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Abstract. We aim this paper to develop the classical lattice models with unbounded spin to
the case of non-quadratic polynomial interaction.

We demonstrate that the distinct relation between the growths of potentials leads to the
uniqueness and the fast decay of correlations for Gibbs measure.

There is an approach initiated in the papers [9, 10, 23] to the description of the probability
measures on infinite dimensional spaces in the terms of conditional distributions. This approach
has already found its non-trivial applications to the natural construction of the different models
in the Quantum Field Theory, Mathematical and Statistical Physics [18, 26, 32, 33].

There were obtained the effective criteria on the existence and uniqueness of such systems, see
Dobrushin’s criterion [9, 10, 11], Dobrushin–Shlosman mixing condition [12, 13]. In the essence
of the Dobrushin’s type criteria lie the keen variational estimates on the one-point conditional
measures, which admit iteration and application of the fixed point arguments. Moreover, such
estimates were used in the applications to the lattice spin systems of the statistical physics
to the study of decay of correlations, differentiability of pressure and the connected questions
[7, 14, 16, 17, 21, 22, 33].

In the noncompact spin case the check of Dobrushin’s conditions is rather complicated by
principal unboundedness of interaction potentials. The results in this direction were mainly
centered around the regular interactions [3, 7, 20, 24, 28, 29, 30], i.e. when the many-point
potentials in the Hamiltonian
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admit the quadratic domination, for example with the quadratic two-point potentials

H(x) =
∑
k∈ZZd

F (xk) + λ
∑

k,j∈ZZd

bk−j(xk − xj)2

On the other hand, a wide class of models with nonregular interaction, associated with
massless free lattice field, perturbed by (∇ϕ)4

H(x) =
∑

| k−j |=1

(xk − xj)2 + λ
∑

| k−j |=1

(xk − xj)4,

has already obtained a detail investigation through various techniques [4, 6, 15, 25, 27]. In par-
ticular, it was shown that the exponential decay of correlations for such systems does not occur
for all λ > 0 [4], i.e. the Dobrushin uniqueness technique does not work for such Hamiltonians.

In this paper we demonstrate that there is a wide class of the Gibbs lattice systems, which do
not fulfill the regularity assumption but have the fast decay of correlations. We aim this paper
to show that the application of the Dobrushin’s uniqueness technique for the Hamiltonian

H(x) =
∑
k∈ZZd

F (xk) + λ
∑

k,j∈ZZd

Gk−j(xk − xj)

with polynomials {Gj} requires the distinct correlations between the growths of the interaction
potentials {Gj} and selfaction {F}. This gives us possibility to treat the problem on the exis-
tence, uniqueness and the exponentially fast decay of correlations in the case of non-quadratic
polynomial interaction. We base our investigation on the scheme of papers [9, 10, 11, 14, 16, 22]
and apply Brascamp-Lieb inequality [5] to obtain estimates on the distance in variations.

Consider ZZd to be d- dimensional integer lattice, to each point of which corresponds the
linear spin space IR1. Let G{µΛ} denote the set of Gibbs measures [9, 10, 23] on the product

σ-algebra on IRZZd

. It means that the corresponding conditional measures {µΛ} in the finite
volumes of the lattice Λ ⊂ ZZd are defined by

dµΛ =
1

ZΛ

exp{−λ
∑

{k,j}∪Λ6=∅
Gk−j(xk − xj)} ×

k∈Λ
e−F (xk)dxk (1)

i.e. for all cylinder bounded functions f ∈ Cb,cyl(IRZZd

) we have µ(µΛ(f)) = µ(f), where µ(f)
denotes the expectation and ZΛ is a normalization factor.

