) case, we establish the conditions of convergence for the resolvents of the analyzed op-
erators in norm. The case where m D 2 and Q 2 L2 .Œa; b�IC/ was studied earlier.

1. Introduction

In a finite interval J WD .a; b/; we consider a formal differential expression of order m

l.y/ D imy.m/.t/C q.t/y.t/; t 2 J : (1)

If m D 2 and the coefficient q 2 L .J IR/ ; then the differential equation l.y/ D f is the classical Sturm–
Liouville problem, which is now studied fairly comprehensively. The state of the art of the theory of this equation
is described in numerous monographs (see [1] and the references therein). After the appearance of the work [2], it
turned out that various statements of this theory can be generalized to a much more general case

q D Q0; Q 2 L2 .J IC/ ; (2)

where the derivative is understood in the sense of distributions. Thus, in particular, this is true for a physically
meaningful case where q is the Radon measure on J or has nonintegrable point singularities. Similar operators
appeared much earlier in various problems of mathematical physics and were studied by many authors, mainly by
the methods of the theory of operators (see [3] and the references therein). In particular, the case of differential
expressions of any even order is studied in [4].

In this connection, it is of interest to study the problem of regularization of the differential expression (1) with
singular coefficient q … L .J IC/ for any m > 2: The present paper is devoted to the solution of this problem by
using specially chosen quasiderivatives. Moreover, it is possible to weaken condition (2) to the following condition:

q D Q0; Q 2 L .J IC/ DW L1: (3)
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The case of the general Sturm–Liouville expression

l.y/ D �.p.t/y0/0 C q.t/y; t 2 J ;

with singular coefficients

q D Q0; 1=p; Q=p; Q2=p 2 L1

was studied earlier by the authors (from the similar positions) in [5] (see also [6]).
The paper is organized as follows:
In Sec. 2, we introduce a regularization of the formal differential expression (1) under assumption (3) and

determine the corresponding maximal and minimal operators in the Hilbert space L2 .J IC/ DW L2:
In Sec. 3, we establish sufficient conditions for the uniform resolvent approximation of extensions of the

constructed minimal operator Lmin by a family of operators from the same class, in particular, with smooth coef-
ficients.

In Sec. 4, under the assumption that the minimal operator is symmetric, we describe all its self-adjoint, maxi-
mal dissipative, and maximal accumulative extensions in terms of homogeneous boundary conditions of the canoni-
cal form. These extensions are parametrized, respectively, by the unitary operators and by the contraction operators
in Cm: This parametrization is bijective and continuous.

In Sec. 5, we describe all generalized resolvents of the minimal operator outside the real axis.
The case of general symmetric quasidifferential operators was studied by the authors in [7, 8]. For the prelim-

inary version of the present paper, see [9].

2. Regularization of the Singular Expression

Consider a formal differential expression (1) of order m � 3 under conditions (3).
We now successively introduce the quasiderivatives:

DŒk�y.t/ WD y.k/.t/; k D 0;m � 2;

DŒm�1�y.t/ WD y.m�1/.t/C i�mQ.t/y.t/;

DŒm�y.t/ WD .DŒm�1�y.t//0 � i�mQ.t/DŒ1�y.t/:

Under conditions (3), they are quasiderivatives in a Shin–Zettl sense (see [12], Sec. 1).
Thus, the formal expression (1) can be correctly defined as the quasidifferential Shin–Zettl expression

l Œy� WD imDŒm�:

Definition 1. A solution of the Cauchy problem for the resolvent equation

l Œy� � �y D f 2 L2; .DŒk�y/.c/ D ˛k; k D 0;m � 1; (4)
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where c 2 J and ˛k 2 C; k D 0;m � 1; is defined as the first component of the solution of the Cauchy problem
for the corresponding system of the first-order differential equations:

w0.t/ D A�.t/w.t/C '.t/; w.c/ D .˛0; ˛1; : : : ; ˛m�1/; (5)

where the vector function w.t/ WD .DŒ0�y.t/;DŒ1�y.t/; : : : ;DŒm�1�y.t//; the square matrix function

A�.t/ WD

0BBBBBBBBBBBBB@

0 1 0 : : : 0 0

0 0 1 : : : 0 0

:::
:::

:::
: : :

:::
:::

0 0 0 : : : 1 0

�i�mQ.t/ 0 0 : : : 0 1

i�m� i�mQ.t/ 0 : : : 0 0

1CCCCCCCCCCCCCA
2 Lm�m1 ; (6)

and the vector function '.t/ WD .0; 0; : : : ; 0; i�mf .t// belongs to Lm1 :

Lemma 1. Under condition (3), the Cauchy problem (4) possesses a solution on J : Moreover, this solution
is unique.

