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Abstract. For the quantum torus generated by unitaries UV = e(θ)V U there

exist nontrivial strong Morita autoequivalences in the case when θ is a real qua-
dratic irrationality. A.Polishchuk introduced and studied the graded ring of

holomorphic sections of powers of the respective bimodule (depending on the

choice of a complex structure). We consider a Segre square of this ring whose
graded components are spanned by Rieffel scalar products of Polishchuk’s holo-

morphic vectors as in [5] and [8]. These graded components are linear spaces

of quantum theta functions in the sense of Yu. Manin.

Introduction

A quantum torus Aθ with an irrational parameter θ ∈ R\Q is a transformation
group C∗-algebra C∗(θZ,R/Z) for the group action of θZ on R/Z or, equivalently,
a universal C∗-algebra generated by two unitaries U, V ∈ Aθ satisfying relation
UV = e(θ)V U . Here e(x) = exp(2πix).

Definition 1. Aθ is a quantum torus with real multiplication if θ is a real qua-
dratic irrationality, i.e. a real irrational root of a quadratic equation with rational
coefficients.

Let k be a real quadratic field. In [1] it is proposed to use quantum tori with real
multiplication Aθ, θ ∈ k\Q as geometric objects associated to k. This should be
compared to consideration of elliptic curves with complex multiplication Eτ = C/
Γ, Γ = Z + τZ, τ ∈ k

′\Q for complex quadratic field k
′
. Any endomorphism

α : Eτ → Eτ is a linear map on the universal covering C, so End(Eτ ) is identified
with the ring of multipliers of the lattice Γ, that is {α ∈ C|αΓ ⊂ Γ}. We say that
Eτ is an elliptic curve with complex multiplication if End(Eτ ) is larger then Z,
which happens precisely when τ is a complex quadratic number.

Real multiplication of quantum tori has similar interpretation when we consider
morphisms in the sense of noncommutative geometry: every element of End(Aθ)
is by definition an (isomorphism class of) Aθ-Aθ-bimodule, finitely generated and
projective as left and right module at the same time. Every such isomorphism class
[M ] ∈ End(Aθ) defines an endomorphism φ[M ] ofK0-group of Aθ via [P ] 7→ [P ⊗

Aθ

M ]

for finitely generated projective right Aθ-modules P . It is shown in [1] that when
K0(Aθ) is identified with the lattice Γ = Z + θZ via the trace map, then φ[M ]

becomes a multiplication by a real number. Moreover, this map

K0 : End(Aθ) → {α ∈ R|αΓ ⊂ Γ}, K0([M ]) = φ[M ]

is surjective. So, Aθ is a quantum tori with real multiplication if and only if
K0(End(Aθ)) is larger then Z.

In this paper we construct the graded ring of quantum theta functions R =
⊕n≥0Rn for a quantum torus with real multiplication Aθ. The construction is
described in Section 6, were we also prove that θ ∈ k\Q can be chosen such that
the ring R is Koszul (Theorem 5). In our ring R0 = C and all Rn are finite
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dimensional C-vector spaces. So, the Koszul property means in particular that R
is a finitely generated quadratic algebra. We sketch the definition of R below.

First, we need simple facts from number theory. One can prove that {α ∈ R|αΓ ⊂
Γ} = Z + fOk for some integer f ≥ 1, where Ok is the ring of integers of the real
quadratic field k = Q(θ). Thus there are units of infinite order of Ok in Z + fOk,
and we take one of them ε ∈ (Z + fOk) ∩ O×k . Then there exists a bimodule Mε

with K0([Mε]) = ε, which is an Aθ−Aθ-imprimitivity bimodule. Bimodules of such
a kind were studied in [2],[3],[1], and we describe them in Section 5. Now one can
consider the graded ring ⊕n≥0M

⊗n
ε with tensor product over Aθ as multiplication.

(M⊗0
ε means just C, i.e. we adjoin a unity to the ring.)
Mε is an infinite dimensional C-vector space, but one can take finite dimensional

subspaces En ⊂M⊗n
ε of so-called “holomorphic” vectors, and they are compatible

with the tensor product: En ⊗Aθ
Em ⊂ En+m ([2],[3]). So, we obtain a graded

ring E = ⊕nEn with multiplication defined via tensor product over Aθ. This ring
was studied in [4]. The choice of “holomorphic” vectors depends on a complex
parameter τ ∈ C, formally defining “holomorphic” structure on Aθ.

In fact, M⊗n
ε are nontrivial Aθ − Aθ-imprimitivity bimodules. Imprimitivity

bimodules were introduced by M.Rieffel, we recall the definition in Section 1. Sec-
tions 2 and 3 are devoted to relation between biprojective bimodules and imprim-
itivity bimodules. In Section 4 we introduce a natural structure of imprimitivity
bimodule on the tensor product of imprimitivity bimodules. For two C∗-algebras A
and B an A−B-imprimitivity bimodule is endowed with two pre-inner products —

A 〈·, ·〉 : M ×M → A and 〈·, ·〉B : M ×M → B. We define Rn = Im Aθ
〈·, ·〉

∣∣∣
En

—

the vector space of finite sums of values of the left inner product on pairs of vectors
from En. We check that dimC Rn = dimC E

2
n (Proposition 6.2), so Rn

∼= En⊗̄En.
Here ⊗̄ means that (αa)⊗̄b = a⊗̄(ᾱb) for α ∈ C. This fact allows us to identify the
graded space R = ⊕n≥0Rn with a kind of Segre square of the ring E = ⊕n≥0En —
the subspace in E⊗̄E generated by elements a⊗̄b with a, b ∈ En for some n. Thus
we have defined the ring R.