We put the following conditions on the interactive potentials {F,Gj} in the Gibbs measure
(1).
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A. Self-action potentials F ∈ C2(IR1), fulfill F (0) = 0, ∃ ε > 0 inf
x∈IR

F ′′(x) ≥ ε and have no

more than the exponential growth on the infinity ∃ c, a: ∀x |F (x)| ≤ cea|x|;

B. Interaction potentials {Gj ∈ C2(IR1)}j∈ZZd\{0}, fulfill Gj(0) = 0, ∀ j ∈ ZZd\{0} ∀x ∈ IR1 :

G′′j (x) ≥ 0 and ∃ r0 ∀ j : |j| > r0 ⇒ Gj ≡ 0

C. Growth condition ∀ k ∈ ZZd |k| ≤ r0 sup
xk,x0∈IR1

|G′′k(xk − x0)|√
F ′′(xk)

√
F ′′(x0)

<∞

Immediately remark that the condition C states the domination of the one-point potentials
over the interaction. It always holds for the quadratic and less than quadratic interaction due
to sup |G′′| ≤ const. Actually condition C permits to consider the interaction {Gj} to be of
polynomial type.

The following theorem states the uniqueness and the exponentially fast decay of correlations
for the Gibbs measure (1). The existence of such measure and finiteness of its moments is
shown in Theorem 2.

Theorem 1. Suppose conditions A-C hold and the set of measures µ ∈ G{µΛ}, which satisfy

mµ = sup
k∈ZZd

∫
IRZZd

ρ2(xk, 0)dµ <∞, ρ(x, y) = |
∫ x

y

√
F ′′(s) ds, (2)

is nonempty. Denote γd =
∑

k∈ZZd

ed(k,0) sup
xk,x0∈IR1

|G′′(xk − x0)|√
F ′′(xk)

√
F ′′(x0)

for some transitional invariant

semimetric d(k, j) on the lattice ZZd.
Then ∀λ ∈ [0, 1/γd) measure µ̃ ∈ G{µΛ}, mµ̃ < ∞ is unique and has exponentially fast

decay of correlations, i.e.∑
k∈ZZd

ed(k,0)|covµ̃(f, τkg)| ≤ 1

1− λγd
(
∑
k∈ZZd

ed(k,0)δk(f))(
∑
j∈ZZd

ed(j,0)δj(g)) (3)

Above τk is a shift operator on vector k ∈ ZZd,

δk(f) = sup
x∈IRZZd

| ∂kf(x)√
F ′′(xk)

|, ∂kf(x) =
∂f(x)

∂xk
, x = {xk}k∈ZZd (4)

Inequality (3) is understood on the cylinder bounded differentiable functions f, g ∈ C1
b,cyl(IR

ZZd

)

such that
∑

j∈ZZd

ed(j,0)δj(f) <∞.

Proof. We discuss the main tool, which enables us to deal with the polynomial interaction in
the Gibbs measure. First note that the usual estimate on the covariance [2, 8]

covµ(f, f) ≡
∫
IR1

(f −
∫
IR1

f dµ)2dµ ≤ 1

ε

∫
IR1
|∂f
∂x
|2dµ (5)

for the probability measure µ, dµ = e−F (x)dx on the line IR1, holds for arbitrary function
F ∈ C2(IR) such that F ′′(x) ≥ ε > 0 for all x ∈ IR1. Actually the above inequality (5) is not
optimal and in the paper [5, Th.4.1] it was found that the next weighted generalization is true

covµ(f, f) ≤
∫
IR1

1

F ′′(x)
|∂f
∂x
|2dµ (6)

with the weight 1/F ′′, which in the cases when F ′′ grows on the infinity improves inequality
(5).

Introduce the family of one-point conditional measures {µk}k∈ZZd

dµk =
1

Zk
exp{−λ

∑
j: j 6=k

Gk−j(xk − xj)}e−F (xk)dxk (7)
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where Zk is a normalization factor. Below we also understand the measure µk as the operator
of conditional expectation

µk : C1
b,cyl(IR

ZZd

) 3 f −→ µk(f)
def
≡

∫
IR1

k

f dµk ∈ C1
b,cyl(IR

ZZd

)

The next identity for j, k ∈ ZZd, j 6= k

∂jµk(f) = µ(∂jf)− λcovµk(f, ∂jGk−j(xk − xj))
leads to

δj(µk(f)) = sup |∂j(µk(f))√
F ′′

| =

= sup |µk(
∂jf√
F ′′(xj)

