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1 Introduction.

In 1975 L.Gross [29] proved the equivalence between the Logarithmic Sobolev
inequality ∫

M

|f |2 ln |f |2dµ− ‖f‖2 ln ‖f‖2 ≤ 2

λ

∫
M

|∇f |2dµ (1.1 )

and the important hypercontractive property for the semigroup of operator Hµ

associated with quadratic Dirichlet form

(Hµf, f)L2(µ) =
1

2

∫
M

|∇f |2dµ

The hypercontractivity means that ∃t > 0 such that ‖ exp(−tHµ)‖L2→L4(µ) =
1. The further investigation of contractive properties of semigroups via Log-
Sobolev inequalities was developed in the papers of J.Rosen [44], E.B.Davies and
B.Simon [20], S.Kusuoka and D.W.Stroock [38] where it were obtained conditions
on super and ultra contractivity. It was also noted by O.S.Rothaus that Log-
Sobolev inequality (1.1 ) has close connection with isoperimetric inequalities for
measure µ [45].
In the paper of D.Bakry and M.Emery [8] it was proposed the next general con-

dition for measure µ on Riemannian manifold M when the Logarithmic Sobolev
inequality (1.1 ) holds:

∃λ > 0 ∀x ∈M Rµ(x) = Ric(x) +∇∇Φ(x) ≥ λ (1.2 )

Here Ric denotes Ricci curvature tensor and ∇∇Φ denotes the second covariant
derivative of density of measure µ: dµ = exp(−Φ)dσ with respect to Riemannian
volume σ.
The interesting applications such inequalities found in the study of in�nite-

dimensional lattice systems. The Stochastic Ising models via Log-Sobolev tech-
nique were investigated by E.A.Carlen, R.Holley and D.W.Stroock [31, 13, 32, 33].
In papers of J.-D.Deushel, D.W.Stroock [21] and B.Zegarlinski [54] it was proved
that inequality (1.1 ) for Gibbs measure ensures Dobrushin uniqueness criterion
[22], and in papers [50], [51] it was obtained the equivalence between Log-Sobolev
inequalities and Dobrushin-Shlosman mixing condition [25].
For unbounded spin systems such inequalities found their applications to

the study of ergodic properties of Dirichlet operators semigroups in papers of
S.Albeverio, Yu.G.Kondratiev and M.R�ockner [3, 2]. The case of smooth measure
on rigged Hilbert space was discussed in [6].
In this paper we investigate conditions when the next inequality holds∫

M
Ψ(v)dµ−Ψ(

∫
M
v dµ) ≤

≤ 1
2λ

∫
M

Ψ′′(v) ≺ A∇v,∇v � dµ
(1.3 )
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with weight A = A(x) which behaves like R−1
µ (1.2 ) on the in�nity of manifold

M .
For example, in Section 2 we prove the next weighted Spectral Gap inequality

(Theorem 2.2)

1

2

∫
M

|f −
∫
M

f dµ|2dµ ≤
∫
M

≺ R−1
µ ∇f,∇f � dµ (1.4 )

with exact weight A = R−1
µ .

In Section 3 we develop Bakry-Emery scheme and obtain su�cient condition
(Theorem 3.1)

∃λ > 0 ∀x ∈M ARµA+HA
µA ≥ λA (1.5 )

for the weighted gradient estimate (1.3 ).
Here HA

µ = 1
2{−div(A∇)+ ≺ A∇Φ,∇ �} is operator associated with

quadratic form

(HA
µ u, v)L2

=
1

2

∫
M

≺ A∇u,∇v � dµ

and coe�cient operator A is a smooth T 1,1M - valued �eld.
If Ψ(v) = v ln v and v = f 2 then inequality (1.3 ) transforms to the weighted

Log-Sobolev inequality (see also Appendix A when A(x) = S(x)Idx on T
1,0
x M for

function S) ∫
M
|f |2 ln |f |2dµ− ‖f‖2 ln ‖f‖2 ≤

≤ 2
λ

∫
M
≺ A(x)∇f(x),∇f(x) � dµ(x)

(1.6 )

In Section 4 we provide some examples of measures when weighted inequalities
(1.3 ), (1.6 ) hold. For instance, it is shown in Example 4.1 that choice A = R−1

µ

is possible at all.
We demonstrate in Example 4.2 that condition (1.5 ) works even in the situa-

tions when Rµ-object (1.2 ) is negative at some region on M .
In this section we also prove the set of weighted Log-Sobolev inequalities for

polynomial log-concave measures on R (Theorem 4.3). Note that as a con-
sequence, we obtain classic Log-Sobolev inequality (1.1 ) as a special limit of
weighted ones.
The Sections 5 and 6 are dedicated to the application of the weighted spectral

gap inequality (1.4 ) to the study of uniqueness and decay of correlations for the
lattice Gibbs measures with non-Gaussian interaction.
There is an approach proposed by R.L.Dobrushin, O.E.Lanford and D.Ruelle

[22, 40] to the de�ning of measure on countable product of metric spaces in terms
of �xed family of local conditional measures. This approach gave possibility to
obtain e�ective criterions on uniqueness and existence for such measures (see
Dobrishin's criterion [22], Dobrushin-Shlosman mixing condition [25] and their
applications [42, 49]).
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In the situation of compact metric spaces the conditions on existence and
uniqueness of Gibbs measures were found by R.L.Dobrushin [22, 23, 24]. In
the papers of L.Gross and B.Simon [30, 48] it was shown that in the essence
of Dobrushin type criterions lie special variational estimates on one-point condi-
tional measures, which admit iteration and application of �xed points theorems.
Moreover such estimates were used by H.F�ollmer, L.Gross, D.Klein, H.K�unsch
[30, 37, 26, 34] to the study of decay of correlations and connected questions.
In non-compact situation the most optimal (known to authors) conditions could

be found in paper of M.Cassandro, E.Olivieri, A.Pelegrinotti and E.Presutti [14],
where it was studied the case of Gaussian measure perturbed by one-point poten-
tials (see also [41, Ch.4,�8, Ch.7,�2]).
In this paper we consider the class of Gibbs measures on lattice product of non-

compact Riemannian manifolds when non-quadratic pair interaction is dominated
by one-point potentials. We work in the spirit of scheme proposed by L.Gross [30]
and H.F�ollmer [26]. The weighted Spectral Gap inequality (1.4 ) enables us to omit
Lanford-Vasserstein supremum type estimates [52, 39] on one point conditional
measures.
In Section 5 we consider conditions on uniqueness and decay of correlations for

Gibbs measures with convex pair interaction (Theorems 5.7 and 5.9).
In Section 6 we apply results of Section 5 to the study of linear lattice systems.

2 Weighted Spectral Gap inequality for smooth measures on Rieman-

nian manifolds.

Consider �nite-dimensional complete connected smooth Riemannian manifold
M , dim M = m, with metric tensor gij. Let T p,qM denote the tangent bun-
dle of p-times contravariant and q-times covariant tensor �elds on M , p, q ≥ 0.
Correspondingly let Ck(M,T p,qM) denote the set of k-times continuously di�er-
entiable (p, q) - tensor �elds [46], [11]. By Ck

b (M,T p,qM) or Ck
0 (M,T p,qM) we

denote the spaces of k - times continuously di�erentiable tensor �elds bounded
with derivatives or with �nite support.
The invariant Riemannian volume on M we denote by σ, dσ = (det gij)

1/2dx
in local coordinates. The operator ∇ of covariant di�erentiation acting on tensor
�elds is de�ned by the next expression in local coordinates

∇ku
i1..ip
j1..jq =

∂u
i1..ip
j1..jq

∂xk
+
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+
p∑

α=1

u
i1..h..ip
j1...jq Γ iα

h k −
q∑

β=1

u
i1...ip
j1..h..jq

Γ h
k jβ

where Γ h
i k are Cristo�el symbols of second order and u is p - times contravariant

and q - times covariant tensor �eld. Hereforth we use the summation convention
on coinciding indexes.
The innner scalar product of tensors u and v on manifold M is the next ex-

pression in local coordinates

≺ u, v �T p,qM=
p
×
s=1

gisjs
q
×
t=1

grt`tui1..ipr1..rq
v
j1..jp
`1..`q

where {gij} denotes the inverse to metric tensor. The same way it is de�ned the
norm of tensor �eld |u| = (≺ u, u �)1/2.
Consider probability measure µ which is absolutely continuous with respect to

Riemannian volume σ with density Φ ∈ C3(M)

dµ =
e−Φdσ∫

M
e−Φdσ

(2.1 )

Then the next integration by parts formula is valid [11], [15]∫
M

≺ ∇u, v �T p,q+1M dµ =
∫
M

≺ u,∇∗µv �T p,qM dµ (2.2 )

where u,v are smooth �nite tensor �elds on M and ∇∗µv is the next expression in
local coordinates

(∇∗µv)
i1..ip
j1..jq = −gkj0∇kv

i1..ip
j0j1..jq + gkj0(∇kΦ)v

i1..ip
j0j1..jq

The Dirichlet form [1, 28, 4, 5] of measure µ with coe�cient operator A is
de�ned by

aAµ (u, v) =
1

2

∫
M

≺ A(x)∇u(x),∇v(x) � dµ(x) =

=
1

2

∫
M

Aij(x)
∂u(x)

∂xi
∂v(x)

∂xj
dµ(x)

on smooth functions with compact support u, v ∈ C∞0 (M). Here coe�cient oper-
ator A is a continuous T 1,1M - valued �eld on M such that ∀x ∈M : A(x) > 0
on T 1,0Mx.
Due to the integration by parts formula (2.2 ) the corresponding Dirichlet

operator HA
µ , de�ned by identity

(HA
µ u, v)L2(µ) = aAµ (u, v)

on u, v ∈ C∞0 (M), admits representation

HA
µ u =

1

2
∇∗µA∇u

The next lemma provides simple conditions when this operator is essentially self-
adjoint in L2(M,µ) with domain C∞0 (M).
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Lemma 2.1. Suppose that density Φ ∈ C3(M) and coe�cient operator A ∈
C3 ∩ Cb(M,T 1,1M). Then operator HA

µ is essentially self-adjoint in L2(M,µ).