But by construction elements of Rn for n ≥ 1 are in Aθ. In fact, they are
quantum theta functions. It was already noticed in [5] that operator-valued theta
functions appear from imprimitivity bimodules over quantum tori. We use the
definition of quantum theta functions given in [6] and [7]. Let us briefly recall it.
Consider a Heisenberg group Gθ

1 → C× → Gθ → C2 × Z2 → 0

acting on elements of the quantum torus Aθ by

(α; ~x; ~m)
∑

~n∈Z2

a~nU
n1V n2 = α

∑
~n∈Z2

e(n1x1 + n2x2)a~nU
m1V m2Un1V n2 .

A multiplier L is any free subgroup of rank 2 in Gθ, which is a lift of a free subgroup
of rank 2 in C2 × Z2. We denote by Γ(L) ⊂ Aθ the vector space of elements fixed
by L. All elements of Γ(L) are called quantum theta functions with multiplier L.
For example, take a lattice L = Z~s+ Z~r ⊂ Z2, and a matrix Ω ∈M2C, symmetric
Ω = Ωt and with positive imaginary part =Ω > 0. Then (e( 1

2~s
tAt~s);A~s;~s) and

(e( 1
2~r

tAt~r);A~r;~r) generate a multiplier, where A = θ
2

(
0 1
−1 0

)
+Ω. Let us denote

this multiplier by L = L(L,Ω). Then Γ(L) is a #(Z2/L)-dimensional C-vector
space of elements of the form

Θ[f ](Ω) =
∑

~m∈Z2

f(~m)e(
1
2
~mtΩ~m)e(−θ

2
m1m2)Um1V m2
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for f : Z2/L→ C.
In Section 6 (Proposition 6.2) we show that Rn = Γ(L(cnZ2,Ωn)) ⊂ Aθ. Now

we explain what are cn and Ωn. Recall we have chosen a unit ε ∈ Ok and a
complex parameter τ ∈ C. Now we need them to satisfy some technical conditions,

especially =τ > 0 and ε = cθ+d > 0, εθ = aθ+b with
(
a b
c d

)
∈ SL2(Z) and c > 0.

Existence of such an ε one can get for example from Section 6. Then cn are defined

by εn = cnθ+dn with integer cn, dn, or, equivalently, by
(
a b
c d

)n

=
(
an bn
cn dn

)
, or

by
∑

n cnt
n = c

t2−(a+d)t+1 . In particular, the last expression shows that {cn} is an
increasing sequence of positive integers, since a+ d = ε+ 1

ε ≥ 2. Now Ωn = 1
cnεn Ω

where

Ω =
i

2=τ

(
|τ |2 −<τ
−<τ 1

)
.

So, we get a ring R whose elements are formally elements of quantum tori Aθ,
but the multiplication law is different from the one in Aθ. It was already noticed in
[7] that the ordinary product of two quantum theta functions in Aθ is not a quan-
tum theta function as a rule. As we mentioned, R is isomorphic to a kind of Segre
square of E. Both R and E encapsulate the structure of real multiplication and
use arithmetical data to be constructed. But the following question still remains
unanswered: whether we can use such rings to obtain arithmetical invariants of the
real quadratic field k = Q(θ)?

Acknowledgement. I am grateful to Yuri Ivanovich Manin who taught me the
idea of real multiplication and collaboration with whom led to writing this note.
I also thank Alexander Polishchuk who read the first version of the paper and re-
marked that our ring of quantum theta functions is the Segre square of the ring
of “holomorphic” vectors. And I would like to thank the Max-Planck-Institute for
Mathematics in Bonn for their hospitality and support.

1. Strong Morita equivalence

Let A be a pre-C∗-algebra, i.e. a C-algebra with involution and norm satisfying
||x||2 = ||x∗x|| and ||x|| = 0 if and only if x = 0 for x ∈ A. If A has a unit element
1 ∈ A it is assumed that ||1|| = 1. An A-valued pre-inner product on linear space M
is an A-valued sesquilinear form 〈·, ·〉 (here it does not matter in which variable it
is conjugate linear) such that 〈x, x〉 ≥ 0 in the completion of A and 〈x, y〉∗ = 〈y, x〉
for x, y ∈M . We denote Im 〈·, ·〉 ⊂ A the set of finite sums of elements of the form
〈x, y〉 for x, y ∈M .

The following definitions were introduced in [9].

Definition 1.1. A left A-module M is called a left A-rigged space if it is endowed
with an A-valued pre-inner product A 〈·, ·〉 : M × M 7→ A, linear in the first
argument and conjugate linear in the second, such that A 〈ax, y〉 = a A 〈x, y〉 for
x, y ∈M,a ∈ A and the two-sided ideal Im A 〈·, ·〉 is dense in A.

Note that A 〈ax, y〉 = a A 〈x, y〉 for an A-valued inner product imply also
A 〈x, ay〉 = A 〈x, y〉 a∗. Hence Im A 〈·, ·〉 is a two-sided ideal as mentioned. we
obtain the definition of a right rigged space by simple reflection from the left to the
right:

Definition 1.2. A right A-module M is called a right A-rigged space if it is endowed
with a pre-inner product 〈·, ·〉A : M×M 7→ A, conjugate linear in the first argument
and linear in the second, such that 〈x, ya〉A = 〈x, y〉A a for x, y ∈M,a ∈ A and the
ideal Im 〈·, ·〉A is dense in A.
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Let now A,B be pre-C∗-algebras.

Definition 1.3. An A−B bimodule M is called an imprimitivity bimodule if
(1) M is a left-A-right-B-rigged space;
(2) A 〈x, y〉 z = x 〈y, z〉B;
(3) 〈ax, ax〉B ≤ ||a||2A 〈x, x〉B and A 〈xb, xb〉 ≤ ||b||2B A 〈x, x〉
for x, y, z ∈M and a ∈ A, b ∈ B.