)− λcovµk(f,
∂jGk−j(xk − xj)√

F ′′(xj)
)| ≤ (8)

≤ δj(f) + λ sup |covµk(f,
∂jGk−j(xk − xj)√

F ′′(xj)
)|

Using the convexness of Gj we obtain the following consequence of the weighted inequality
(6)

covµk(f, f) ≤
∫
IR1

|∂kf |2

F ′′(xk) +
∑
j 6=k

G′′k−j(xk − xj)
dµk ≤

≤
∫
IR1

|∂kf |2

F ′′(xk)
dµk ≤ [δk(f)]2 (9)

Inequality (9) enables us to estimate the second term in (8)

sup |covµk(f,
∂jGk−j(xk − xj)√

F ′′(xj)
)| ≤

≤ sup cov1/2
µk

(f, f)cov1/2
µk

(
∂jGk−j(xk − xj)√

F ′′(xj)
,
∂jGk−j(xk − xj)√

F ′′(xj)
) ≤

≤ δk(f)(
∫
IR1

|∂k∂jG(xk − xj)|2

F ′′(xk)F ′′(xj)
dµk)

1/2 ≤ δk(f) sup
|G′′k−j(xk − xj)|√
F ′′(xk)

√
F ′′(xj)

Finally from (8) we obtain that

δj(µk(f)) ≤ δj(f) + λCkjδk(f) (10)

with

Ckj = sup
xk,xj∈IR1

|G′′k−j(xk − xj)|√
F ′′(xk)

√
F ′′(xj)

The estimate (10) is a key point of the Dobrushin’s uniqueness technique and the special
structure of the covariance matrix Ckj permits the polynomiality of {Gj} in the interaction.

Below we follow scheme of [14, 16, 22]. The principal modification lies in the use of weighted
inequality (6) and weighted estimate on covariances (10).

1. Uniqueness of the Gibbs measure. Like in [14] we say that the vector {aj}j∈ZZd is an

estimate for probability measures µ, ν if ∀ f ∈ C∞b,cyl(IRZZd

):
∑

k∈ZZd

δk(f) <∞ we have

|
∫
IRZZd

f dµ−
∫
IRZZd

f dν| ≤
∑
j∈ZZd

ajδj(f) (11)

For any two measures µ1, µ2 ∈ G{µΛ} with property (2) there is an estimate ã = {ãj ≡
m0 ≡ const}j∈ZZd with m0 = m1/2

µ1
+ m1/2

µ2
. To show this, note first that for f ∈ C1

b,cyl(IR
ZZd

)
with

∑
k∈ZZd

δk(f) <∞ we have

|f(x)− f(y)| ≤
∑
i∈ZZd

δi(f)ρ(xi, yi)
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and therefore

|
∫
IRZZd

f dµ1 −
∫
IRZZd

f dµ2| = |
∫
IRZZd

(f(x)− f(0))dµ1 −
∫
IRZZd

(f(x)− f(0))dµ2| ≤

≤
∑
k∈ZZd

δk(f)
∫
IRZZd

ρ(xk, 0){dµ1(x) + dµ2(x)} ≤ m0

∑
k∈ZZd

δk(f) (12)

By (10) the operator f → µk(f) preserves the class of functions {f ∈ C1
b,cyl(IR

ZZd

) :∑
k∈ZZd

δk(f) <∞}. From (10) and (12) we have

|µ1(f)− µ2(f)| = |(µ1 − µ2)(µk(f))| ≤

≤
∑
j∈ZZd

ãjδj(µk(f)) ≤
∑
j: j 6=k

ãjδj(f) + λδk(f)
∑
i: i 6=k

ãiCki (13)