Proof. Problem (5), for A�.�/ 2 Lm�m1 ; has a (unique) solution for any c 2 J and .˛0; ˛2; : : : ; ˛m�1/ 2

Cm by virtue of Theorem 1.2.1 in [1]. Hence, the statement of the lemma follows from Definition 1 and the
indicated theorem.

The introduced quasidifferential expression l Œy� generates a maximal quasidifferential operator in the Hilbert
space L2 (see [11, 12])

LmaxW y ! l Œy�;

Dom.Lmax/ D
¸
y
ˇ̌̌
DŒk�y 2 AC.J ; C/; k D 0;m � 1; DŒm�y 2 L2

¹
:

The minimal quasidifferential operator is defined as the restriction of the operator Lmax to the linear manifold

Dom.Lmin/ WD
¸
y 2 Dom.Lmax/

ˇ̌̌
DŒk�y.a/ D DŒk�y.b/ D 0; k D 0;m � 1

¹
:

The following assertion shows that the introduced operators are independent of the choice of the antideriva-
tive Q :

Lemma 2. If the chosen antiderivative Q in equalities (1) and (3) is replaced by an arbitrary antiderivative

zQ WD QC c; c 2 C;

then the operators Lmax and Lmin do not change.
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Proof. We show that the operator Lmax D Lmax.Q/ coincides with operator zLmax D Lmax. zQ/: By
zDŒ0�y; zDŒ1�y; : : : ; zDŒm�y we denote the quasiderivatives corresponding to the antiderivative zQ different from
Q:

Let y 2 Dom.Lmax/: By direct calculations, we find

zDŒ0�y D DŒ0�y 2 AC.J ;C/;

: : : : : : : : : : : : : : : : : : : : : : : : : : :

zDŒm�2�y D DŒm�2�y 2 AC.J ;C/;

zDŒm�1�y D DŒm�1�y C i�mc zDŒ0�y 2 AC.J ;C/;

zDŒm�y D DŒm�y 2 L2:

This means that

Dom.Lmax/ � Dom.zLmax/ D
¸
y
ˇ̌̌
zDŒk�y 2 AC.J ;C/; k D 0;m � 1; zDŒm�y 2 L2

¹
:

Similarly, we show that Dom.Lmax/ � Dom.zLmax/ and, finally,

zLmaxy D i
m zDŒm�y D imDŒm�y D Lmaxy; y 2 Dom.Lmax/:

We now show that zLmin D Lmin:

Let y 2 Dom.Lmin/: Then

zDŒ0�y.a/ D DŒ0�y.a/ D 0;

zDŒ0�y.b/ D DŒ0�y.b/ D 0;

: : : : : : : : : : : : : : : : : : : : : : : :

zDŒm�2�y.a/ D DŒm�2�y.a/ D 0;

zDŒm�2�y.b/ D DŒm�2�y.b/ D 0;

zDŒm�1�y.a/ D DŒm�1�y.a/C i�mc zDŒ0�y.a/ D 0C 0 D 0;

zDŒm�1�y.b/ D DŒm�1�y.b/C i�mc zDŒ0�y.b/ D 0C 0 D 0:

This implies that Dom.Lmin/ � Dom.zLmin/: Similarly, we show that Dom.Lmin/ � Dom.zLmin/:
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Since

zLminy D zLmaxy D Lmaxy D Lminy

on the functions y 2 Dom.Lmin/; the lemma is proved.
Parallel with (1), we consider the formally conjugate differential expression

lC.y/ D imy.m/.t/C q.t/y.t/;

where the overbar denotes the operation of complex conjugation. By LCmax and LCmin we denote the maximal
and minimal operators generated by this expression in the space L2: Thus, by using the results for the general
quasidifferential Shin–Zettl expressions from the monograph [12] and the arguments presented above, we arrive at
the following theorem:

Theorem 1. The operators Lmin; L
C
min; Lmax; and LCmax are densely defined and closed in the space L2;

L�min D L
C
max; and L�max D L

C
min:

If the function q is real-valued, then Lmin D LCmin is a symmetric operator with deficiency index .m;m/

and, in addition,

L�min D Lmax and L�max D Lmin:

3. Approximation of the Resolvent

Consider a family of quasidifferential expressions l"Œy� of the form (1) with coefficients q" D Q0"; Q" 2 L1;
" 2 Œ0; "0�: By DŒ0�" y;D

Œ1�
" y; : : : ;D

Œm�
" y we denote the quasiderivatives of these expressions.