Note that in an imprimitivity bimodule we also have a relation A 〈x, yb〉 =
A 〈xb∗, y〉 for any x, y ∈M and b ∈ B. Indeed, for b ∈ Im 〈·, ·〉B it is a consequence of
the relation (2) in the definition above. Let us check continuity. Suppose ||bn|| → 0.
Then || A 〈ybn, ybn〉 || ≤ ||bn||2|| A 〈y, y〉 || → 0 by (3). Now by the Proposition 2.9
in [9] we have || A 〈x, ybn〉 || ≤ || A 〈x, x〉 ||

1
2 || A 〈ybn, ybn〉 ||

1
2 → 0, and analogously

|| A 〈xb∗n, y〉 || → 0. Evidently, the dual relation 〈ax, y〉B = 〈x, a∗y〉B for any
x, y ∈M and a ∈ A also holds.

Definition 1.4. ([10]) Two pre-C∗-algebras A, B are said to be strongly Morita
equivalent if there exist an A−B-imprimitivity bimodule.

Example 1.5. Let A be a pre-C∗-algebra with 1. Consider M = An — free right
A- module of rank n. Then EndAM is the ring MnA of n×n matrices with entries
in A, which is a unital pre-C∗-algebra again. Then M is MnA − A-imprimitivity
bimodule with inner products

〈x, y〉A = x∗y =
∑

i

x∗i yi

MnA 〈x, y〉 = xy∗ = (xiy
∗
j )n

i,j=1

Example 1.6. Let G be a locally compact group, and let H and K be closed sub-
groups of G. Let A = C∗(K,G/H), B = C∗(H,K\G) be transformation group
C∗-algebras for the left action of K on G/H and the right action of H on K\G
correspondingly. It is shown in [10] that there is a natural A − B-imprimitivity
bimodule M which is the completion of the space Cc(G) of C-valued continuous
functions with compact support on G with respect to an appropriate norm, with
inner products given on f, g ∈ Cc(G) by:

A 〈f, g〉 (k, x) = β(k)
∫

H

f(x̃h)g∗(h−1x̃−1k)dh

where x̃ ∈ G is any representative of the class x, i.e. x = x̃H,

〈f, g〉B (h, y) = γ(h)
∫

K

f∗(ỹ−1k)g(k−1ỹh)dk

where y = Kỹ. Here β(·) =
(

δG(·)
δK(·)

) 1
2
, γ(·) =

(
δG(·)
δH(·)

) 1
2
, δG, δH , δK are the

modular functions of locally compact groups G,H,K correspondingly, the involution
is defined on Cc(G) by g 7→ g∗(z) = δG(z−1)ḡ(z−1), and all integrals above are taken
w.r.t. left Haar measures.

We will see in Sections 2,3 below that this two examples are quite similar.
Strong Morita equivalence implies Morita equivalence, i.e. equivalence of cat-

egories of hermitian representations([9]). It is not obvious from definitions that
the strong Morita equivalence is indeed an equivalence relation. In [9] an inverse
imprimitivity bimodule is constructed, showing that this relation is symmetric. In
Section 4 we define a natural structure of imprimitivity bimodule on the tensor
product of imprimitivity bimodules for unital C∗-algebras. In particular it makes
evident the transitivity of the strong Morita equivalence for unital C∗-algebras.
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2. Inner products for projective module

We generalize Example 1.5 in current section. Pre-inner products on a projective
module which satisfy all algebraic relations from Definition 1.3 were introduced
in [1]. We are going to check the condition of density of images for these inner
products now.

Let A be a C∗-algebra with 1, let p ∈ MnA be a projection, i.e. p = p∗ = p2.
Consider a submodule M = pAn of the right A-module An consisting of such
columns which are invariant under left multiplication by p. Then EndAM =
pMnAp, where matrices act by multiplication from the left. pMnAp is a C∗-algebra
with norm restricted from MnA, and since ||p|| = 1 this is a unital C∗-algebra.
We consider two inner products on M which are restrictions of inner products from
Example 1.5:

〈x, y〉A = x∗y =
∑

i

x∗i yi

pMnAp 〈x, y〉 = xy∗ = (xiy
∗
j )n

i,j=1

Then Im pMAp 〈·, ·〉 = pMnAp, and Im 〈·, ·〉A =
∑

i,j Api,jA — the ideal in A
generated by matrix entries of p.

Proposition 2.1. pAn with inner products defined above is pMnAp−A-imprimitivity
bimodule if and only if Im 〈·, ·〉A = A.

Proof. In unital C∗-algebra A there is no dense ideal except A. So, condition
Im 〈·, ·〉A = A is necessary for pAn to be right A-rigged space. We show it is
sufficient. Indeed, all necessary identities for 〈·, ·〉A and pMnAp 〈·, ·〉 are satisfied as
they are satisfied in Example 1.5, and we already mentioned that Im pMnAp 〈·, ·〉 =
pMnAp. �

In the next section we show that any imprimitivity bimodule between unital
C∗-algebras is of this form. This idea also comes from works of M. Rieffel — one
may compare Theorem 1 below to Proposition 2.1 in [11].

3. Imprimitivity bimodule for C∗-algebras with 1

Theorem 1. Let A,B be two strongly Morita equivalent C∗-algebras with 1, and
M be a B −A-imprimitivity bimodule. Then

(1) B = EndAM ;
(2) there exist n ∈ Z, a projection p ∈ MnA and an isomorphism of right

A-modules Ψ : M → pA∞ such that for u, v ∈M :

〈u, v〉A = Ψ(u)∗Ψ(v)

B 〈u, v〉 = Ψ−1 ◦Ψ(u)Ψ(v)∗ ◦Ψ

Proof. As B is a unital C∗-algebra, any dense ideal in it is B. Then there exist an
integer n and x1, . . . , xn, y1, . . . , yn ∈M such that

1B =
∑

i

B 〈xi, yi〉 .