Iterating the above estimate by choosing some enumeration k1, ..., kn, .. of the points of lattice
ZZd one can in a purely algebraic way achieve the following estimate, see [14, Lemma 2.3]

|µ1(f)− µ2(f)| ≤ λ
∑
k∈ZZd

δk(f)(
∑
j∈ZZd

ãjCkj)

which gives
|µ1(f)− µ2(f)| ≤

∑
k∈ZZd

(ã(λC)n)kδk(f)

for all n ≥ 0.
Due to

‖ã(λC)n‖`∞(ZZd) = m0 sup
k∈ZZd

∑
j∈ZZd

{(λC)n}kj =

= m0 sup
k∈ZZd

λn
∑

j(1)∈ZZd

...
∑

j(n−1)∈ZZd

∑
j∈ZZd

Ckj(1)...Cj(n−1)j ≤ (14)

≤ m0( sup
k∈ZZd

λ
∑
j∈ZZd

Ckj)
n ≤ m0(λγd)

n → 0, n→∞,

we obtain the uniqueness of the Gibbs measure.

2. Decay of correlations. Fix function g ∈ C1
b,cyl(IR

ZZd

) such that
∫
IRZZd g dµ = 1, g > 0

and
∑

k∈ZZd

ed(k,0)δk(g) < ∞. Then measure dν = g dµ for the unique measure µ ∈ G{µΛ} with

property (2) has the same property

sup
k∈ZZd

∫
IRZZd

ρ(xk, 0)dν(x) ≤ ‖g‖Cb
m1/2
µ <∞

In analog to (12) this gives the estimate ã = {ãj ≡ m1/2
µ (‖g‖Cb

+ 1)}j∈ZZd on measures µ and ν

|µ(f)− ν(f)| ≤
∑
k∈ZZd

ãkδk(f) = m1/2
µ (‖g‖Cb

+ 1)
∑
k∈ZZd

δk(f)

Now we prove that if {aj}j∈ZZd is an estimate, then { ∑
j∈ZZd

ajCjk + bk}k∈ZZd for bk = δk(g) is an

estimate too. Indeed

|µ(f)− ν(f)| ≤ |(µ− ν)y{
∫
IRk

f(·|y)dµk(·|y)}|+

+|νy{
∫
IRk

f(·|y)dµk(·|y)−
∫
IRk

f(·|y)dνk(·|y)}| =

=
∑
j∈ZZd

ãjδj(µk(f)) + |νy{
∫
IRk

f(·|y)dµk(·|y)−
∫
IRk

f(·|y)dνk(·|y)}| (15)

Using (10) the first term in (15) can be estimated by∑
j 6=k

ãjδj(f) + λ δk(f){
∑
i 6=k

ãiCik}
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We apply inequality (6) to the second term. We use that dν = g dµ, so dνk =
g

µk(g)
dµk and

obtain
|νy{

∫
f dµk(·|y)−

∫
f dνk(·|y)}| =

= |νy{
∫

[f − µk(f)](dµk −
g

µk(g)
dµk)}| =

= |µy{
g

µk(g)

∫
(f − µk(f))(g − µk(g))dµk}|

The result of integration on IRk doesn’t depend on variable xk ∈ IRk, therefore we continue

|µy{
g

µk(g)

∫
(f − µk(f))(g − µk(g))dµk}| =

= |µ{
∫
IRk

(f − µk(f))(g − µk(g))dµk}| ≤

≤ sup cov1/2
µk

(f, f)cov1/2
µk

(g, g) ≤ δk(f)δk(g) = bkδk(f)

Finally we have obtained the estimate on (15)

|µ(f)− ν(f)| ≤
∑
j 6=k

ãjδj(f) + δk(f){
∑
i 6=k

ãiλCik + bk} (16)

By iteration of (16) like in [14, 16, 22] one achieves that (ãλC + b) is an estimate too

|µ(f)− ν(f)| ≤
∑
k∈ZZd

{ãiλCik + bk}δk(f) (17)

The vector b
∞∑
n=0

(λC)n is also an estimate because of the following convergence in `∞(ZZd)

b
N∑
n=0

(λC)n + ã(λC)N+1 → b
∞∑
n=0

(λC)n, N →∞

Thus we achieve estimate [14, 16, 22]

|covµ(f, g)| = |
∫
IRZZd

f dν −
∫
IRZZd

f dµ| ≤
∑

k,j∈ZZd

Dkjδk(f)δj(g) (18)

for D =
∞∑
n=0

(λC)n. Therefore

|covµ(f, τig)|ed(i,0) ≤
∑

k,j∈ZZd

ed(j,k)Djke
d(k,0)δk(f)ed(i,j)δj−i(g)

Summing up on i ∈ ZZd we have the required decay of correlations for g > 0.