Proof is obtained as a direct application of Wienholtz scheme [53] in the Simader
form [47] and is contained in Appendix B to the paper.

The further investigations are based on the powerful technique of energy
identities for the elliptic di�erential operators (see, for example, monographies
[9, 17, 10, 16] and papers [19, 35, 18, 36]).
Below we need coercitive identity for operator ∇∗µ [18, 16] acting on smooth

vector �elds v ∈ C1
0(M,T 1,0M)∫

M
|∇∗µv|2dµ =

∫
M
tr[∇v(∇v)∗]dµ+

+
∫
M
≺ Rµv, v � dµ

(2.3 )

Here tr[∇v(∇v)∗] = gijgk`∇iv`∇jvk and

Rµ(x) = Ric(x) +∇∇Φ(x) (2.4 )

where Ric denotes the Ricci curvature tensor on M . This identity simply follows
from (2.2 ) and [∇,∇∗µ]v = Rµv on vector �eld v.
The next theorem provides conditions on the weighted spectral gap. Its proof

is based on the modi�cation of Bochner' scheme for Laplace-Beltrami operator
[12], [11, Ch.1, �J], [7].

Theorem 2.2. Let probability measure µ (2.1 ) have density Φ ∈ C3(M).
Suppose that measure µ satis�es property

∃ε > 0 ∀x ∈M Rµ(x) ≥ ε on T 1,0
x M

Then we have inequality

1

2

∫
M

|f −
∫
M

f dµ|2dµ ≤
∫
M

≺ R−1
µ ∇f,∇f � dµ (2.5 )

for f ∈ C∞0 (M).

Proof. Let coe�cient operator A ∈ Cb ∩ C3(M,T 1,1M) be such that

∀ x ∈M R−1
µ (x) ≤ A(x)

1) We use here variant of coercitive identity (2.3 ) for v = A∇u, u ∈ C∞0 (M)

4
∫
M

|(HA
µ − α)u|2dµ =

∫
M

|∇∗µv|2dµ−

−4α
∫
M

≺ A∇u,∇u � dµ+ 4α2‖u‖2
L2(µ) =

=
∫
M

tr(∇v[∇v]∗)dµ+
∫
M

≺ (ARµA− 4αA)∇u,∇u � dµ+

+4α2‖u‖2
L2(µ) ≥ 4α2‖u‖2

L2(µ)
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when α ∈ (0, 1/4). Therefore α ∈ (0, 1/4) is a regular point for operator HA
µ

and essential self-adjointness of HA
µ implies that there is no spectrum of HA

µ on
interval (0, 1/4).
2) Consider function u ∈ L2(M,µ) such that HA

µ u = 0. Then u ∈ D( (HA
µ )1/2)

and we have that
∫
M
≺ A∇u,∇u � dµ = 0. From A > 0 follows ≺ A∇u,∇u �=

0(mod µ) and condition Φ ∈ C3(M) implies that |∇u| ≡ 0. So u ≡ const and
we have that

HA
µ ≥ 1/4 (2.6 )

on the orthocomplement to constant in L2(M,µ).
Inequality (2.6 ) written in the terms of quadratic forms is

1

2

∫
M

|f −
∫
M

f dµ|2dµ ≤
∫
M

≺ A∇f,∇f � dµ (2.7 )

From arbitrarity of A such that A ≥ R−1
µ , taking the in�mum on A in (2.7 )

we obtain inequality (2.5 ).

Remark. We note that in the case of function Φ ∈ C5(M) and Rµ strictly
positive measure µ we have R−1

µ ∈ C3(M) and so we can directly take A = R−1
µ

in the Theorem 2.2.

3 Weighted Log-Sobolev inequalities and Orlicz space estimates.

Here we provide set of weighted estimates on Orlicz space norms of function
by the special weighted norm of its gradient. In particular case when A = Idx
Theorem 3.1 gives the result of Bakry-Emery [8].

Theorem 3.1 Let probability measure µ (2.1 ) have density Φ ∈ C3(M). Sup-
pose that the coe�cient operator A ∈ C3∩Cb(M,T 1,1M), A > 0 poinwisely, and

∀ x ∈M ARµA+HA
µA ≥ λA (3.1 )

with constant λ > 0.
Then for all Ψ ∈ C4([0,∞) ) such that Ψ′′ > 0 and (1/Ψ′′)′′ ≤ 0 we have∫

M
Ψ(f)dµ−Ψ(

∫
M
f dµ) ≤

≤ 1
2λ

∫
M

Ψ′′(f) ≺ A∇f,∇f � dµ
(3.2 )

for f ∈ C2
0(M), f > 0.

Proof. We partially follow the scheme of [7, 6] in 1.-4.
1. First we show correctness of all expressions appearing in the proof.
Lemma 2.1 gives self-adjointness HA

µ,min = (HA
µ,min)

∗ for the closure HA
µ,min of

operator HA
µ .
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In the next modi�cation of coercitive identity (2.3 )

4
∫
M

|HA
µ u|2dµ =

∫
M

tr(∇(A∇u)[∇(A∇u)]∗)dµ+

+
∫
M

≺ ARµA∇u,∇u � dµ =

=
1

2

∫
M

tr(∇(A∇u)[∇(A∇u)]∗)dµ+

+
1

2

∫
M

≺ (A⊗ A)∇∇u,∇∇u � dµ+

+
1

2

∫
M

tr{(∇·A·i)∇iu[(∇·A·j)∇ju]∗}dµ+ (3.3 )

+
1

2

∫
M

≺ (A∇)1A
23,∇1(∇2u⊗∇3u) � dµ+

+
∫
M

≺ ARµA∇u,∇u � dµ

we can integrate by parts in term with ∇1 (see (2.2 ) )

1

2

∫
M

≺ (A∇)1A
23,∇1(∇2u⊗∇3u) � dµ =

=
∫
M

≺ (HA
µA)∇u,∇u � dµ

This leads to estimate

4
∫
M

|HA
µ u|2dµ ≥

∫
M

≺ (ARµA+HA
µA)∇u,∇u � dµ (3.4 )

and condition (3.1 ) imply like in Theorem 2.2 the presence of spectral gap

HA
µ ≥ λ/4 (3.5 )

on the orthocomplement to constant in L2(M,µ).
Here and below for the sake of simplicity we adopt the next convention: the

coinciding integer numbers at tensor �elds and ∇ - symbols show the coordinates
on which summation runs. For example

≺ ∇2(A∇u)1,∇1(A∇)2 �= tr(∇(A∇u)[∇(A∇u)]∗) =

= ∇i(A
jk∇ku) · ∇j(A

i`∇`)

≺ (∇1A23)∇3u, (∇2A14)∇4u �=

= tr{(∇·A·i)∇iu[(∇·A·j)∇ju]∗} = (∇iA
jk)∇ku · (∇jA

i`)∇`u

≺ A13,≺ A∇u,∇ � (∇1u⊗∇3u) �=

= A13A24∇4u · ∇2(∇1u · ∇3u)

As a consequence of (3.3 ) and (3.4 ) we have characterization of domain of
operator HA

µ,min:
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f ∈ D(HA
µ,min) ⇔ f ∈ L2(M,µ) is twice weakly di�erentiable and the

next integrals are �nite:∫
M
≺ (A⊗ A)∇∇f,∇∇f � dµ <∞

∫
M
tr(∇(A∇f)[∇(A∇f)]∗)dµ <∞

∫
M
tr{(∇·A·i)∇if [(∇·A·j)∇jf ]∗}dµ <∞

∫
M
≺ (ARµA+HA

µA+ A)∇f,∇f � dµ <∞

(3.6 )

For function u ∈ C2
0(M) we have that

Ptu = exp(−tHA
µ,min)u ∈ D( (HA

µ,min)
2)

because HA
µ u ∈ L2(M,µ) and

HA
µ,minPtu = PtH

A
µ u ∈ D(HA

µ,min)

This implies that integrals (3.6 ) are �nite for f = Ptu or f = HA
µ,minPtu.

As HA
µ,min coincide with Friedrichtz' extension of operator HA

µ we obtain that
semigroup Pt preserves positivity [28], [5], i.e.

∀v ∈ C2
0(M), v ≥ 0 ⇒ Ptv ≥ 0 pointwisely

This implies that Pt is Lp(M,µ) � contractive, p ∈ [1,∞] [43, Ch.X, Th.X.55]
and for Ψ ∈ C([0,∞) ) we can write the next estimate

‖Ψ(Ptu)‖p ≤ ess sup
x∈M
|Ψ(Ptu)(x)| ≤

≤ max
x∈M
|Ψ(u)(x)| ≤ max

|t|≤‖u‖Cb(M)

|Ψ(t)| (3.7 )

for u ∈ C2
0(M), p ∈ [1,∞].

2. For every Ψ ∈ C2(R+) and f ∈ C2
0(M) consider function g(t) =

∫
M

Ψ(Ptf)dµ.