Consider the unital C∗-algebra C = MnA and the B − C-bimodule N = Mn

consisting of columns of elements of M . We define inner products on N by

B 〈m,n〉 =
∑

i

B 〈mi, ni〉

〈m,n〉C = (〈mi, nj〉A)n
i,j=1
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One can check N is a B−C-imprimitivity bimodule. Now B 〈x, y〉 = 1B . Consider
z = x 〈y, y〉1/2

C . Then

B 〈z, z〉 = B 〈x, x 〈y, y〉C〉 = B 〈x, B 〈x, y〉 y〉 = B 〈y, x〉 B 〈x, y〉 = 1B ,

and p = 〈z, z〉C is a projection. Indeed, obviously p∗ = p and

〈z, z〉C 〈z, z〉C = 〈z, z 〈z, z〉C〉C = 〈z, B 〈z, z〉 z〉C = 〈z, z〉C .
Consider a homomorphism of rightA-modules Ψ : M → pAn, Ψ(m) = (〈zi,m〉A),

and a unital homomorphism of rings Φ : B → pMnAp, Φ(b) = 〈z, bz〉C . We now
prove they are both correctly defined and are in fact isomorphisms.

For Ψ consider j : M → N given by j(m) = (mδ1i)n
i=1. Then columns of

〈z, j(m)〉C are Ψ(m), 0, . . . , 0. Since P 〈z, j(m)〉C = 〈z 〈z, z〉C , j(m)〉C
= 〈〈z, z〉C z, j(m)〉C = 〈z, j(m)〉C , Ψ(m) ∈ pAn. Injectivity of Ψ follows from
z 〈z, n〉C = B 〈z, z〉n = n 6= 0 for nonzero n ∈ N . Surjectivity follows from the
fact that Im 〈z, ·〉C = pC.

Φ(b) is obviously invariant under left ant right multiplication by p. To prove
injectivity we note that b = B 〈y, x〉 b B 〈x, y〉 = B 〈bz, z〉, so bz 6= 0 if b 6= 0. Thus
also 〈z, bz〉C 6= 0. Surjectivity follows from fact that pCp is spanned by p 〈m,n〉C p
and equality p 〈m,n〉C p = Φ( B 〈m, z〉 B 〈n, z〉). Also Φ(b1b2) = Φ(b1)Φ(b2).

To prove the statement it remains to check that 〈u, v〉A = Ψ(u)∗Ψ(v), Φ( B 〈u, v〉) =
Ψ(u)Ψ(v)∗ and Φ( B 〈u, v〉)Ψ(t) = Ψ( B 〈u, v〉 t). Indeed,

Ψ(u)∗Ψ(v) =
∑

i

〈u, zi〉A 〈zi, v〉A = 〈u, B 〈z, z〉 v〉A = 〈u, v〉A .

Next, we compare the (i, j)’th matrix entry for Φ( B 〈u, v〉) = 〈z, B 〈u, v〉 z〉C and
Ψ(u)Ψ(v)∗:

〈zi, B 〈u, v〉 zj〉A = 〈zi, u〉A 〈v, zj〉A .
Now we compare the i’th coordinate in Φ( B 〈u, v〉)Ψ(t) and Ψ( B 〈u, v〉 t):

(Ψ(u)Ψ(v)∗Ψ(t))i = Ψ(u)i 〈v, t〉A = 〈zi, u〉A 〈v, t〉A = 〈zi, B 〈u, v〉 t〉A .
�

Corollary 3.1. Suppose there are two structures of a B−A-imprimitivity bimodule
on a bimodule M : B 〈·, ·〉i and 〈·, ·〉iA for i = 1, 2. If 〈·, ·〉1A = 〈·, ·〉2A then also
B 〈·, ·〉1 = B 〈·, ·〉2, and vice versa.

Proof. Due to the theorem above it is sufficient to check the statement in case
M = pA∞ and 〈x, y〉1A = 〈x, y〉2A = x∗y. Then for any z ∈ pA∞ we have B 〈x, y〉 z =
x 〈y, z〉A = xy∗z. Taking z = pk for all columns of p = (pk) we get B 〈x, y〉 =
B 〈x, y〉 p = xy∗p = xy∗, so the second inner product is defined by the first one. �

4. Composition of strong Morita morphisms

Evidently the choice of inner products for an A−B-imprimitivity bimodule M is
not unique. For example, we can multiply them both by a positive number and with
such new inner products M will be again an A− B-imprimitivity bimodule. Any-
way, the following theorem gives one natural choice of the imprimitivity bimodule
structure on the tensor product of two imprimitivity bimodules.

Theorem 2. Let A,B,C be unital C∗-algebras, M,N be A − B and B − C-
imprimitivity bimodules correspondingly. Then M ⊗

B
N with inner products defined

by
〈x⊗ z, y ⊗ t〉C = 〈z, 〈x, y〉B t〉C

A 〈x⊗ z, y ⊗ t〉 = A 〈x B 〈z, t〉 , y〉
is an A− C-imprimitivity bimodule.
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Proof. Let K = M ⊗
B
N . We check that K is a right C-rigged space. First, let us

see that 〈·, ·〉C on K is a well-defined C-valued inner product antilinear in the first
variable. Indeed, for b ∈ B

〈xb⊗ z, y ⊗ t〉C = 〈z, 〈xb, y〉B t〉C = 〈z, b∗ 〈x, y〉B t〉C
= 〈bz, 〈x, y〉B t〉C = 〈x⊗ bz, y ⊗ t〉C .