The case of arbitrary g ∈ C1
b,cyl(IR

ZZd

) with
∑

k∈ZZd

ed(k,0)δk(g) < ∞ is obvious due to the

identity covµ(f, c1g + c2) = c1 covµ(f, g)

Theorem 2. Under conditions A–C the set of Gibbs measures G{µΛ} with condition

mµ = sup
k∈ZZd

∫
IRZZd

ρ2(xk, 0)dµ(x) <∞ (19)

is nonempty.
Moreover, at the coupling interaction constant λ ∈ [0, 1/γd), the Gibbs measure µ̃ of Theorem

1 fulfills estimate
sup
k∈ZZd

∫
IRZZd

exp{ax2
k}dµ̃ ≤ exp(

a

ε− 2a
) (20)

for all a ∈ [0, ε/2).
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Proof. Let
UΛ =

∑
k∈Λ

F (xk) + λ
∑

{k,j}⊂Λ

Gk−j(xk − xj)

and consider the family of Gibbs measures {µΛ} with the free boundary conditions in the finite
volumes Λ ⊂ ZZd

dµ0
Λ =

1

Z
e−UΛdxΛ

The potentials (UΛ)′′ ≥ εI are convex, so the measures µ0
Λ satisfy inequality (24) in form

[2, 8]

covµ0
Λ
(f, f) ≤ 1

ε

∫
IRΛ

∑
k∈Λ

|∂kf |2dµ0
Λ

Substituting f = xk and using that
∫
IRΛ xk dµ

0
Λ ≡ 0 by the symmetry of µ0

Λ we have that
uniformly on Λ and k ∈ Λ

sup
Λ⊂ZZd, k∈Λ

∫
IRΛ

x2
k dµ

0
Λ ≤ 1/ε (21)

The convexness of the potentials UΛ also imply the Log-Sobolev inequality for the measures
{µ0

Λ} [2] ∫
IRΛ

f 2 ln f 2 dµ0
Λ −

∫
IRΛ

f 2 dµ0
Λ ln

∫
IRΛ

f 2 dµ0
Λ ≤

2

ε

∫
IRΛ

∑
k∈Λ

|∂kf(xΛ)|2dµ0
Λ(xΛ) (22)

Fix Λ ⊂ ZZd and k ∈ Λ. Consider increasing on n ≥ 1 sequence of functions

fn =


−n, xk < −n
xk, |xk| ≤ n
n, xk > n

Like in [8] introduce sequence of functions hn(a) =
∫
IRΛ

exp(af 2
n)dµ0

Λ ≥ 1 on half-line a ∈

[0,∞), increasing on both a and n with all derivatives h(k)
n (a) > 0, a > 0. Then for gn =

exp(af 2
n/2) we apply Log-Sobolev inequality (22)

ah′n(a) =
∫
IRΛ

af 2
n exp(af 2

n)dµ0
Λ =

∫
IRΛ

g2
n ln g2

n dµ
0
Λ ≤

≤ 2

ε

∫
IRΛ

∑
j∈Λ

|∂jgn|2dµ0
Λ + hn(a) lnhn(a) ≤

≤ 2

ε
a2

∫
IRΛ

f 2
n exp(af 2

n)dµ0
Λ + hn(a) lnhn(a)

Therefore the family hn(a), increasing on both n and a ≥ 0, hn(0) = 1, satisfy inequality
a(1− 2a