In the Hilbert space L2 with norm k � k2; these expressions generate the operators L"min and L"max for any
": Assume that the matrices ˛."/; ˇ."/ 2 Cm�m and the vectors

Y".a/ WD fDŒ0�" y.a/;DŒ1�" y.a/; : : : ;DŒm�1�" y.a/g 2 Cm;

Y".b/ WD fDŒ0�" y.b/;DŒ1�" y.b/; : : : ;DŒm�1�" y.b/g 2 Cm:

For any fixed value of "; we define the following operators:

L"y D l"Œy�;

Dom.L"/ D
¶
y 2 Dom

�
L"max

�ˇ̌
˛."/Y".a/C ˇ."/Y".b/ D 0

·
:

It is clear that

L"min � L" � L
"
max; " 2 Œ0; "0�:
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By �.L/ we denote the resolvent set of the operator L: Recall that the operators L" converge as "! 0C

to the operator L0 in a sense of uniform resolvent convergence, L"
R
! L0; if there exists � 2 C such that

� 2 �.L0/; � 2 �.L"/ for sufficiently small " and

k.L" � �/
�1
� .L0 � �/

�1
k ! 0; "! 0C :

This definition is independent of the choice of � 2 �.L0/ [13].
We introduce the notation

c_.t/ WD

tZ
a

c.s/ds:

The main result of the present section is the following theorem:

Theorem 2. Assume that �.L0/ is nonempty and the following conditions are satisfied as "! 0C W

(i) k.Q" �Q0/_kC ! 0I

(ii) ˛."/�!˛.0/ and ˇ."/�!ˇ.0/:

Then L"
R
! L0:

Remark 1. Clearly, the condition kQ" �Q0k1 ! 0; "! 0C; is sufficient for the validity of condition (i).
Since the set of infinitely differentiable finite functions C10 .J ;C/ is dense in the space L1; it follows from
Theorem 2 that every introduced operator L0 with singular coefficient can be approximated in a sense of uniform
resolvent convergence by a sequence of differential operators with coefficients from C10 .J ;C/:

The proof of Theorem 2 is based on one auxiliary result.
Following [14, 15], by Mn.J / DWMn; n 2 N; we denote the class of all matrix functions

R.�I "/W Œ0; "0�! Ln�n1

parametrized by the number " for which the solution of the Cauchy problem

Z0.t I "/ D R.t I "/Z.t I "/; Z.aI "/ D In;

satisfies the limiting relation

lim
"!0C

kZ.�I "/ � InkC D 0;

where k � kC is the sup-norm.
The following general theorem is established in [15, 16]:

Theorem 3. Assume that, for the boundary-value problem

y0.t I "/ D A.t I "/y.t I "/C f .t I "/; t 2 J ; " 2 Œ0; "0�; (7)

U"y.�I "/ D 0; (8)
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where the matrix functions A.�; "/ 2 Ln�n1 ; the vector functions f .�; "/ 2 Ln1; and the linear continuous operators

U" W C.J ICn/! Cn; n 2 N;

the following conditions are satisfied:

(i) the homogeneous limiting boundary-value problem (7), (8) with " D 0 and f .�I 0/ � 0 possesses solely
the trivial solution;

(ii) A.�I "/ � A.�I 0/ 2MnI

(iii) kU" � U0k ! 0; "! 0C :

Then, for sufficiently small "; there exist Green matrices G.t; sI "/ of problems (7) and (8) and, in the square
J � J ;

kG.�; �I "/ �G.�; �I 0/k1 ! 0; "! 0C; (9)

where k � k1 is the norm in the space L1:

Remark 2. Condition (iii) of Theorem 3 cannot be replaced by a weaker condition of strong convergence of
the operators U"

s
! U0 [15]. However, it is easy to see that, for two-point boundary operators

U"y WD B1."/y.a/C B2."/y.b/; Bk."/ 2 Cn�n; k 2 f1; 2g;

both the condition of strong convergence and the condition of uniform convergence are equivalent to the condition

kBk."/ � Bk.0/k ! 0; "! 0C; k 2 f1; 2g:

The presented definition of the class Mn is not constructive. There are different sufficient conditions for the
matrix function R.�I "/ to belong to the class Mn: Thus, in particular, the results of the Levin’s work [17] yield
the following lemma:

Lemma 3. Let R.�I "/W Œ0; "0�! Ln�n1 : Suppose that one of the following four (nonequivalent) conditions is
satisfied as "! 0C W

.˛/ kR.�I "/k1 D O.1/I

.ˇ/ kR_.�I "/R.�I "/k1 ! 0I

.
/ kR.�I "/R_.�I "/k1 ! 0I

.ı/ kR_.�I "/R.�I "/ �R.�I "/R_.�I "/k1 ! 0:

Then the condition kR_.�I "/kC ! 0; "! 0C; is equivalent to the inclusion R.�I "/ 2Mn:

By using the following statement, we can reduce Theorem 2 to Theorem 3:
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Lemma 4. The function y.t/ is a solution of the boundary-value problem

l"Œy�.t/ D f .t I "/ 2 L2; " 2 Œ0; "0�; (10)

˛."/Y".a/C ˇ."/Y".b/ D 0 (11)

if and only if the vector function

w.t/ D
�
DŒ0�" y.t/;D

Œ1�
" y.t/; : : : ;D

Œm�1�
" y.t/

�
is a solution of the boundary-value problem

w0.t/ D A.t I "/w.t/C '.t I "/; (12)

˛."/w.a/C ˇ."/w.b/ D 0; (13)

where the square matrix function

A.�I "/ WD

0BBBBBBBBBBBBB@

0 1 0 : : : 0 0

0 0 1 : : : 0 0

:::
:::

:::
: : :

:::
:::

0 0 0 : : : 1 0

�i�mQ.�I "/ 0 0 : : : 0 1

0 i�mQ.�I "/ 0 : : : 0 0

1CCCCCCCCCCCCCA
2 Lm�m1 (14)

and '.�I "/ WD .0; 0; : : : ; 0; i�mf .�I "// belongs to Lm1 :

Proof. Consider a system of equations

.DŒ0�" y.t//
0
D DŒ1�" y.t/;

.DŒ1�" y.t//
0
D DŒ2�" y.t/;

: : : : : : : : : : : : : : : : : : : : : : : : : : :

.DŒm�3�" y.t//0 D DŒm�2�" y.t/;

.DŒm�2�" y.t//0 D �i�mQ".t/D
Œ0�
" y.t/CD

Œm�1�
" y.t/;

.DŒm�1�" y.t//0 D i�mQ".t/D
Œ1�
" y.t/C i

�mf .t I "/:
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If y.�/ is a solution of Eq. (10), then the definition of quasiderivatives implies that y.�/ is a solution of this
system. On the other hand, by setting

w.t/ D .DŒ0�" y.t/;D
Œ1�
" y.t/; : : : ;D

Œm�1�
" y.t// and '.t I "/ D .0; 0; : : : ; 0; i�mf .t I "//;

we can rewrite this system in the form of Eq. (12).
Since Y".a/ D w.a/ and Y".b/ D w.b/; we immediately conclude that the boundary conditions (11) are

equivalent to the boundary conditions (13).
By virtue of Lemma 4, the assumption that

.�/ the homogeneous boundary-value problem

D
Œm�
0 y.t/ D 0; ˛.0/Y0.a/C ˇ.0/Y0.b/ D 0

possesses solely the trivial solution

implies that the homogeneous boundary-value problem

w0.t/ D A.t I "/w.t/; ˛."/w.a/C ˇ."/w.b/ D 0

also possesses solely the trivial solution for sufficiently small ":

Lemma 5. Assume that the Green matrix

G.t; s; "/ D .gij .t; s//
m
i;jD1 2 L

m�m
1

exists for problem (12), (13) for sufficiently small ": Then there exists the Green function �.t; sI "/ of the semiho-
mogeneous boundary-value problem (10), (11) and

�.t; sI "/ D i�mg1m.t; sI "/ almost everywhere.

Proof. By the definition of the Green matrix, the unique solution of problem (12), (13) can be represented in
the form

w".t/ D

bZ
a

G.t; sI "/'.sI "/ds; t 2 J :

By virtue of Lemma 4, the last equality takes the form

DŒ0�" y".t/ D

bZ
a

g1m.t; sI "/i
�mf .sI "/ds;
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DŒ1�" y".t/ D

bZ
a

g2m.t; sI "/i
�mf .sI "/ds;

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

DŒm�1�" y".t/ D

bZ
a

gmm.t; sI "/i
�mf .sI "/ds;

where y".�/ is the unique solution of problem (10), (11). This yields the assertion of Lemma 5.