Taking b ∈ C1 we see that 〈·, ·〉C is antilinear in the first variable. Analogously
〈x⊗ z, yb⊗ t〉C = 〈x⊗ z, y ⊗ bt〉C and 〈·, ·〉C is linear in the second variable. To
show the positivity of 〈

∑n
i=1 xi ⊗ zi,

∑
i xi ⊗ zi〉C =

∑
i,j

〈
zi, 〈xi, xj〉B zj

〉
C

, we
recall thatMn is an A−MnB-imprimitivity bimodule. So the matrixH = 〈xi, xj〉B
is a positive element of MnB. Thus 〈y,Hy〉C =

∑
i,j 〈yi, hi,jyj〉C ≥ 0 as Nn is an

MnB − C-imprimitivity bimodule.
Consider elements xi, yi in M such that

∑
i 〈xi, yi〉B = 1. Then for any z, t ∈ N∑

i

〈xi ⊗ z, yi ⊗ t〉C = 〈z, t〉C ,

so Im 〈·, ·〉C on N is a subset of Im 〈·, ·〉C on K. Thus Im 〈·, ·〉C on K is dense in C.
For c ∈ C we obviously have relation

〈x⊗ z, y ⊗ tc〉C = 〈z, 〈x, y〉B tc〉C = 〈x⊗ z, y ⊗ t〉C c,
so we proved K is a right C-rigged space. Analogously K is a left A-rigged space.

Now we check condition (2) in Definition 1.3 :

v ⊗ w 〈x⊗ z, y ⊗ t〉C = v ⊗ w 〈〈y, x〉B z, t〉C = v ⊗ B 〈w, 〈y, x〉B z〉 t
= v B 〈w, 〈y, x〉B z〉 ⊗ t = v B 〈w, z〉 〈x, y〉B ⊗ t = A 〈v B 〈w, z〉 , x〉 y ⊗ t

= A 〈v ⊗ w, x⊗ z〉 y ⊗ t.

For condition (3) consider a ∈ A and〈
a

n∑
i=1

xi ⊗ zi, a
∑

i

xi ⊗ zi

〉
C

=
∑
i,j

〈
zi, 〈axi, axj〉B zj

〉
C

≤
∑
i,j

〈
zi, ||a||2 〈xi, xj〉B zj

〉
C

= ||a||2
〈∑

i

xi ⊗ zi,
∑

i

xi ⊗ zi

〉
C

as Mn is an A−MnB-imprimitivity bimodule. Analogously we can check condition
(3) for A 〈·, ·〉. �

We remark that this statement is also true in the case of unital pre-C∗-algebras.
The proof is almost the same but we need additional continuity arguments to prove
the density of images of pre-inner products.

5. Morita bimodules over quantum tori

Recall that a quantum torus Aθ for θ ∈ R\Q is a transformation group C∗-
algebra C∗(θZ,R/Z). It is known that Aθ is a universal C∗-algebra generated by
two unitaries U, V ∈ Aθ satisfying relation UV = e(θ)V U . The choice of such
unitaries is not unique. If U, V ∈ Aθ are chosen we call them a frame.

From Example 1.6 we see that Aθ = C∗(θZ,R/Z) is strongly Morita equivalent
to C∗(Z,R/θZ) ∼= C∗( 1

θ Z,R/Z) = A 1
θ
. Obviously Aθ+1 = Aθ, since the relation

UV = e(θ)V U is invariant under the transformation θ 7→ θ + 1. Also Aθ
∼= A−θ as

we can map U to V
′

and V to U ′ for any frames U, V ∈ Aθ, U
′
, V

′ ∈ Aθ. Recall
that GL2(Z) acts on complex numbers by(

a b
c d

)
θ =

aθ + b

cθ + d
.
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So we see that Aθ is strongly Morita equivalent to Agθ for any g ∈ GL2(Z). Indeed,

as GL2(Z) is generated by
(

0 1
1 0

)
and

(
1 1
0 1

)
, its orbit is generated by transfor-

mations θ 7→ θ + 1 and θ 7→ 1
θ . Conversely, it is shown in [11] that Aθ and Aθ′ are

not strongly Morita equivalent if θ and θ
′
don’t lie in the same orbit of GL2(Z).

Below we recall an explicit construction of Agθ − Aθ-imprimitivity bimodule
E(g, θ) for g ∈ SL2(Z), θ ∈ R\Q ([2], [3],[1]). (Bimodules for g ∈ GL2(Z) can be
easily obtained from these by a composition with homomorphism U 7→ V

′
,V 7→ U

′

of quantum tori on the left.) It is proven in [2] that E(hg, θ) ∼= E(h, gθ) ⊗
Agθ

E(g, θ)

as a bimodule, and we claim in the theorem below that inner products satisfy
relations of Theorem 2.

To construct our bimodules we need to fix a frame in Aθ for each θ ∈ R\Q. (If

θ = θ
′

modulo Z then the frames should coincide.) Let g =
(
a b
c d

)
∈ SL2(Z).

If c = 0 we put E(g, θ) = Aθ with the action of Agθ = Aθ via multiplication
from the left and action of Aθ by right multiplication, and define inner products
by Agθ

〈a, b〉 = ab∗ and 〈a, b〉Aθ
= a∗b as in Example 1.5. If c 6= 0, we consider the

space E0(g, θ) = S(R× Z/cZ) with following actions of generators U, V of Aθ and
U

′
, V

′
of Agθ on f ∈ E0(g, θ):

(fU)(x, α) = f(x− cθ + d

c
, α− 1)

(fV )(x, α) = e(x− α
d

c
)f(x, α)

(U
′
f)(x, α) = f(x− 1

c
, α− a)

(V
′
f)(x, α) = e(

x

cθ + d
− α

c
)f(x, α)

We define for f, s ∈ E0(g, θ) inner products:

Agθ
〈f, s〉 =

∑
n∈Z2

〈
f, U

′n1V
′n2s

〉
L2

U
′n1V

′n2

〈f, s〉Aθ
=

1
cθ + d

∑
n∈Z2

〈s, fUn1V n2〉L2
Un1V n2

Let E(g, θ) be the completion of E0(g, θ) with the norm ||f || = || Agθ
〈f, f〉 || 12 .