Then ∫
M

Ψ(f)dµ−Ψ(
∫
M

f dµ) = −g(t) |∞0 =

= −
∫ ∞

0
g′(t)dt =

∫ ∞
0

∫
M

Ψ′(Ptf)HA
µ Ptf dµ dt = (3.8 )

=
1

2

∫ ∞
0

∫
M

Ψ′′(Ptf) ≺ A∇Ptf,∇Ptf � dµ dt

The limits g(t) |∞0 we substitute using the Lagrange formula for function Ψ on
[0,∞). For example, for t =∞ we have

|
∫
M

Ψ(Ptf)dµ−Ψ(
∫
M

f dµ)| =

= |
∫
M

Ψ′(θ){Ptf −
∫
M

f dµ}dµ| ≤ (3.9 )
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≤ (
∫
M

|Ψ′(θ)|2dµ)1/2 ‖Ptf −
∫
M

f dµ‖L2(µ)

Here θ = θ(x) ≥ 0 is some point between (Ptf)(x) and
∫
M
f dµ, x ∈M .

The �rst integral in (3.9 ) is simply estimated by

(
∫
M

|Ψ′(θ)|2dµ)1/2 ≤ sup
|t|≤‖f‖Cb(M)

|Ψ′(t)|

like in (3.7 ) and the second one tends to zero at t→∞ due to the next estimate

‖Ptf −
∫
M

f dµ‖2
L2(µ) ≤ e−λt/2‖f −

∫
M

f dµ‖2
L2(µ)

which follows from the spectral gap (3.5 ).
The limit lim

t→0+
we substitute using the strong continuity of semigroup Pt, t > 0:

∀f ∈ L2(M,µ) ‖Ptf − f‖L2(µ) → 0, t→ 0+

3. We only have to prove inequality (3.2 ) for strictly positive functions

fε = f + ε, f ∈ C2
0(M), ε > 0

Indeed, tending ε→ 0 in inequality∫
M

Ψ(f + ε)dµ−Ψ(
∫
M
f dµ+ ε) ≤

≤ 1
2λ

∫
M

Ψ′′(f + ε) ≺ A∇(f + ε),∇(f + ε) � dµ =

= 1
2λ

∫
M

Ψ′′(f + ε) ≺ A∇f,∇f � dµ

(3.10 )

for f ∈ C2
0(M), we obtain the weighted inequality (3.2 ) as an application of

Lebesgue domination theorem to (3.10 ).

4. The representation (3.8 ) enables us to rewrite inequality (3.2 ) as∫ ∞
0

∫
M

Ψ′′(Ptf) ≺ A∇Ptf,∇Ptf � dµdt ≤

≤ 1

λ

∫
M

Ψ′′(f) ≺ A∇f,∇f � dµ

Therefore it is su�cient to prove that

0 ≤
∫
M

Ψ′′(Ptf) ≺ A∇Ptf,∇Ptf � dµ ≤

≤ e−λt
∫
M

Ψ′′(f) ≺ A∇f,∇f � dµ

or that
K ′(t) ≤ −λK(t) (3.11 )

for function
K(t) =

∫
M

Ψ′′(Ptf) ≺ A∇Ptf,∇Ptf � dµ

11



Introduce notations ψ = Ψ′′, Ptf(x) = h(u(x)) with some function h on line
R1 which we will choose later. Then inequality (3.11 ) adopts the form

λ
∫
M

ψ(h(u))[h′(u)]2 ≺ A∇u,∇u � dµ ≤

≤ 2
∫
M

ψ(h(u)) ≺ A∇h(u),∇HA
µ h(u) � dµ+

+
∫
M

ψ′(h(u))[h′(u)]2HA
µ h(u) ≺ A∇u,∇u � dµ

Using identities

HA
µ h(u) = h′HA

µ u−
h′′

2
≺ A∇u,∇u �

and
[∇,∇∗µ]v = Rµv, v ∈ C1(M,T 1,0M)

we have
λ

∫
M

ψ(h)[h′]2 ≺ A∇u,∇u � dµ ≤

≤ 2
∫
M

ψ(h)[h′]2 ≺ ARµA∇u,∇u � dµ+

+
∫
M

≺ ∇2(ψh
′(A∇u)1),∇1(h

′(A∇u)2) � dµ+ (3.12 )

+
∫
M

ψ′[h′]3HA
µ u ≺ A∇u,∇u � dµ−

−
∫
M

ψ′[h′]2h′′

2
| ≺ A∇u,∇u � |2dµ

5.The second term on the l.h.s. of (3.12 ) could be transformed
to ∫

M

≺ ∇2(ψh
′(A∇u)1),∇1(h

′(A∇u)2) � dµ =

=
∫
M

ψ[h′]2 ≺ ∇2(A∇u)1,∇1(A∇u)2 � dµ+

+
∫
M

[ψh′]′h′′| ≺ A∇u,∇u � |2dµ+

+
∫
M
{[ψh′]′h′ + [ψh′]h′′} ≺ ∇2(A∇u)1,∇1u⊗ (A∇u)2 � dµ =

=
1

2

∫
M

ψ[h′]2 ≺ ∇2(A∇u)1,∇1(A∇u)2 � dµ+

+
1

2

∫
M

ψ[h′]2 ≺ (A13 ⊗ A24)∇1∇2u,∇3∇4u � dµ+

+
1

2

∫
M

ψ[h′]2 ≺ (∇2A13)∇3u, (∇1A24)∇4u � dµ+

+
∫
M

[ψh′]′h′′| ≺ A∇u,∇u � |2dµ+B1 +B2 (3.13 )

12



In (3.13 ) terms B1 and B2 are equal to

B1 =
∫
M

ψ[h′]2 ≺ (∇2A13)∇3u,A24∇1∇4u � dµ =

=
1

2

∫
M

ψ[h′]2 ≺ A24(∇2A13),∇4(∇3u⊗∇1u) � dµ =

=
∫
M

ψ[h′]2 ≺ (HA
µA)∇u,∇u � dµ−

−1

2

∫
M

(ψ[h′]2)′ ≺ ∇2A13, A24∇4u⊗∇3u⊗∇1u � dµ

B2 =
∫
M

(ψ[h′]2)′ ≺ ∇2(A∇u)1,∇1u⊗ (A∇u)2 � dµ =

=
∫
M

(ψ[h′]2)′ ≺ ∇2A13 ⊗ (A∇u)2,∇1u⊗∇3u � dµ+

+
1

2

∫
M

(ψ[h′]2)′ ≺ A13,≺ A∇u,∇u � (∇1u⊗∇3u) � dµ =

=
1

2

∫
M

(ψ[h′]2)′′| ≺ A∇u,∇u � |2dµ+

+
∫
M

(ψ[h′]2)′HA
µ u ≺ A∇u,∇u � dµ+

+
1

2

∫
M

(ψ[h′]2)′ ≺ ∇2A13 ⊗ (A∇u)2,∇1u⊗∇3u � dµ

Arranging all terms we transform estimate (3.12 ) to

λ
∫
M

ψ(h)[h′]2 ≺ A∇u,∇u � dµ ≤

≤
∫
M

ψ[h′]2 ≺ {ARµA+HA
µA}∇u,∇u � dµ+

+
1

2

∫
M

ψ[h′]2 ≺ ∇2(A∇u)1,∇1(A∇u)2 � dµ+

+
1

2

∫
M

ψ[h′]2 ≺ (A⊗ A)∇∇u,∇∇u � dµ+

+
1

2

∫
M

ψ[h′]2 ≺ (∇2A13)∇3u, (∇1A24)∇4u � dµ+

+
∫
M

{ψ′[h′]3 + (ψ[h′]2)′}HA
µ u ≺ A∇u,∇u � dµ+

+
∫
M
{−1

2ψ
′[h′]2h′′ + (ψh′)′h′′ − 1

2(ψ[h′]2)′′}| ≺ A∇u,∇u � |2dµ

6. We ask the next restriction on the dependence between functions ψ and h

ψ′[h′]3 + (ψ[h′]2)′ = 2h′(ψh′)′ = 0

i.e. ψh′ = C for some constant C ∈ R1\{0}.
Then the derivatives of h could be expressed in the terms of ψ

h′′ = (C/ψ(h) )′ = −Cψ′hh′/ψ2 = −C2ψ′h/ψ
3

13



h′′′ = −C2ψ′′hh
′/ψ3 + 3C2(ψ′h)

2h′/ψ4 =

= C2{−ψ′′h/ψ4 + 3(ψ′h)
2/ψ5}

Therefore we have the next estimate

−1

2
ψ′[h′]2h′′ + (ψh′)′h′′ − 1

2
(ψ[h′]2)′′ =

=
1

2
C4{+(ψ′h)

2/ψ5 + ψ′′h/ψ
4 − 3(ψ′′h)

2/ψ5} =

=
1

2ψ2
C4{(ψψ′′h − 2(ψ′h)

2)/ψ3} =
1

2ψ2
C4{−1/ψ}′′h ≥ 0

due to the assumptions of Theorem 3.1.

7. Finally the estimate (3.11 ) adopts the form

λ
∫
M

ψ[h′]2 ≺ A∇u,∇u � dµ ≤

≤
∫
M

ψ[h′]2 ≺ {ARµA+HA
µA}∇u,∇u � dµ+

+
1

2

∫
M

ψ[h′]2 ≺ ∇2(A∇u)1,∇1(A∇u)2 � dµ+

+
1

2

∫
M

ψ[h′]2 ≺ (A⊗ A)∇∇u,∇∇u � dµ+

+
1

2

∫
M

ψ[h′]2tr12{≺ (∇2A13)∇3u, [(∇1A24)∇4u]∗ �}dµ+

+
1

2
C4

∫
M

{ −(1/ψ)′′/ψ2}| ≺ A∇u,∇u � |2dµ

As four last terms above are nonnegative condition (3.1 ) gives the statement of
Theorem 3.1.