Proof of Theorem 2. By virtue of condition (i) of Theorem 2, without loss of generality, we can assume that
0 2 �.L0/:

We now show that supkf k2D1 kL
�1
" f � L�10 f k ! 0; "! 0C :

The equation L�1" f D y" is equivalent to the equation L"y" D f; i.e., y" is a solution of problem (10),
(11). It follows from the inclusion 0 2 �.L0/ that the assumption .�/ is true.

Denote r.�I "/ WD i�mQ.�I "/ � i�mQ.�I 0/: Then

A.�I "/ � A.�I 0/ D

0BBBBBBBBBB@

0 0 0 : : : 0 0

0 0 0 : : : 0 0

:::
:::

:::
: : :

:::
:::

�r.�I "/ 0 0 : : : 0 0

0 r.�I "/ 0 : : : 0 0

1CCCCCCCCCCA
;

.A.�I "/ � A.�I 0//_ D

0BBBBBBBBBB@

0 0 0 : : : 0 0

0 0 0 : : : 0 0

:::
:::

:::
: : :

:::
:::

�r_.�I "/ 0 0 : : : 0 0

0 r_.�I "/ 0 : : : 0 0

1CCCCCCCCCCA
;

where the matrix function A.�I "/ is defined by relation (14).
It is easy to see that

.A.�I "/ � A.�I 0// .A.�I "/ � A.�I 0//_ D .A.�I "/ � A.�I 0//_ .A.�I "/ � A.�I 0// :

Hence, the matrix function A.�I "/ � A.�I 0/; for m � 3; satisfies condition .ı/ of Lemma 3.
It is clear that the condition k .A.�I "/ � A.�I 0//_ kC ! 0; " ! 0C; is equivalent to condition (i) of Theo-

rem 2. Therefore, it follows from Lemma 3 that the conditions of Theorem 3 are satisfied for problem (12), (13).
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This means that there exist Green matrices G.t; sI "/ of problem (12), (13) and the limit relation (9) is true.
By virtue of Lemma 5, this yields the limit equality

k�.�; �I "/ � �.�; �I 0/k1 ! 0; "! 0C :

Then

kL�1" � L
�1
0 k D sup

kf k2D1








bZ
a

Œ�.t; sI "/ � �.t; sI 0/�f .s/ds








2

� .b � a/1=2 sup
kf k2D1








bZ
a

j�.t; sI "/ � �.t; sI 0/jjf .s/jds








C

� .b � a/


�.�; �I "/ � �.�; �I 0/



1
! 0; "! 0C;

which proves Theorem 2.

4. Extensions of the Symmetric Minimal Operator

In what follows, we assume that the functions q and, hence, Q are real-valued. This condition implies the
formal self-adjointness of the expression l Œy� (see [12]) and, according to Theorem 1, the property of symmetry
of the operator Lmin: Thus, it is of interest to study the problem of description (with the help of homogeneous
boundary conditions) of some classes of extensions (self-adjoint, maximal dissipative, and maximal accumulative)
of the symmetric operator Lmin in the Hilbert space L2: To answer to this question, we use the notion of space of
boundary values.

Definition 2. Let L be a closed symmetric operator in the Hilbert space H with equal (finite or infinite)
deficiency indices. A triple .H; �1; �2/; where H is an auxiliary Hilbert space and �1 and �2 are linear
mappings of Dom.L�/ into H; is called a space of boundary values of the symmetric operator L if

(i) for any f; g 2 Dom .L�/ ;

�
L�f; g

�
H �

�
f;L�g

�
H D .�1f; �2g/H � .�2f; �1g/H I

(ii) for any vectors f1; f2 2 H; there exists a vector f 2 Dom .L�/ such that �1f D f1 and �2f D f2:

It follows from the definition of the space of boundary values that f 2 Dom .L/ if and only if �1f D
�2f D 0: A space of boundary values exists for any symmetric operator with equal nonzero deficiency indices
(see [18–20]). It is always not unique.