Then E(g, θ) is an Agθ −Aθ-imprimitivity bimodule (Theorem 3.2 in [1]).
In [2],[3] bimodule isomorphisms th,g : E(h, gθ) ⊗

Agθ

E(g, θ) → E(hg, θ) are con-

structed for h, g ∈ SL2(Z).

Theorem 3. For h, g ∈ SL2(Z), f1, s1 ∈ E(h, gθ) and f2, s2 ∈ E(g, θ)

Ahgθ
〈th,g(f1 ⊗ f2), th,g(s1 ⊗ s2)〉 = Ahgθ

〈
f1 Agθ

〈f2, s2〉 , s1
〉

〈th,g(f1 ⊗ f2), th,g(s1 ⊗ s2)〉Aθ
=
〈
f2, 〈f1, s1〉Agθ

s2

〉
Aθ

Proof. First, due to Theorem 2 and Corollary 3.1 it is enough to check only one of
two statements of the theorem. We prefer the second one.

As maps th,g are associative (Proposition 1.2 in [3]) it is enough to check the
statement only for generators of SL2(Z) at place of h. Indeed, suppose the state-
ment is true for E(h1, gθ) ⊗ E(g, θ), E(h2, h1gθ) ⊗ E(h1g, θ) and E(h2, h1gθ) ⊗
E(h1, gθ). Then it is true for E(h2h1, gθ)⊗E(g, θ) due to the associativity relation

th2h1,g ◦ (th2,h1 ⊗ id) = th2,h1g ◦ (id⊗ th1,g).
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Take h =
(

1 1
0 1

)
. Then f1, s1 ∈ Agθ, 〈f1, s1〉Agθ

= f∗1 s1, th,g(f1, f2) = f1f2

(in the sense of the left action) and similarly th,g(s1, s2) = s1s2. As h
(
a b
c d

)
=(

a+ c b+ d
c d

)
we have no changes in formulas for the action of quantum tori, so

E(hg, θ) = E(g, θ) and

〈f1f2, s1s2〉Aθ
= 〈f2, f∗1 s1s2〉Aθ

as E(g, θ) is an Agθ−Aθ-imprimitivity bimodule. Indeed, for an A−B-imprimitivity
bimodule M we have 〈ax, y〉B = 〈x, a∗y〉B for a ∈ A, x, y ∈M .

Now take h =
(

0 −1
1 0

)
. Then hg =

(
−c −d
a b

)
. Let us consider the case

g 6= h, c 6= 0. Cases g = h and c = 0 can be done analogously. Obviously we can
restrict to the dense set of Schwartz functions f1, s1 ∈ E0(h, gθ), f2, s2 ∈ E0(g, θ).
E0(h, gθ) = S(R) with

〈f1, s1〉Agθ
=

1
gθ

∑
n∈Z2

∫
s1(y)e(−yn2)f̄1(y − n1θ)dy Un1V n2

where U, V ∈ Agθ. Let U
′
,V

′
be generators of Aθ. Comparing coefficients at

U
′m1V

′m2 in the identity, which we need to prove, we see that it is equivalent to
1

aθ + b

〈
th,g(s1 ⊗ s2), th,g(f1 ⊗ f2U

′m1V
′m2)

〉
L2

=
1

cθ + d

〈
〈f1, s1〉Agθ

s2, f2U
′m1V

′m2

〉
L2

Substituting f2 instead of f2U
′m1V

′m2 , we need to prove for arbitrary f1, s1 ∈ S(R),
f2, s2 ∈ S(R× Z/cZ)

〈th,g(s1 ⊗ s2), th,g(f1 ⊗ f2)〉L2
=
∑
n∈Z2

∫
s1(y)e(−yn2)f̄1(y−n1θ)dy 〈Un1V n2s2, f2〉L2

This is a routine computation using Poisson summation formula. We use abbrevia-
tions LHS (RHS) for left-(right)-hand side of this identity correspondingly. By the
explicit formula for th,g (Proposition 1.2 in [3])

th,g(s1 ⊗ s2)(x, α) =
∑
n∈Z

s1

(
x

cθ + d
+ gθ

(
cb

a
α− n

))
s2

(
x− b

a
α+

n

c
, an

)
,

and analogously for th,g(f1 ⊗ f2). Now

LHS =
∑

n,m∈Z

∑
α∈Z/aZ

∫
s1(z)s2(y −

m− n

c
, an)f̄1(z − gθ(m− n))f̄2(y, am)dy

where z = x
cθ+d +gθ

(
cb
a α− n

)
and y = x− b

aα+ m
c . Let us representm = dm1+cm2

with m1 ∈ Z/cZ and m2 ∈ Z. Then am = m1 and an = m1 − a(m− n) modulo c.
Introducing a new variable n1 = m− n we proceed:

=
∑

m1∈Z/cZ

∫ ∑
n1∈Z

∑
m2∈Z,α∈Z/aZ

s1(z)f̄1(z − gθn1)(Un1s2)(y,m1)f̄2(y,m1)dy

Let us express z via y,m1,m2, n1 and α:

z =
1

cθ + d

(
y +

b

a
α− m

c

)
+ gθ(

cb

a
α− n)

=
1

cθ + d

(
y +

b

a
α−m2 −

d

c
m1

)
+
aθ + b

cθ + d
(
cb

a
α− cm2 − dm1 + n1)

= (bα−m2a)−
ad

c
m1 +

1
cθ + d

(y + (aθ + b)n1)
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Denote n2 = bα−m2a, and z0 = z − n2. Then by the Poisson summation formula∑
n2∈Z

s1(n2 + z0)f̄1(n2 + z0 − gθn1) =
∑
n2∈Z

e(z0)n2

∫
e(−tn2)s1(t)f̄1(t− gθn1)dt.