Remark 3.2. Condition (3.1 ) of Theorem 3.1 applied to Ψ(x) = x2 improves
the spectral gap inequality (2.7 ) to∫

M

|f −
∫
M

f dµ|2dµ ≤ 1

λ

∫
M

≺ A∇f,∇f � dµ (3.14 )

Note that in the case of autoparallel �eld A(x) (i.e. ∇A(x) = 0 for all x ∈M)
condition (3.1 ) transforms to

A1/2RµA
1/2 ≥ λ > 0

In particular case when A = Idx on TxM , x ∈ M we have Bakry-Emery
condition Rµ ≥ λ > 0 for the spectral gap [7]

Hµ = HId
µ =

1

2
∇∗µ∇ ≥ λ/2

on the orthocomplement to constant in L2(M,µ).
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Remark 3.3. Theorem 3.1 applied with Ψ(x) = x lnx and f = u2 gives the
weighted Logarithmic Sobolev inequality∫

M
u2 lnu2dµ− ‖u‖2

L2
ln ‖u‖2

L2
≤

≤ 2
λ

∫
M
≺ A∇u,∇u � dµ

(3.15 )

For the sake of convenience we give self-contained and more simple proof of
this fact in Appendix A for A(x) = S(x)Idx, S ∈ C3 ∩ Cb(M).
In the situation when A = Idx we have condition (3.1 ) in form [8]

Rµ ≥ λ

and the classic Gross' Log-Sobolev inequality [29]∫
M

u2 lnu2dµ− ‖u‖2
L2

ln ‖u‖2
L2
≤ 2

λ

∫
M

|∇u|2dµ (3.16 )

4 Examples and applications.

Below we investigate situations when we can �nd at given Rµ-object the coef-
�cient operator A in (3.15 ) such that it behaves like R−1

µ and satis�es condition
(3.1 ) of Theorem 3.1.
In the case when Rµ - object grows at the in�nity of manifold M , such choice

of coe�cient operator A enables us to improve inequality (3.16 ) to the weighted
Log-Sobolev inequality (3.15 ). The similar problem has already been solved in
Theorem 2.2, inequality (2.5 ).
Example 4.1. We consider situation when A = R−1

µ .
Let M = R1 and density Φ(x) = ch(x) in (2.1 ). Then Rµ(x) = ch(x) and if

we put A(x) = 1/ch(x) the condition (3.1 ) would have the form
1

ch(x)
− 1

2

∂

∂x
(

1

ch(x)

∂

∂x
(

1

ch(x)
) )+

+
1

2

sh(x)

ch(x)

∂

∂x
(

1

ch(x)
) ≥ λ/ch(x)

with constant λ = 1
2 − (38

√
19− 56)/2 · 35 ≈ 0.2744.

Therefore for measure

dν(x) = exp(−ch(x) )dx/(
∫ ∞
−∞

exp(−ch(x) )dx)

we have obtained inequality∫ ∞
−∞
|f |2 ln |f |2dν − ‖f‖2 ln ‖f‖2 ≤ C

∫ ∞
−∞

|∇f(x)|2

ch(x)
dν(x)
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with constant C ≈ 7.2884.

Example 4.2 Here we show that condition (3.1 ) enables to obtain classic Log-
Sobolev inequalities (3.16 ) even in the case when Rµ-object is negative at some
points (4.2 ), (4.3 ).
Consider M = R1 and a family of measures µa (2.1 ) with densities

Φ(x) = ax2 + x4, a > 0

Then Rµ = Φ′′ = 2a+ 12x2 and choosing

A = 1/(1 + x2)

we have condition (3.1 ) in the form

ARµA+HA
µA =

2a+ 12x2

(x2 + 1)2
− 1

2

∂

∂x
(

1

x2 + 1

∂

∂x
(

1

x2 + 1
) )+

+
1

2

2ax+ 4x3

x2 + 1

∂

∂x
(

1

x2 + 1
) =

2a

(x2 + 1)2
+

12

x2 + 1
− (4.1 )

− 12

(x2 + 1)2
+ C1 + C2 ≥ λ/(x2 + 1)

where
C1 =

∂

∂x
(

x

(x2 + 1)3
) = − 5

(x2 + 1)3
+

6

(x2 + 1)4

and
C2 = −2ax2 + 4x4

(x2 + 1)3
= − 2a

(x2 + 1)2
+

2a

(x2 + 1)3
−

− 4

(x2 + 1)
+

8

(x2 + 1)2
− 4

(x2 + 1)3

Condition (4.1 ) adopts the next form for y = 1/(x2 + 1) ∈ [0, 1] and x ∈ R1

f(1, y) = {6y3 − 9y2 − 4y + 8}+ 2ay2 − λ ≥ 0

But the polynomial in brakets is semibounded from below on y ∈ [0, 1]

inf
y∈[0,1]

(6y3 − 9y2 − 4y + 8) = 1

Therefore (4.1 ) follows from the next condition

1 + 2ay2 − λ ≥ 0, y ∈ [0, 1]

If a ≥ 0 then we can choose λ ≡ 1, for a ∈ (−1/2, 0] constant λ equals to (1+2a).
So for all a ∈ (−1/2,∞) we have obtained the next family of weighted Log-

Sobolev inequalities
∞∫
−∞
|f |2 ln |f |2dµa − ‖f‖2

L2(µa) ln ‖f‖2
L2(µa) ≤

≤ 2

min(1, 1 + 2a)

∞∫
−∞

|∇f |2

1 + x2
dµa(x)

(4.2 )

Note that inequality (4.2 ) is proved even in the case when Rµ-object is negative
in region {x : |x| <

√
−a/6} for a ∈ (−1/2, 0).
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As 1/(1 + x2) ≤ 1, x ∈ R1 weighted inequality (4.2 ) implies the classic Log-
Sobolev inequality

∞∫
−∞
|f |2 ln |f |2dµa − ‖f‖2

L2(µa) ln ‖f‖2
L2(µa) ≤

≤ 2

min(1, 1 + 2a)

∞∫
−∞
|∇f |2dµa

(4.3 )

for measures µa, a ∈ (−1/2, 0] when Bakry-Emery criterion doesn't work directly.
The next theorem gives weighted Log-Sobolev inequalities for logarithmically

concave polynomial measures on R1.
Remark that tending b→∞ in (4.4 ) we obtain classic Log-Sobolev inequality

(3.16 ) as a limit of weighted inequalities (4.4 ), (3.15 ).

Theorem 4.3. Consider probability measure µ (2.1 ) on manifold M = R1.

dµ =
1

Z
exp(−P (x) ) dx

where
P (x) = a0x

2n+2 + ...+ a2n+2

is polynomial with n ≥ 1 and a0 > 0.
Suppose that

∃ε > 0 ∀x ∈ R1 P ′′(x) ≥ ε

Then ∃b0 = b0(P ) such that ∀b ≥ b0∫
R
|f |2 ln |f |2dµ− ∫

R
|f |2dµ ln(

∫
R
|f |2dµ) ≤

≤ 2

ε− δ(b)

∫
R

ε+ b

P ′′ + b
|∇f |2dµ (4.4 )

for all f ∈ C2
0(R1) where

∀b ≥ b0 |δ(b)| < ε & lim
b→∞

δ(b) = 0

Proof. Note that for A(x) =
1

P ′′ + b
, b > 0

ARµA+HA
µA =

P ′′

(P ′′ + b)2
+

1

2
∇∗µ(

1

P ′′ + b
∇(

1

P ′′ + b
) )

Therefore condition (3.1 ) has form

P ′′

P ′′ + b
− P ′′ + b

2
∇∗µ(

P ′′′

(P ′′ + b)3
) =

P ′′

P ′′ + b
+

+
1

2

P IV

(P ′′ + b)2
− 3

2

(P ′′′)2

(P ′′ + b)3
− 1

2

P ′P ′′′

(P ′′ + b)2
≥ λ

(4.5 )
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As P ′P ′′′ − 2n

2n+ 1
(P ′′)2 is a polynomial of power (4n − 1) then there are

constants D,C > 0 and β =
4n− 1

2n
= 2− 1

2n
such that

∀x ∈ R1 |P ′P ′′′ − 2n

2n+ 1
(P ′′)2|(x) ≤ D(P ′′(x) + C)β (4.6 )

Now we add and substract term
2n

2n+ 1
(P ′′)2 in the nominator of last fraction

in (4.5 )

P ′′

P ′′ + b
− n

2n+ 1

(P ′′)2

(P ′′ + b)2
− 1

2

P ′P ′′′ − 2n

2n+ 1
(P ′′)2

(P ′′ + b)2
+ (4.7 )

+
1

2

P IV

(P ′′ + b)2
− 3

2

(P ′′′)2

(P ′′ + b)3
− λ ≥ 0 (4.8 )

Using (4.6 ) and setting y =
b

P ′′ + b
∈ [0,

1

(1 + ε/b)
] we estimate terms in (4.7

) from below by

(4.7) ≥ 1− y − n

2n+ 1
{1− 2y + y2}− (4.9 )

− D

2b2−β y
2−β(1− b− C

b
y)β = f(y)

Now we �nd the condition on b when minimum on interval [0,
1

1 + ε/b
] of func-

tion f(y) is attained at point y =
1

1 + ε/b

f ′(y) = − 1

2n+ 1
− 2ny

2n+ 1
− D(2− β)

2b2−β y1−β(1− b− C
b

y)β+

+
Dβ

2b2−β
b− C
b

y2−β(1− b− C
b

y)β−1 (4.10 )