The following lemma is the key result for the remaining part of the present paper:
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Basic Lemma. Let �1 and �2 be linear mappings from Dom.Lmax/ into Cm such that

�1y WD i
2n

0BBBBBBBBBBBB@

�DŒ2n�1�y.a/

: : : : : : : : : : : : : : :

.�1/nDŒn�y.a/

DŒ2n�1�y.b/

: : : : : : : : : : : : : : :

.�1/n�1DŒn�y.b/

1CCCCCCCCCCCCA
; �2y WD

0BBBBBBBBBBBB@

DŒ0�y.a/

: : : : : : : : :

DŒn�1�y.a/

DŒ0�y.b/

: : : : : : : : :

DŒn�1�y.b/

1CCCCCCCCCCCCA
for m D 2n; n � 2; and

�1y WD i
2nC1

0BBBBBBBBBBBBBBBB@

�DŒ2n�y.a/

: : : : : : : : : : : : : : : : : :

.�1/nDŒnC1�y.a/

DŒ2n�y.b/

: : : : : : : : : : : : : : : : : :

.�1/n�1DŒnC1�y.b/

˛DŒn�y.b/C ˇDŒn�y.a/

1CCCCCCCCCCCCCCCCA
; �2y WD

0BBBBBBBBBBBBBBBB@

DŒ0�y.a/

: : : : : : : : : : : :

DŒn�1�y.a/

DŒ0�y.b/

: : : : : : : : : : : :

DŒn�1�y.b/


DŒn�y.b/C ıDŒn�y.a/

1CCCCCCCCCCCCCCCCA
for m D 2nC 1; n 2 N; where

˛ D 1; ˇ D 1; 
 D
.�1/n

2
C i; and ı D

.�1/nC1

2
C i:

Then the triple .Cm; �1; �2/ is the space of boundary values of the operator Lmin:

Remark 3. The presented values of the coefficients can be replaced by arbitrary families of numbers satisfy-
ing the system of equations

˛
 C ˛
 D .�1/n;

ˇı C ˇı D .�1/nC1;

˛ı C ˇ
 D 0;

ˇ
 C ˛ı D 0;

˛ı � ˇ
 ¤ 0:

(15)
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By LK we denote the restriction of the operator Lmax to the set of functions y.t/ 2 Dom.Lmax/ satisfying
the homogeneous boundary condition of the canonical form

.K � I / �1y C i .K C I / �2y D 0; (16)

where K is a bounded operator in the Hilbert space Cm:

Similarly, let LK be the restriction of the operator Lmax to the set of functions y.t/ 2 Dom.Lmax/ satisfying
the homogeneous boundary condition of the canonical form

.K � I / �1y � i .K C I / �2y D 0; (17)

where K is a bounded operator in the Hilbert space Cm:

The basic lemma, together with the results presented in [18], yields the following description of the self-adjoint
extensions of Lmin :

Theorem 4. Every LK ; where K is a unitary operator in the Hilbert space Cm; is a self-adjoint extension
of the operator Lmin: Conversely, for any self-adjoint extension zL of the operator Lmin; one can find a unitary
operator K such that zL D LK : The correspondence between the unitary operators fKg and the extensions f zLg
is bijective.

Remark 4. It follows from Theorems 2 and 4 that the mapping K ! LK is not only bijective but also
continuous. More precisely, if the unitary operators Kn converge to the operator K in norm, then


.LK � �/�1 � �LKn

� �
��1


! 0; n!1; Im� ¤ 0:

Moreover, since the set of unitary operators in the finite-dimensional space Cm is compact in the metric of
the operator norm, the converse assertion is also true, i.e., the mapping

K ! .LK � �/
�1 ; Im� ¤ 0;

is a homeomorphism for any fixed � 2 C nR:

We now recall the well-known definition:

Definition 3. A densely defined linear operator L in the complex Hilbert space H is called dissipative
(accumulative) if

Im .Lf; f /H � 0 .� 0/; f 2 Dom.L/;

and maximal dissipative (maximal accumulative) if, in addition, the operator L does not have nontrivial dissipa-
tive (accumulative) extensions in the space H:

In particular, any symmetric operator is dissipative and accumulative and any self-adjoint operator is both
maximal dissipative and maximal accumulative. Hence, for the symmetric quasidifferential operator Lmin; we can
pose the problem of description of all its maximal dissipative and maximal accumulative solutions. According to
the Phillips theorem [18, 21], every dissipative extension of a symmetric operator and every accumulative extension
of this operator are restrictions of its adjoint operator. Thus, any maximal dissipative or maximal accumulative
extension of the operator Lmin is a restriction of the operator Lmax:
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The following theorem gives the parametric description of all maximal dissipative extensions of the symmetric
quasidifferential operator Lmin :

Theorem 5. Every LK ; where K is a contraction in the space Cm; is a maximal dissipative extension LK
of the operator Lmin: Conversely, for any maximal dissipative extension zL of the operator Lmin; one can find a
contraction K such that zL D LK : The correspondence between the contractions fKg and the extensions f zLg
is bijective.