ε
)h′n(a) ≤ hn(a) lnhn(a). To find the major function we must set h(0) = 1 and take the

highest growth of its derivative, so a(1− 2a
ε

)h′(a) = h(a) lnh(a) and h(a) = exp(
aD

1− 2a/ε
) for

some D. The restriction on D we obtain from the highest growth of hn at zero

h′n(0) =
∫
IRΛ

f 2
ndµ

0
Λ ≤

∫
IRΛ

x2
kdµ

0
Λ(x) = D <∞

and achieve estimate hn(a) ≤ exp{ a

1− 2a/ε

∫
IRΛ

x2
kdµ

0
Λ(x)}. Tending n → ∞ we obtain the

estimate of the next form at a ∈ [0, ε/2)∫
IRΛ

exp(ax2
k)dµ

0
Λ ≤ exp(

a

1− 2a/ε

∫
IRΛ

x2
kdµ

0
Λ)

which by (21) gives

∀ a ∈ [0, ε/2) sup
Λ⊂ZZd, k∈Λ

∫
IRΛ

exp(ax2
k)dµ

0
Λ < exp(

a

ε− 2a
) (23)
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Compactness of the function exp(ax2
k) leads by the Prochorov’s theorem [33] to the existence

of the weak local limit µ̃
lim

Λ↗ZZd

∫
IRΛ

f(xΛ)dµ0
Λ =

∫
IRZZd

f(x)dµ̃

on any cylinder function f ∈ Cb,cyl(IRZZd

).
Due to the finiteness of the interaction radius B the limit measure µ̃ has the conditional

measures {µΛ} in the finite volumes, i.e. µ̃ ∈ G{µΛ} and the set of the Gibbs measures is
non-empty. From (23) we also have that the measure µ̃ is tempered, i.e.

sup
k∈ZZd

∫
IRZZd

exp(ax2
k)dµ̃ < exp(

a

ε− 2a
), a ∈ [0, ε/2)

which obviously gives the statement (20).

Model 1. Let the potentials be defined by

F (xk) = (1 + x2
k)

2n+1 & Gk−j(xk − xj) = bk−j(xk − xj)2n+2

and assume that the coefficients {bj}j∈ZZd satisfy

∀j ∈ ZZd bj ≥ 0 & ∃r0 ∀|j| > r0 : bj = 0

Then for
0 ≤ λ <

1

(n+ 1)22n+1‖b‖d
, ‖b‖d =

∑
j∈ZZd

bje
d(j,0) <∞

the statements of Theorems 1,2 are valid.

Model 2. Lattice spin system on Riemannian manifold.
Denote M = Mk, k ∈ ZZd a noncompact Riemannian manifold with covariant derivative ∂k

and Ricci curvature tensor Rick.
Let potentials Fk(xk), Gkj(xk, xj) satisfy
1) Fk ∈ C2(M), ∃ ε > 0 ∀xk ∈Mk Rick + ∂k∂kF (xk) ≥ ε
2) Gkj ∈ C2(M ×M), ∃α ∈ IR1 ∂k∂kGkj(xk, xj) ≥ −α, k, j ∈ ZZd

and Gkj ≡ 0, for |k − j| ≥ r0.
3) αk,j = sup

x∈MZZd

‖B−1/2(xk)B
−1/2(xj)∂k∂jGkj(xk, xj)‖TMk×TMj

<∞

where B(xk) = Rick(xk) + ∂k∂kFk(xk) and ‖ · ‖TMk×TMj
is a standard Hilbert norm on tangent

space to Mk ×Mj.
Then for λ ∈ [0,min(ε/α(2r0 + 1)d, 1/γd)) the lattice system, described by Hamiltonian

H =
∑
k∈ZZd

Fk(xk) + λ
∑

|k−j|≤r0

Gkj(xk, xj)

has exponentially fast decay of correlations and Gibbs measure is unique [1]. Above γd =
sup
k∈ZZd

∑
j∈ZZd

ed(k,j)αkj.