Due to 1 < β = 2− 1/2n < 2 we have that the last term in (4.10 ) uniformly
on y ∈ [0, 1] tends to zero when b→∞.
Therefore using that �rst three terms in (4.10 ) are less than −1/(2n + 1) we

have that
∃b′0 ∀b ≥ b′0 ∀y ∈ [0,

1

1 + ε/b
] ⊂ [0, 1] f ′(y) < 0

This leads to
(4.7) ≥ min

y ∈ [0, 1
1+ε/b ]

f(y) = f(
1

1 + ε/b
) =

=
ε

b+ ε
− nε2

(2n+ 1)(b+ ε)2
− D

2

(ε+ C)β

(b+ ε)2

(4.11 )

for all b ≥ b′0.
Terms in (4.8 ) are estimated from above with usage of next lemma.
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Lemma. Let Q be polynomial of power m and 0 < γ =
m

2n
< k. Then under

conditions of Theorem 4.3 ∃b′′0 = b′′0(Q,P ′′, k) such that ∀b ≥ b′′0

sup
x∈R
| Q(x)

(P ′′(x) + b)k
| ≤ D1

γγ(k − γ)k−γ

kk(b− C1)k−γ

where constants C1 and D1 are such that

|Q(x)| ≤ D1(P
′′(x) + C1)

γ, x ∈ R1

Proof. We have that

sup
x∈R
| Q(x)

(P ′′(x) + b)k
| ≤ sup

P ′′≥ε
F (P ′′)

with function
F (t) = D1

(t+ C1)
γ

(t+ b)k

The maximum of function F (t) on interval t ∈ [ε,∞) is attained at point

t0 =
γb− kC1

k − γ
max
t≥ε

F (t) = F (t0) = D1
γγ(k − γ)k−γ

kk(b− C1)k−γ

where t0 should satisfy t0 ≥ ε or

b ≥ b′′0 =
1

γ
{kC1 +

ε

k − γ
}

Note that in notations adopted in lemma above we have k− γ = 2− 2n− 2

2n
=

1+
1

n
for the �rst term in (4.8 ) and k−γ = 3− 2(2n− 1)

2n
= 1+

1

n
for the second

term in (4.8 ). Application of this lemma imply ∃b′′′0 ∃D2 such that ∀b ≥ b′′′0

sup
x∈R
|1
2

P IV

(P ′′ + b)2
− 3

2

(P ′′′)2

(P ′′ + b)3
| ≤ D2

(b+ ε)1+1/n
(4.12 )

Therefore due to (4.11 ) and (4.12 ) condition (4.7 - 4.8 ) �nally appears in the
next form ε

b+ ε
− λ− 1

b+ ε
δ(b) ≥ 0

with

δ(b) =
D2

(b+ ε)1/n
+

nε2

(2n+ 1)(b+ ε)
+
D

2

(ε+ C)β

b+ ε
So we can choose b0 > max(b′0, b

′′′
0 ) such that |δ(b)| < ε for all b ≥ b0. Then

choice
λ =

ε− δ(b)
b+ ε

ensures condition (3.1 ) for A =
1

P ′′ + b
, b ≥ b0.
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The next theorem gives the conditions on integrability of geodetic distance

ρ̃A(x, x0) = inf
∫ T

0
{(A−1)jk(z)

∂zj
∂τ

∂zk
∂τ
}1/2dτ

where in�mum is taken along smooth paths {z(τ), τ ∈ [0, T ] } such that z(0) = x0

and z(T ) = x. In the case M = Rn, ρ(x, y) = |x − y| the similar result for
renormalized Schr�odinger operators −∆ + V was obtained in [20].
For uniformly logarithmically concave measures on manifold M (i.e. ∃λ > 0

Rµ(x) ≥ λIdx pointwisely on x ∈ M) and for coe�cient operator A(x) = Idx
such result was obtained in [7] for Riemannian distance ρ(x, y) (see also [6] for
the rigged Hilbert space case).

Theorem 4.4. Let probability measure µ (2.1 ) have density Φ ∈ C3(M).
Consider coe�cient operator A ∈ C3 ∩ Cb(M,T 1,1M), A > 0 pointwisely.

1. If ARµA ≥ λA, λ > 0 then

∀x0 ∈M ∀p ≥ 1 ρ̃A(·, x0) ∈ Lp(M,µ)

2. If ARµA + HA
µA ≥ λA, λ > 0 then ∀x0 ∈M ρ̃A(·, x0) ∈ Lp(M,µ), p ≥ 1

and the next estimate holds for a ∈ (0, λ/2)∫
M

exp(aρ̃ 2
A(x, x0) )dµ(x) ≤

≤ exp{ a

1− 2a
λ

∫
M

ρ̃ 2
A(x, x0)dµ(x)}

Proof. 1. Inequality ARµA ≥ λA implies the spectral gap inequality (2.7 )

λ

2

∫
M

|f −
∫
M

f dµ|2dµ ≤
∫
M

≺ A∇f,∇f � dµ (4.13 )

Consider increasing on n ≥ 1 sequence of functions

fn =

 ρ̃A(x, x0), ρ̃A(x, x0) ≤ n
n, ρ̃A(x, x0) > n

(4.14 )

We have that 0 <
∫
M
f 2
ndµ <∞ and

lim
n→∞ ‖fn‖

2
L2

=
∫
M

ρ̃ 2
A(x, x0)dµ(x)

Suppose for contradiction that lim
n→∞ ‖fn‖

2
L2

= ∞. Due to the next estimate for
k = 1 (we use that ≺ A∇ρ̃A,∇ρ̃A �= = 1(mod σ) )∫

M

≺ A∇fkn ,∇fkn � dµ(x) =

= k2
∫

ρ̃(x,x0)≤n
ρ̃ 2k−2
A (x, x0)dµ(x) ≤ k2

∫
M

ρ̃ 2k−2
A (x, x0)dµ(x)

we have that
∫
M
≺ A∇fn,∇fn � dµ ≤ 1.

Put gn = fn/‖fn‖L2
then∫

M

≺ A∇gn,∇gn � dµ→ 0, n→∞
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and spectral gap (4.13 ) implies that∫
M

|gn −
∫
M

gndµ|2dµ = 1− (
∫
M

gndµ)2 → 0 (4.15 )

when n→∞.
But ‖gn‖L2

= 1 therefore ∃g∗ and {gn(i)}i≥1 such that gn(i) → g∗ weakly in
L2(M,µ).
Due to the uniform convergence of gn(i) to zero on sets {y : ρ̃A(x, y) <

C}x∈M, C>0 we have g∗ ≡ 0, which contradicts to (4.15 ). So we have obtained
that ∫

M

ρ̃ 2
A(x, x0)dµ(x) <∞

Repeating inductively on k ≥ 1 the proof above for functions fkn we have statement
1.

2. Under condition ARµA + HA
µA ≥ λA by Remark 3.2 we have spectral gap

inequality (3.14 ) which gives

ρ̃A(x, x0) ∈ Lp(M,µ), p ≥ 1

like in the proof of statement 1 of this theorem. Moreover this condition gives the
weighted Log-Sobolev inequality (3.15 ).
Consider the sequence of functions on half-line a ∈ [0,∞)

hn(a) =
∫
M

exp(af 2
n)dµ ≥ 1

increasing on both a and n with all derivatives h(k)
n (a) > 0, a > 0. Here functions

fn are de�ned in (4.14 ). Then for functions gn = exp(af 2
n/2) we apply weighted

Log-Sobolev inequality (3.15 )

ah′n(a) =
∫
M

af 2
n exp(af 2

n)dµ =
∫
M

g2
n ln g2

n dµ ≤

≤ 2

λ

∫
M

≺ A∇gn,∇gn � dµ+ hn(a) lnhn(a) ≤

≤ 2

λ
a2

∫
M

f 2
n exp(af 2

n)dµ+ hn(a) lnhn(a)

So we have family of functions hn(a) increasing on both n and a ≥ 0, hn(0) = 1
satisfying inequality

a(1− 2a

λ
)h′n(a) ≤ hn(a) lnhn(a)

For to �nd the major function we must set h(0) = 1 and take the highest
growth of its derivative, so

a(1− 2a

λ
)h′(a) = h(a) lnh(a)

It its obvious that h(a) = exp(
aD

1− 2a
λ

) for some D. The restriction on D we

obtain from the highest growth of hn at zero

h′n(0) =
∫
M

f 2
ndµ ≤

∫
M

ρ̃ 2
A(x, x0)dµ(x) = D <∞
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So we have achieved estimate

hn(a) ≤ exp{ a

1− 2a
λ

∫
M

ρ̃ 2
A(x, x0)dµ(x)}

and tending n→∞ we obtain theorem proved.

5 Gross - F�ollmer scheme for decay of correlations and Weighted

Spectral Gap.