We put this into LHS, and note that e(z0)n2(Un1s2)(y,m1) = (Un1V n2s2)(y,m1).
So LHS =∑

m1∈Z/cZ

∫ ∑
n1,n2∈Z

∫
e(−tn2)s1(t)f̄1(t− gθn1)dt(Un1V n2s2)(y,m1)f̄2(y,m1)dy

=
∑

n1,n2

∫
e(−tn2)s1(t)f̄1(t− gθn1)dt 〈Un1V n2s2, f2〉L2

= RHS

�

6. Real multiplication

An irrational number θ ∈ R\Q is a root of a quadratic equation if and only if
there exists a matrix g ∈ SL2(Z), g 6= ±1 such that gθ = θ. Let us fix such g and θ.
It follows from Section 5 that there are nontrivial Aθ−Aθ-imprimitivity bimodules
exactly in this case. Next we are going to construct a graded ring R = R(g, θ) =
⊕

n≥1
Rn using tensor products and inner products in these imprimitivity bimodules.

We start with a construction of another graded ring due to Polishchuk [4], which
uses only tensor products.

We consider the set of bimodules E(gn, θ), n ≥ 1 defined in previous section,
and have a family of isomorphisms

tgm,gn : E(gn, θ)⊗ E(gm, θ)→̃E(gn+m, θ).

Let Hk = {M ∈ MkC|M = M t and =(M) > 0} be the so-called Siegel upper
half-plane. So, H1 is just the upper half of the complex plane C, and we fix τ ∈ H1.

Denote matrix entries of gn by
(
an bn
cn dn

)
. Denote µn = τ cn

cnθ+dn
. Note that

cnθ + dn is an eigenvalue of gn, so it is nonzero. Also cn 6= 0 as gn is a nontrivial
matrix stabilizing θ. Thus µn 6= 0. Denote

En =

{{
φf (x, α) = e(µn

x2

2 )f(α)
∣∣∣f : Z/cnZ → C

}
, cn

cnθ+dn
> 0

{0} , cn

cnθ+dn
< 0

⊂ E(gn, θ).

En is either 0 or a |cn|-dimensional vector space. In fact we have either En = {0}
for all n or En 6= {0} for all n. Indeed, we see that the definition of En is the same
for E(g, θ) and E(−g, θ). Thus taking either g or −g instead of g we can suppose
that c1θ + d1 > 0. c1θ + d1 is an eigenvalue of g, so g has positive eigenvalues.
Now it follows from

∑∞
n=1 cnt

n = ct
t2−tr(g)t+1 that all cn have the same sign, as

all coefficients of the power series for 1
t2−tr(g)t+1 are positive. All cnθ + dn are

eigenvalues of gn, so they are also positive.
Consider the set

Sθ :=
{
g =

(
a b
c d

)
∈ SL2(Z)

∣∣∣g 6= ±1, gθ = θ, tr(g) > 0 & c > 0
}

It is always nonempty: we already showed how to satisfy first three conditions, then
if the fourth is not satisfied we can take g−1 instead of g.

Further we suppose g ∈ Sθ. Then all En are nonzero vector spaces. It was
noticed already in [2] that vector spaces En are preserved under tensor products of
bimodules. The following can be checked by a direct computation:
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Proposition 6.1. For f : Z/cnZ → C, g : Z/cmZ → C we have tgn,gm(φf ⊗ φg) =
φf ?

n,m
g where

f ?
n,m

g(α) =
∑
q∈Z

e

(
τ

2
cn+m

cncm

(
q − cmdn+m

cn+m
α

)2
)
f(andn+mα− q)g(amq)

is a function on Z/cn+mZ.

Let E0 be C, and En for n > 0 be the C-vector spaces defined above. Consider
the graded ring with unit element E = ⊕n≥0En where the multiplication law is
given by φf ∗ φg := φt ?

n,m
g ∈ En+m for φf ∈ En, φg ∈ Em, n,m > 0. Associativity

of this multiplication follows from the identity

tgn+m,gk ◦ (tgn,gm ⊗ id) = tgn,gm+k ◦ (id⊗ tgm,gk) : En ⊗ Em ⊗ Ek → En+m+k

stated in Proposition 1.2 in [3]. Note that if we choose for basis in En functions of
the form φf with characters f ∈ (Z/cnZ)∗, we get a multiplication table consist-
ing of values at rational points of various theta functions with rational characters

θ

[
α

β

]
(γ, δτ) where α, β, γ, δ ∈ Q (see, e.g. [12]). For example,

1 ?
n,m

1(α) = θ

 cmdn+m

cn+m
α

0

(0,
τ

2
cn+m

cncm

)
.

In [4] (Theorem 2.4) criterions whether the ring E is generated over C by E1, is
quadratic and is Koszul are established. Using them we state a criterion whether
there exist g ∈ Sθ such that E have these good properties:

Theorem 4. Let θ ∈ R\Q be a quadratic irrationality, and θ
′
be its Galois conju-

gate. Then the following conditions are equivalent:
(1) |θ − θ

′ | < 1;
(2) there exist g ∈ Sθ such that the ring E is generated by E1 over C;
(3) there exist g ∈ Sθ such that the ring E is quadratic;
(4) there exist g ∈ Sθ such that the ring E is Koszul.