This result is achieved by the scheme of this paper. One needs to consider

δk(f) = sup
x∈MZZd

‖(Rick + ∂k∂kF (xk))
−1/2∂kf(x)‖TMk

and apply in corresponding places the following generalization of Brascamp-Lieb inequality (6)
to the case of arbitrary Riemannian manifold [1]: under condition ∃ ε > 0 Ric + ∂∂F ≥ ε we
have

covµ(f, f) ≤
∫
M
< (Ric+ ∂∂F )−1∂f, ∂f > dµ, f ∈ C1

b (M) (24)

with probability measure dµ = e−Fdσ (σ denotes Riemannian volume on manifold M) and
Riemannian pairing < ·, · > on tangent space to manifold.
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Developing idea of Helffer [19, 27] we can shortly explain inequality (24) next way. Take
u = ∂H−1

µ (g −
∫
g dµ) for Hµ = ∂∗µ∂ with dual gradient ∂∗µv = −div v+ < ∂F, v >, then

∂∗µu = HµH
−1
µ (g −

∫
g dµ) = g −

∫
g dµ and we have

covµ(g, g) =
∫
g(g −

∫
g dµ)dµ =

∫
< u, ∂g > dµ =

=
∫
< (Hµ +Ric+ ∂∂F )−1∂g, ∂g > dµ ≤

∫
M
< (Ric+ ∂∂F )−1∂g, ∂g > dµ

where we used positivity of Hµ and u = (Hµ + Ric + ∂∂F )−1∂g by a simple commutation
∂g = ∂∂∗µu = (∂∗µ∂ +Ric+ ∂∂F )u.

Acknowledgements. We wish to thank sincerely Prof. S.Albeverio for the attention to
the paper, warm hospitality in the BiBoS Research Center and great help to make [3, 28]
available for us. We would like to express our appreciation to Prof. L.Gross for the invaluable
recommendations on [1] and Prof. T.Spencer for the prompt contact with new information on
(∇ϕ)4 lattice models.

References
[1] Antoniouk, A.Val., Antoniouk, A.Vict.: Weighted spectral gap and Log-Sobolev inequalities and their

applications. Kiev Inst.of Math.Preprint. 93.33. 1993, pp. 1-68.
[2] Bakry, D., Emery, M.: Hypercontractivite de semigroups des diffusion. Compt. Rend. Acad. Sci., Paris,

Ser.1, 299, 775–777, (1984).
[3] Bellissard, J., Picco, P.: Lattice quantum fields: Uniqueness and Markov property. Marseille, preprint

78/P.1059, 1978.
[4] Bricmont, J., Fontaine J-R., Lebowitz, J.L., Spencer T.: Lattice systems with a continuous symmetry. II.

Decay of correlations. Comm. Math. Phys., 78, 363-371 (1981).
[5] Brascamp, H.J., Lieb, E.L.: On extensions of the Brunn-Minkovski and Prekopa-Leinder Theorems,

including inequalities for log concave functions, and with an application to the diffusion equation. Journ.
Funct. Anal., 22, 366-389, (1976).

[6] Brydges, D., Yau, H-T.: Grad ϕ perturbations of massless Gaussian fields. Comm. Math. Phys., 129,
351-392 (1990).

[7] Cassandro, M., Olivieri, E., Pelegrinotti, A., Presutti, E.: Existence and uniqueness of DRL measures for
unbounded spin systems. Z.Wahrs.verw.Geb., 41, 313–334, (1978).

[8] Davies, E.B., Simon, B.: Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet
Laplacians. Journ.Funct.Anal., 59, 335–395, (1984).

[9] Dobrushin, R.L.: The description of a random field by means of conditional probabilities and the conditions
governing its regularity. Theor.Probab.Appl., 13, 197–224, (1968).

[10] Dobrushin, R.L.: The problem of uniqueness of a Gibbs field and the problem of phase transition.
Funct.Anal.Appl., 2, 302–312, (1968).

[11] Dobrushin, R.L.: Prescribing a system of random variables by conditional distributions.
Theor.Probab.Appl., 15, 458–486, (1970).

[12] Dobrushin, R.L., Shlosman, S.B.: Constrictive criterion for the uniqueness of Gibbs field. In Fritz, Jaffe,
Szasz (eds), Statistical Physics and Dynamical Systems, Rigorous results, Birkhäuser 1985, pp. 347–370.
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