Below we investigate the connection between the weighted spectral gap inequal-
ity (2.5 ) and the decay of correlations for Gibbs measure with pair interaction on
in�nite product of n o n c o m p a c t manifolds. We consider the class of lattice
Gibbs measures with convex pair interaction which is dominated by one-point
potentials.
We follow partially the approach of L.Gross and H.F�ollmer [30], [26]. But

the weighted spectral gap inequality (5.5 ) enables us to omit supremum type
estimates on densities of one-point conditional measures.
Let Zd be d - dimensional lattice to each point k = = (k1, . . . , kd) ∈ Zd cor-

responds smooth complete connected Riemannian manifold Mk with probability
measure Pk

dPk(xk) =
exp(−Φk(xk) )dσk(xk)∫

Mk

exp(−Φk(xk) )dσk(xk)

where Φk ∈ C3(Mk).
For Λ ∈ Zd, |Λ| < ∞ denote MΛ = ×

k∈Λ
Mk, xΛ ={xk}k∈Λ, xk ∈ Mk and let

FΛ be the Borel σ - algebra on product of manifolds MΛ, Λc = Zd\Λ.
Denote by C∞c,cyl(M

Zd) the set of functions f such that ∃ constf ∈ R1 and

uf ∈ C∞0,cyl(MZd):
f = constf + uf (5.1 )

Here C∞0,cyl(M
Zd) denote the space of smooth cylinder functions on MZd with

compact support, i.e

∀f ∈ C∞0,cyl(MZd) ∃Λ ∈ Zd |Λ| <∞ ∃Ff ∈ C∞0 (MΛ)

such that ∀x ∈MZdf(x) = F ({xj, j ∈ Λ})
Consider the family of interactive potentials

{Wkj : k 6= j, k, j ∈ Zd}
which satisfy the next assumptions:

1. Function Wkj ∈ C3(Mk ×Mj), k 6= j

2. ∃ r0 > 0 : ∀k, j ∈ Zd : |k − j| > r0 Wkj ≡ 0

3. ∃αkj ∈ R1 such that Wkj ≥ αkj

(5.2 )
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For �nite subset Λ ⊂ Zd, |Λ| <∞ we introduce the Gibbs measure in volume
Λ with �xed boundary condition y ∈MZd by next expression:

dµΛ(xΛ|y) =
1

ZΛ(y)
exp(−λVΛ(xΛ|y) ) ×

k∈Λ
dPk(xk) (5.3 )

with interactive constant λ > 0. Here

VΛ(xΛ|y) =
∑

{k,j}∩Λ 6=∅
Wkj(z), z = (xΛ, yΛc)

and
ZΛ =

∫
MΛ

e−λVΛ(xΛ|y) ×
k∈Λ

dPk(xk)

These measures are correctly de�ned because 0 < ZΛ(y) <∞ due to condition 3
in (5.2 ).
Let µyΛ denote the expectation with respect to measure µΛ(·|y) and µ(f) =∫
f dµ. Then the next consistency condition is satis�ed:

µyΛ1
µ •Λ2

= µyΛ1
, Λ1 ⊃ Λ2

De�nition 5.1 The probability measure µ on MZd is a Gibbs one with local
speci�cations {µΛ, Λ ⊂ Zd} i� for each Λ ⊂ Zd: µ(µ •Λ ) = µ (Notation µ ∈
G{µΛ}).

Remark. For Gibbs measure condition µ(µΛ) = µ is equivalent to assumption
that family {µΛ} form a set of conditional measures for measure µ with respect
to FΛc [22], [40], [42].

Below we investigate conditions when the weighted spectral gap inequality (2.5
) implies uniqueness and decay of correlations for measures from G{µΛ}. In this
paper we do not investigate the general conditions when G{µΛ} 6= ∅, in each
model situation nonemptiness of G{µΛ} is obtained independently (Section 6).
Now we restrict our considerations to the case when one point conditional

measures {µk}k∈Zd (5.3 ) satisfy

∀k ∈ Zd ∃εk > 0 ∃Bk ∈ C∞(Mk, T
1,1Mk) such that

Rµk(xk|y) ≥ Bk(xk) ≥ εk (5.4 )

pointwisely on xk ∈Mk, y ∈MZd. Here

Rµk(xk|y) = Rick(xk) +∇k∇k{Φk + λV{k} }
like in (2.4 ).
Then due to the Theorem 2.2 we have the next spectral gap inequality, like in

(2.5 )

1

2
covµk(f, f) =

1

2

∫
Mk

|f(xk|y)−
∫
Mk

f(·|y)dµk(·|y) |2dµk(xk|y) ≤
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≤
∫
Mk

≺ R−1
µk

(xk|y)∇kf,∇kf � dµk(xk|y) ≤ (5.5 )

≤
∫
Mk

|B−1/2
k (xk)∇kf(xk|y)|2TMk

dµk(xk|y)

for f ∈ C∞c,cyl(MZd).

Denote by δk(f) the next expression

δk(f) = sup
x∈MZd

|B−1/2
k (xk)∇kf(x)|TMk

(5.6 )

for f ∈ C∞c,cyl(MZd).

Remark 5.2. The expression for δk(f) in (5.6 ) could be transformed to the
more convenient form like in [26]
Introduce the next metric on manifold Mk

ρ̃k(x, y) = inf
z(0)=x, z(T )=y

∫ T

0
|B1/2

k (z(τ))
∂z(τ)

∂τ
|TMk

dτ (5.7 )

Then it simply follows from the Lagrange formula that

δk(f) = sup
x,y∈MZd

{|f(x)− f(y)|
ρ̃k(xk, yk)

, xj = yj, j 6= k}

on f ∈ C∞c,cyl(MZd).

Lemma 5.3. Let potentials {W,Φ} satisfy conditions (5.2 ) and (5.4 ).
Suppose that ∀k 6= j ∈ Zd

sup
x∈MZd

|B−1/2
k B

−1/2
j ∇k∇jWkj|TMk⊗TMj

<∞ (5.8 )

Then for all f ∈ C1
cyl(M

Zd) such that
∑
j∈Zd δj(f) <∞ we have

δj(µk(f) ) ≤ δj(f) + Cjkδk(f)

for j 6= k ∈ Zd. Here
Cjk = 2λ sup

x∈MZd
|B−1/2

k B
−1/2
j ∇k∇jWkj| (5.9 )

Proof. The next identity for j 6= k, j, k ∈ Zd

∇jµk(f) = µk(∇jf)− λcovµk(f,∇jWkj)

leads to
δj(µk(f) ) = sup |B−1/2

j ∇j(µk(f) )|j =

= sup |µk(B−1/2
j ∇jf)− λcovµk(f,B

−1/2
j ∇jWkj)|j ≤

≤ δj(f) + λ sup |covµk(f,B
−1/2
j ∇jWkj)|j

Here |u|j = (≺ u, u �TMj
)1/2, j ∈ Zd.
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Using the inequality

|covµ(f, g)| ≤ cov1/2
µ (f, f) · cov1/2

µ (g, g)

with function g(x) = B
−1/2
j ∇jWkj(x), µ = µk(xk) and the following modi�cation

of the weigted spectral gap inequality (5.5 )

covµk(f, f) ≤ 2δ2
k(f)

we have
sup

x∈MZd
|covµk(f,B

−1/2
j ∇jWkj)|j ≤

≤ sup cov1/2
µk

(f, f)(2
∫
Mk

|B−1/2
k B

−1/2
j ∇k∇jWkj|2TMk×TMj

dµk)
1/2 ≤

≤ 2δk(f) sup
x∈MZd

|B−1/2
k B

−1/2
j ∇k∇jWkj| =

= 2Ckjδk(f)

Below we investigate conditions on the uniqueness and the fast decay of core-
lations for the Gibbs measures µ with conditional measures (5.3 ) from the Do-
brushin's uniqueness region i.e. for which the following holds

sup
k∈Zd

∫
MZd

ρ̃k(xk, zk)dµ(x) <∞ (5.10 )

for some point z ∈ MZd and ρ̃ de�ned in (5.7 ). In Section 6 we control this
condition for systems with non-Gaussian interaction.

De�nition 5.4. Let µ, ν be arbitrary probability measures on Tichonov σ-
algebra on MZd. The vector af = {aj}j∈Zd is called an estimate for µ and ν if

for f ∈ C1
cyl(M

Zd) such that
∑

j∈Zd
δj(f) <∞ we have

|
∫
MZd

f dµ−
∫
MZd

f dν| ≤
∑
j∈Zd

ajδj(f) (5.11 )

where δj(f) are de�ned in (5.6 ).

Lemma 5.5. Let µ, ν be arbitrary probability measures on Tichonov σ-algebra
on MZd which satisfy condition (5.10 ) with some z ∈MZd

Then ∀ f ∈ C1
cyl(M

Zd),
∑

j∈Zd
δj(f) <∞ there is the next estimate

|
∫
MZd

f dµ−
∫
MZd

f dν| ≤ α
∑
j∈Zd

δj(f)

with constant

α = sup
k∈Zd

∫
MZd

ρ̃k(xk, zk){dµ(x) + dν(x)} <∞

Proof. The remark 5.2 implies that for any function f ∈ C1
cyl(M

Zd) such that∑
j∈Zd

δj(f) <∞ we have inequality

∀x, z ∈MZd |f(x)− f(z)| ≤
∑
k∈Zd

δj(f)ρ̃k(xk, zk)
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Therefore
|
∫
MZd

f(x)dµ(x)−
∫
MZd

f(x)dν(x)| ≤

≤ |
∫
MZd

[f(x)− f(z)]dµ(x)|+

+|
∫
MZd

[f(x)− f(z)]dν(x)| ≤

≤
∑
j∈Zd

δj(f) sup
k∈Zd

∫
MZd

ρ̃k(xk, zk){dµ(x) + dν(x)}

Theorem 5.6. Let potentials {W,Φ} satisfy conditions (5.2 ), (5.4 ) and (5.8
).

1. Let probability measures µ, ν ∈ G{µΛ} (5.3 ). If the vector {aj}j∈Zd is an
estimate (5.11 ) then vector

aC = {
∑
j∈Zd

ajCjk}k∈Zd

is an estimate too. Here matrix C = {Ckj} is de�ned in (5.9 ).