Proof. First we show (2),(3) and (4) imply (1). Let g =
(
a b
c d

)
with given prop-

erties exist. As g ∈ Sθ, it satisfies conditions of Theorem 2.4 in [4]. This implies
c ≥ a + d + ε, where ε = 0 for (2), ε = 1 for (3), ε = 2 for (4). Then, as
cθ2 + (d− a)θ − b = 0,

|θ − θ′|2 =
(d− a)2 + 4bc

c2
=

(d+ a)2 − 4
c2

≤ (d+ a)2 − 4
(d+ a)2

< 1.

Let us prove that (1) implies (2),(3) and (4). Namely, we are going to show that
(i) implies that for every ε ≤ 2 there exist g ∈ Sθ such that c > a+ d+ ε. This will
imply (2) for ε = 1, (3) and (4) for ε = 2 due to Theorem 2.4 in [4].

Take any g ∈ Sθ. Now, as g stabilizes θ, we have for the norm and the trace

N(θ) = −b
c

=
1− ad

c2
, T r(θ) =

a− d

c
,

and

(a+ d)2 = (a− d)2 + 4ad = c2(Tr(θ)2 − 4N(θ)) + 4 = c2|θ − θ′|2 + 4.

So, as |θ− θ′| < 1 we have (a+d)2 < (c− ε)2 if c is large enough, and a+d < c− ε,
because a + d > 2 and ε ≤ 2 and c > 0. To make c large enough one can take gn

instead of g, since gn ∈ Sθ. �
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Now we are going to construct another ring, which also uses inner products
in imprimitivity bimodules E(gn, θ). We will use left Aθ-valued inner products,
but the same construction can be done for the right ones. Let n > 0. We put
Rn = Im Aθ

〈·, ·〉
∣∣∣
En

— the vector space of finite sums of values of left inner

product on pairs of vectors from En ⊂ E(gn, θ). In Introduction we defined for a
matrix Ω ∈ H2 and a function f : Z2 → C periodic w.r.t. some cofinite lattice in
Z2 an element

Θ[f ](Ω) =
∑

~m∈Z2

f(~m)e(
1
2
~mtΩ~m)e(−θ

2
m1m2)Um1V m2 ∈ Aθ.

Proposition 6.2. Rn =
{

Θ[f ]( 1
cn(cnθ+dn)Ω)

∣∣∣f : Z2/cnZ2 → C
}

where

Ω =
i

2=τ

(
|τ |2 −<τ
−<τ 1

)
∈ H2.

Proof. By a routine computation we get

Aθ
〈φf , φg〉 =

1
2(=µn)

∑
~m∈Z2

Q(~m)e
(

1
2
~mt Ω
cn(cnθ + dn)

~m

)
e(−θ

2
m1m2)Um1V m2

where
Q(~m) = Qf,g(~m) =

∑
α∈Z/cnZ

f(α+ anm1)ḡ(α)e(
α

cn
m2).

The function Qf,g is periodic w.r.t. the lattice cnZ2. Obviously we can arrange
a basis in the space of periodic functions Z2/cnZ2 → C from such functions Qf,g

by taking various functions f, g : Z/cnZ → C, so the statement of the proposition
follows. We have 1

cn(cnθ+dn)Ω ∈ H2 since Ω ∈ H2 and cn(cnθ + dn) > 0 for
g ∈ Sθ. �

Note, that Rn is a vector space. Moreover, dimRn = c2n = (dimEn)2, so that
there are no linear relations among Aθ

〈
φfi , φfj

〉
for any basis {fi} in the space of

functions on Z/cnZ.
Let us define an operation ?

n,m
: Rn ⊗ Rm → Rn+m. For Θ1 =

∑
i Aθ

〈xi, yi〉
and Θ2 =

∑
j Aθ

〈zj , tj〉 we put

Θ1 ?
n,m

Θ2 :=
∑
i,j

Aθ
〈xi ∗ zj , yi ∗ tj〉 .

This operation is well defined. Indeed, every element of Rn can be uniquely repre-
sented as a linear combination of Aθ

〈
φfi

, φfj

〉
as we remarked above. Note that

we have another way of calculating the product Θ1 ?
n,m

Θ2, which doesn’t involve

multiplication in the ring E: due to Theorem 3

Θ1 ?
n,m

Θ2 =
∑

i

Aθ
〈xiΘ2, yi〉 .

Consider the graded ring with unit element R = ⊕n≥0Rn where R0 = C and the
multiplication law is given by φ∗ψ := φ ?

n,m
ψ ∈ Rn+m for φ ∈ Rn, ψ ∈ Rm, n,m > 0.

This multiplication is obviously associative, because it is associative in the ring E
defined above. Even more, due to our remark on dimensions, Rn

∼= En⊗̄En. Here
⊗̄ means that (αa)⊗̄b = a⊗̄(ᾱb) for α ∈ C. Then R = ⊕n≥0Rn is just a kind of
Segre square of E = ⊕n≥0En — the subspace in E⊗̄E generated by elements a⊗̄b
with a, b ∈ En for some n. Analogously to Theorem 4 we have:
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Theorem 5. Let θ ∈ R\Q be a quadratic irrationality, θ
′

be its Galois conjugate
and |θ − θ

′ | < 1. Then there exist g ∈ Sθ such that the graded ring R = R(g, θ) is
Koszul.

Proof. By Theorem 4 we can find g ∈ Sθ such that E = E(g, θ) is Koszul. Let Ē
be E considered as a C-algebra via complex conjugation, i.e. α 7→ ᾱ1 ∈ Ē. Then
R is a Segre product of E and Ē. But obviously Ē is Koszul C-algebra, and it is
known that a Segre product of two Koszul algebras is Koszul (see e.g. [13]). �
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