The following theorem gives a parametric description of all maximal accumulative extensions of the symmetric
quasidifferential operator Lmin :

Theorem 6. Every LK ; where K is a contraction in the space Cm; is a maximal accumulative extension
LK of the operator Lmin: Conversely, for any maximal accumulative extension zL of the operator Lmin; one can
find a contraction K such that zL D LK : The correspondence between the contractions fKg and the extensions
f zLg is bijective.

Remark 5. The mappings

K ! .LK � �/
�1 ; Im� < 0;

K !
�
LK � �

��1
; Im� > 0;

are homeomorphisms for any fixed � (see Remark 4).

We now proceed to the proof of the formulated results. Prior to proving the basic lemma, we present two
more lemmas, which are, in fact, special cases of the corresponding assertions for the general quasidifferential
expressions (see [12]).

Lemma 6. Let y; z 2 Dom.Lmax/: Then

bZ
a

�
DŒm�y � z � y �DŒm�z

�
dx D

mX
kD1

.�1/k�1DŒm�k�y �DŒk�1�z
ˇ̌̌
xDb
xDa :

Lemma 7. For arbitrary collections of complex numbers f˛0; ˛1; : : : ; ˛m�1g and fˇ0; ˇ1; : : : ; ˇm�1g;
there exist a function y 2 Dom.Lmax/ such that

DŒk�y.a/ D ˛k; DŒk�y.b/ D ˇk; k D 0; 1; : : : ; m � 1:

Proof of the Basic Lemma. It suffices to show that the triple .Cm; �1; �2/ satisfies conditions (i) and (ii) in
the definition of the space of boundary values with H D L2: According to Theorem 1, L�min D Lmax: By virtue
of Lemma 6, we get

.Lmaxy; z/ � .y; Lmaxz/ D i
m

mX
kD1

.�1/k�1DŒm�k�y �DŒk�1�z
ˇ̌̌
xDb
xDa :
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However, it is easy to see that, in the case m D 2n; we have

.�1y; �2z/ D i
2n

nX
kD1

.�1/k�1DŒ2n�k�y �DŒk�1�z
ˇ̌̌
xDb
xDa

and

.�2y; �1z/ D i
2n

2nX
kDnC1

.�1/kDŒ2n�k�y �DŒk�1�z
ˇ̌̌
xDb
xDa :

This means that condition (i) is satisfied. Condition (ii) directly follows from Lemma 7.
For m D 2nC 1; we introduce the notation

�1 DW .�1a; �1b; �1ab/ ;

�2 DW .�2a; �2b; �2ab/ ;

where

�1a D i
2nC1

�
�DŒ2n�y.a/; : : : ; .�1/nDŒnC1�y.a/

�
;

�1b D i
2nC1

�
DŒ2n�y.b/; : : : ; .�1/nC1DŒnC1�y.a/

�
;

�1ab D i
2nC1

�
˛DŒn�y.b/C ˇDŒn�y.a/

�
;

�2a D
�
DŒ0�y.a/; : : : ;DŒn�1�y.a/

�
;

�2b D
�
DŒ0�y.b/; : : : ;DŒn�1�y.b/

�
;

�2ab D 
D
Œn�y.b/C ıDŒn�y.a/:

It is easy to see that

.�1ay; �2az/ D i
2nC1

nX
kD1

.�1/k�1DŒ2n�k�y.a/ �DŒk�1�z.a/;

.�2ay; �1az/ D i
2nC1

2nC1X
kDnC2

.�1/kDŒ2n�k�y.a/ �DŒk�1�z.a/;
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.�1by; �2bz/ D i
2nC1

nX
kD1

.�1/k�1DŒ2n�k�y.b/ �DŒk�1�z.b/;

.�2by; �1bz/ D i
2nC1

2nC1X
kDnC2

.�1/kDŒ2n�k�y.b/ �DŒk�1�z.b/;

.�1aby; �2abz/ � .�2aby; �1abz/ D i
2nC1.�1/n

�
DŒn�y.b/ �DŒn�z.b/ �DŒn�y.a/ �DŒn�z.a/

�
:

It follows from these relations that condition (i) of Definition 2 is satisfied. Condition (ii) follows from
Lemma 7 and the last relation in (15).