2. Consider probability measure µ ∈ G{µΛ} (5.3 ) which satis�es (5.10 ) with
some z ∈MZd and probability measure ν such that

dν = g dµ, g ∈ C∞c,cyl(MZd),
∫
MZd

g dµ = 1

If the vector {aj}j∈Zd is an estimate for measures µ and ν (5.11 ) then vector

aC + b = {
∑
j∈Zd

ajCjk + bk}k∈Zd

is an estimate too. Matrix C is de�ned in (5.9 ) and vector b has coordinates

bk = 2δk(g) (5.12 )

Proof. This theorem is proved by induction on set J ⊂ Zd, |J | < ∞, like in
[26].
Put

aJk =

 ak, k 6∈ J
min(ak, (aC + b)k), k ∈ J

Here bk ≡ 0, k ∈ Zd in the �rst situation for µ, ν ∈ G{µΛ} and bk are de�ned in
(5.12 ) in the second situation dν = g dµ, g ∈ C∞c,cyl(MZd), µ(g) = 1.
The inductive base J = ∅ is trivial because {a} is an estimate.
First of all we remark that for the function f ∈ C1

cyl(M
Zd),

∑
j∈Zd

δj(f) < ∞

from Lemma 5.3 it follows that∑
j∈Zd

δj(µk(f)) <∞, k ∈ Zd

Moreover the assumptions on the potentials {Φ,W} give that
µk(f) ∈ C1

cyl(M
Zd)
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Let now K = J ∪ {k} and suppose that vector {aJk}k∈Zd is an estimate for
measures µ and ν. Then

|µ(f)− ν(f)| ≤ |(µ− ν)y{
∫
Mk

f(·|y)dµk(·|y) }|+

+|νy{
∫
Mk

f(·|y)dµk(·|y)−
∫
Mk

f(·|y)dνk(·|y)}| ≤

≤
∑
j∈Zd

aJj δj(µk(f) ) + {b− term}

where νk(·|y) and µk(·|y) are one point conditional measures for ν and µ.
The {b− term} equals to zero in the �rst situation for µ, ν ∈ G{µΛ} because

µk ≡ νk under de�nition of G{µΛ}.
In the second situation we estimate {b− term} from above using the spectral

gap inequality (5.5 ). We use below that the conditional measures

dνk =
g

µk(g)
dµk

and that dν = g dµ:

{b− term} ≡ |νy{
∫
f dµk(·|y)−

∫
f dνk(·|y)}| =

= |νy{
∫
Mk

(f − µk(f))[dµk −
g

µk(g)
dµk]}| =

= |µy{
g

µk(g)

∫
Mk

(f − µk(f) )(g − µk(g) )dµk}|

The expression under the integral on Mk doesn't depend on variable xk ∈ Mk

therefore

{b− term} = |µ{µk(
g

µk(g)
) ·

∫
Mk

(f − µk(f) )(g − µk(g) )dµk}| =

= |µ{
∫
Mk

(f − µk(f) )(g − µk(g) )dµk}| ≤

≤ sup
y∈MZd

(
∫
Mk

[f(·|y)− µyk(f)]2dµk(·|y) )1/2·

· sup
y∈MZd

(
∫
Mk

[g(·|y)− µyk(g)]2dµk(·|y) )1/2 ≤

≤ 2 sup
y∈MZd

(
∫
Mk

|B−1/2
k (xk)∇kf |2dµk)1/2·

· sup
y∈MZd

(
∫
Mk

|B−1/2
k (xk)∇kg|2dµk)1/2 ≤ 2δk(f)δk(g)

Here we have used the spectral gap inequality (5.5 ).
Now we apply Lemma 5.3 for to obtain the �nal estimate

|
∫
f dµ−

∫
f dν| ≤

∑
j∈Zd

aJj δj(µk(f) ) + δk(f)bk ≤

≤
∑
j 6=k

aJj {δj(f) + Cjkδk(f)}+ δk(f)bk + aJk · 0 =
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=
∑
j 6=k

aJj δj(f) + (aC + b)kδk(f) ≤
∑
j∈Zd

aKj δj(f)

Recall that bk ≡ 0 in the �rst situation and bk = 2δk(g) in the second one.

Theorem 5.7. Let potentials {W,Φ} satisfy conditions (5.2 ), (5.4 ) and (5.8
).

Suppose that
ϑ = sup

k∈Zd

∑
j∈Zd

Ckj < 1 (5.13 )

where constants Ckj are de�ned in (5.9 ).
Then

1. Set of µ ∈ G{µΛ}, such that for some z ∈ MZd the condition (5.10 ) is
satis�ed, consists of only one point µ̃ ∈ G{µΛ}.

2. For µ̃, ∀f, g ∈ C∞c,cyl(MZd) we have

|covµ̃(f, g)| ≤ 2
∑

k,j∈Zd
Dkjδk(f)δj(g) (5.14 )

where D =
∞∑
m=0

Cm with matrix C de�ned in (5.9 ).

Proof. Theorem 5.6 implies that

aCn +
n−1∑
m=0

bCm

is an estimate if a is an estimate. Therefore

aCn +
∞∑
m=0

bCm

is an estimate too. As measure µ satis�es condition (5.10 ) with some z ∈ MZd,
then measure

dν = g dµ, g ∈ C∞c,cyl(MZd),
∫
g dµ = 1

also satis�es (5.10 ) with the same z ∈MZd.
Lemma 5.5 implies that there is an estimate a = {ak} for the measures µ, ν.
Then

‖aCn‖`∞(Zd) = α sup
k∈Zd

∑
j∈Zd
|Cn

kj| =

= α sup
k∈Zd

∑
j(1)∈Zd

· ·
∑

j(n−1)∈Zd

∑
j∈Zd

Ckj(1) · ·Cj(n−1)j ≤ (5.15 )

≤ α( sup
k∈Zd

∑
j∈Zd

Ckj)
n ≤ αϑn

1. For measures µ, ν ∈ G{µΛ} we have from Theorem 5.6 (statement 1) and (5.15
) that for f ∈ C∞c,cyl(MZd)

|
∫
MZd

f dµ−
∫
MZd

f dν| ≤
∑
i∈Zd

(aCn)iδi(f) ≤

≤
∑
i∈Zd

δi(f)‖aCn‖`∞(Zd) ≤ αϑn
∑
i∈Zd

δi(f)
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Tending n→∞ we obtain that

∀f ∈ C∞c,cyl(MZd)
∫
MZd

f dµ =
∫
MZd

f dν (5.16 )

for every µ, ν ∈ G{µΛ}.
Relation (5.16 ) implies that projections of measures from G{µΛ} coincide on

Borel σ-algebras
{B( ×

k∈Λ
Mk), Λ ⊂ Zd, |Λ| <∞}

Therefore due to the Kolmogorov theorem µ ≡ ν and the set of all Gibbs measures
consists of only one point.

2. In (5.14 ) we can always make by linearity
∫

MZd
g dµ = 1 and g > 0 to be

strictly positive because

covµ(f, g) = covµ(f + c1, g + c2)

for every c1, c2 ∈ R1.
Then Theorem 5.6, part 2, implies that for measures µ and ν such that dν =

g dµ the vector aCn +D is an estimate, so

|covµ(f, g)| = |
∫
MZd

f dµ−
∫
MZd

f dν| ≤

≤ 2
∑

k,j∈Zd
Dkjδk(f)δj(g) + α

∑
j∈Zd

δj(f) ϑn

Tending n→∞ we obtain Theorem 5.7 proved.

Corollary 5.8. Under conditions of Theorem 5.7 we have statements (5.16 )
and (5.14 ) for functions f ∈ E where E is a class of functions which are limits
of fn ∈ C∞c,cyl(MZd) in seminorm

∑
j∈Zd

δj(f), i.e.

∑
j∈Zd

δj(f − fn)→ 0, n→∞

The next theorem provides conditions on decay of correlations for Gibbs mea-
sures [26].

Theorem 5.9. Under conditions of Theorem 5.7 and condition

ϑd = sup
k∈Zd

∑
j∈Zd

ed(k,j)Ckj < 1

for some semimetric d(k, j) on lattice Zd (for example d(k, j) = |k − j| or
d(k, j) = ln(1 + |k − j|) ) for any µ ∈ G{µΛ} which satis�es (5.10 ) we have
estimate ∑

k∈Zd
|covµ(f, τkg)|ed(k,0) ≤ 2

1− ϑd
‖f‖d‖g‖d (5.17 )

where τk denotes the shift on vector k ∈ Zd and
‖f‖d =

∑
k∈Zd

ed(k,0)δk(f)

29



Note that always ϑd ≥ ϑ.

Proof. Using the triangle inequality for semimetric d(·, ·) and inequality (5.14 )
we have

|covµ(f, τig)|ed(i,0) ≤

≤ 2
∑

k,j∈Zd
ed(j,k)Djke

d(k,0)δk(f)ed(i,j)δj−i(g)

Summing up on i ∈ Zd we have the stated decay of correlations proved.

6 Gibbs measures with convex pair interaction.

In this section we consider Mk = R1, k ∈ Zd and potentials {W,Φ} such that
1. For function F (t) = F (−t) ∈ C∞(R) such that

∃ε > 0 F ′′(t) ≥ ε t ∈ R1 (6.1 )

we have
Φk(xk) = F (xk), k ∈ Zd

2. For functions Gj(t) = Gj(−t) ∈ C∞(R1), j ∈ Zd
such that

∀j ∈ Zd G′′j (t) ≥ 0 t ∈ R (6.2 )

we have
Wkj(xk, xj) = Gk−j(xk − xj), k, j ∈ Zd

and
∃r0 > 0 ∀j ∈ Zd |j| > r0 Gj ≡ 0 (6.3 )

Lemma 6.1. Under conditions (6.1 - 6.3 ) on potentials {W,Φ} for all λ ≥ 0
the set of Gibbs measures µ ∈ G{µΛ} which satisfy condition

sup
k∈Zd

∫
MZd

q2(xk)dµ(x) <∞ (6.4 )

is non-empty. Here
q(xk) =

∫ xk

0

√
F ′′(τ) dτ

and |q(xk)| = ρ̃k(xk, 0) (see Remark 5.2).