Proof of Theorems 4–6. The assertions of the theorems follow from the basic lemma and Theorem 1.6 in
[18] (Chap. 3) for the space of boundary values of an abstract symmetric operator.

5. Generalized Resolvents

We now recall the following well-known definition:

Definition 4. A generalized resolvent of a closed symmetric operator L is defined as an operator function
R� of the complex parameter � 2 CnR which admits the following representation:

R�f D P
C
�
LC � �IC

��1
f; f 2 H;

where LC is an arbitrary self-adjoint extension of the operator L onto the space HC; generally speaking, wider
than H; IC is the identity operator in HC; and PC is the operator of orthogonal projection of HC onto H:

The operator function R� .Im� ¤ 0/ is a generalized resolvent of the symmetric operator L if and only if

.R�f; g/H D

C1Z
�1

d
�
F�f; g

�
� � �

; f; g 2 H;

where F� is the generalized spectral function of the operator L: This means that the operator function F�;

� 2 R; has the following properties [22]:

.1ı/ for �2 > �1; the difference F�2
� F�1

is a bounded nonnegative operator;

.2ı/ F�C D F� for all real �I

.3ı/ for any x 2 H;

lim
�!�1

jjF�xjjH D 0 and lim
�!C1

jjF�x � xjjH D 0:

The following result belongs to Bruk [20]:
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Let H be an auxiliary separable Hilbert space. By fX;X 0g we denote an ordered couple from X;X 0 2 H:

The couples fX;X 0g are regarded as elements of the space H ˚ H: Assume that there exists a linear operator

 mapping the domain of definition Dom.L�/ of the operator L� adjoint to L onto H ˚H and such that the
following equality holds:

.L�x; y/ � .x; L�y/ D .X 0; Y /H � .X; Y
0/H ;

where x; y 2 Dom.L/; fX;X 0g D 
x; and fY; Y 0g D 
y:

Theorem 7. There exists a one-to-one correspondence between the generalized resolvents of the operator L
and the boundary-value problems

L�y D �y C h;

.K.�/ � I / Y 0 � i .K.�/C I / Y D 0;

where fY; Y 0g D 
y; h 2 H; � is a complex number, the sign “C ” in the boundary condition is taken for the
values of � from the upper half plane, the sign “� ” is taken for the values of � from the lower half plane, and
K.�/ is a given operator function from H regular in the upper half plane and such that kK.�/k � 1I for the
values of � from the lower half plane, K.�/ WD K�.�/:

Every solution of the problem specifies a generalized resolvent of the operator L and, conversely, every
generalized resolvent of the operator L is defined by a solution of this problem.

This theorem enables one to describe all generalized resolvents of the symmetric operator Lmin outside the
real axis.

The parametric inner description of all generalized resolvents of the operator is given by the following theo-
rem:

Theorem 8. The following statements are true:

(i) every generalized resolvent R� of the operator Lmin in the half plane Im� < 0 is given by the formula
R�h D y; where y is a solution of the boundary-value problem

l Œy� D �y C h;

.K.�/ � I / �Œ1�f C i .K.�/C I / �Œ2�f D 0;

where h.x/ 2 L2 .J ;C/ and K.�/ is an operator function regular in the lower half plane of the space
C2 and such that jjK.�/jj � 1I

(ii) in the half plane Im� > 0; every generalized resolvent of the operator Lmin is given by the formula
R�h D y; where y is a solution of the boundary-value problem

l Œy� D �y C h;

.K.�/ � I / �Œ1�f � i .K.�/C I / �Œ2�f D 0;
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where h.x/ 2 L2 .J ;C/ and K.�/ is an operator function regular in the upper half plane of the space
C2 and such that jjK.�/jj � 1:

The indicated parametrization of the generalized resolvents by the operator functions K is bijective.

Proof. By virtue of the basic lemma, the auxiliary separable Hilbert space Cm and the operator 
y D
f�Œ1�y; �Œ2�yg mapping Dom.Lmin/ onto Cm ˚Cm satisfy the conditions of Theorem 7.

Thus, the assertion of Theorem 8 follows from Theorem 7.
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