Proof. Choose boundary condition y = {yj} ∈ RZ
d

, yj ≡ 0. Conditional
measures (5.3 ) have the next representation

dµΛ(xΛ | 0) =
1

ZΛ(0)
exp(−UΛ(xΛ|0) ) ×

k∈Λ
dxk

where
UΛ(xΛ|0) =

∑
k∈Λ

F (xk) + λ
∑

{k,j}∩Λ6=∅
Gk−j(ξk − ξj)

and ξ = (xΛ, 0Λc). Due to assumptions (6.1 - 6.3 ) we have for all λ ≥ 0

RµΛ(·|0) = {∇k∇jUΛ(xΛ|0)}k,j∈Λ (6.5 )

≥ {δkjF ′′(xk)}k,j∈Λ ≥ ε{δkj}k,j∈Λ > 0
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as the functions Gj are convex.
Inequality (6.5 ) and the weighted spectral gap (Thm.2.2) give the next in-

equality
1

2

∫
RΛ

(f( · )−
∫
RΛ
f(xΛ)dµΛ(x|0) )2dµΛ(·|0) ≤

≤
∫
RΛ

∑
k∈Λ

|∇kf |2

F ′′(xk)
dµΛ(·|0)

Applying this estimate to the function q(xk) =
∫ xk
0

√
F ′′(τ)dτ and using the sym-

metry of measure µΛ(·|0): ∫
RΛ
q(xk)dµΛ(xΛ|0) = 0

we obtain estimate

∀k ∈ Λ ⊂ Zd 1

2

∫
RΛ
q2(xk)dµΛ(·|0) ≤ 1 (6.6 )

As function q is a compact function on R1 = Mk : |q(xk)| ≥ ε|xk| then by
the Prochorov's Theorem [49,Ch.1,�5] it follows the existence of the weak limit
µ̃ : µ̃(RZd) = 1 of measures {µΛn(·|0)}n≥1 for some subsuquence {Λn} which
exhaust the lattice Zd.
The assumption on the �niteness of interactive radius give the Gibbs property

of the limit measure µ̃.
Tending n→∞ we also have the property (6.6 ) for µ̃.

Due to the assumptions (6.2 ) on functions Gj we can estimate constants Ckj
(5.9 ) from above by

Ckj ≤ 2λ sup
x∈RZd

|
G′′k−j(xk − xj)√
F ′′(xk)

√
F ′′(xj)

|

Theorem 6.2. Let potentials {W,Φ} satisfy conditions (6.1 - 6.3 ) and

γd =
∑
k∈Zd

ed(k,0) sup
x∈RZd

| G′′k(xk − x0)√
F ′′(xk)

√
F ′′(x0)

| <∞

with some semimetric d(·, ·) on Zd.
Then for

λ ∈ [0, 1/2γd )

we have that
1. Set G{µΛ} 6= ∅ and consists of at most one point µ̃.

2. For measure µ̃ the fast decay of correlations holds∑
k∈Zd

ed(k,0)| covµ̃(f, τjg)| ≤

≤ 1

1− 2λγd
(

∑
k∈Zd

δk(f))(
∑
j∈Zd

δj(g)) (6.7 )

for f, g ∈ C∞c,cyl(RZ
d

).
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3. The support of measure µ̃ belongs to

supp µ̃ ⊂ {y ∈ RZd :
∑
k∈Zd
|ak|q2(yk) <∞} ∀a ∈ `1(Zd)

for function q(t) =
∫ t
0

√
F ′′(τ)dτ

Proof. Set G{µΛ} 6= ∅ due to Lemma 6.1. Statement 1) and 2) follow from
Theorems 5.7 and 5.9.
From inequality (6.6 ) for the measure µ̃ it follows that

1

2

∫
RZd

∑
j∈Zd

ajq
2(xj) dµ̃(x) ≤

∑
j∈Zd

aj <∞

Therefore the set of points where the following function

x = {xj}j∈Zd →
∑
j∈Zd

ajq
2(xj)

is bounded has the full µ̃ - measure.

Model 1. (Anharmonic oscilators)
Potentials of �nite volumes Λ ⊂ Zd are de�ned by the next expressions

UΛ =
∑
k∈Λ

F (xk) + λ
∑

{k,j}∩Λ 6=∅
a(k − j) (xk − xj)2

Here function F satis�es requirement (6.1 ) and

∀j ∈ Zd a(j) ≥ 0 & ∃r0 ∀|j| > r0 : a(j) = 0

Then for
0 ≤ λ <

ε

8‖a‖d
we have statements of Theorem 6.2. Here

‖a‖d =
∑
j∈Zd

a(j)ed(j,0) <∞

for some semimetric d(·, ·) on Zd.

Model 2. Here potentials are de�ned by

UΛ =
∑
k∈Λ

(1 + x2
k)

2n+1 + λ
∑

{k,j}∩Λ 6=∅
a(k − j)(xk − xj)2n+2

and assumptions on coe�cients {a(j)} are as in Model 1.
Then for

0 ≤ λ <
1

(n+ 1)22n+1‖a‖d
the statement of Theorem 6.2 is valid.

Below we show that for interactive potentials (6.1 - 6.3 ) the corresponding
Gibbs measure has Log-Sobolev inequality.
The discussions of various applications and conditions on Log-Sobolev inequal-

ities for Gibbs measures could be found in papers cited in the introduction to the
paper.
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Remark 6.3. Under conditions of Theorem 6.2 we have Log-Sobolev inequality
for measure µ ∈ G{µΛ} ∫

RZd
|f |2 ln |f |2dµ− ‖f‖2 ln ‖f‖2 ≤

≤ 2
ε

∫
RZd

∑
k∈Zd
|∇kf |2dµ

(6.8 )

on f ∈ C∞c,cyl(RZ
d

).

Indeed, log-concavity of measures {µΛ(·|0)} imply the set of Log-Sobolev in-
equalities (see Remark 3.3)∫

RΛ

|f |2 ln |f |2dµ0
Λ − ‖f‖2

L2(µ0
Λ) ln ‖f‖2

L2(µ0
Λ) ≤

≤ 2

ε

∫
RΛ

∑
k∈suppcylf

|∇kf |2dµ0
Λ

for all f ∈ C∞c,cyl(RZ
d

), suppcylf ⊂ Λ.
By [49, Ch.1,�5] and (6.6 ) we have local weak convergence for sequence of

measures
µ0

Λ ⊗ ( ⊗
k∈Zd\Λ

δ0(xk) )

Then from �nite radius of interaction assumption we see that the weak local limit
should be Gibbs measure, so tending Λ↗ Zd we have inequality (6.8 ).
See also [3, 2] where di�erent conditions for Gibbs measures with Gaussian

interaction were obtained.

7 Appendix A.

Theorem A.1. Let probability measure µ (2.1 ) have density Φ ∈ C3(M).
Suppose that there is a function S ∈ C3 ∩ Cb(M), S > 0 pointwisely, and

SRµS +HS
µS ≥ λS(x) (7.1 )

with constant λ > 0.
Then we have weighted Logarithmic Sobolev inequality∫

M
|f |2 ln |f |2dµ− ‖f‖L2

ln ‖f‖L2
≤

≤ 2
λ

∫
M
S(x)|∇f |2dµ(x)

(7.2 )

for f ∈ C2
0(M).

Proof.

Inequality (7.2 ) it is su�cient to prove on non-negative functions f ≥ 0,
f ∈ C2

0(M) due to the following estimate∫
M

S|∇|u| |2dµ ≤
∫
M

S|∇u|2dµ
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on functions u ∈ C2
0(M). This is a common fact from the theory of Dirichlet

forms. The simplest proof could be found in [43, Ch.X, Th.X.27].
Moreover we only have to prove inequality (7.2 ) for strictly positive functions

fε = f + ε, f ∈ C2
0(M), ε > 0 (7.3 )

Indeed, tending ε→ 0 in inequality∫
M
|f + ε|2 ln |f + ε|2dµ− ‖f + ε‖2 ln ‖f + ε‖2 ≤

≤ 2
λ

∫
M
S|∇(f + ε)|2dµ = 2

λ

∫
M
S|∇f |2dµ (7.4 )

for f ∈ C2
0(M), we obtain the weighted inequality (7.2 ) as an application of

Lebesgue domination theorem to (7.4 ).

In this place the steps 1.-2. of Theorem 3.1 proof should be repeated literally
for Ψ(x) = x lnx and A(x) = S(x)Idx.
In particular we have representation∫

M
v ln v dµ− (

∫
M
v dµ) ln(

∫
M
v dµ) =

= 1
2

∞∫
0

∫
M

1

Ptv
S|∇Ptv|2 dµ dt

(7.5 )

for Pt = exp(−tHS
µ ) and v ∈ C2(M), to be strictly positive. Then inequality

(7.2 ) transforms to∫ ∞
0

∫
M

1

Ptv
S|∇Ptv|2dµdt ≤

1

λ

∫
M

1

v
S|∇v|2dµ

Here we used representation (7.5 ). Therefore it is su�cient to prove that

0 ≤
∫
M

1

Ptv
S|∇Ptv|2dµ ≤ e−λt

∫
M

1

v
S|∇v|2dµ

or that
K ′(t) ≤ −λK(t) (7.6 )

for function
K(t) =

∫
M

1

Ptv
S|∇Ptv|2dµ

Introduce notations Ptv = exp(u(x)) Then using

∇eu = eu∇u & HS
µ e

u = euHS
µu−

1

2
euS|∇u|2

inequality (7.6 ) adopts the form

λ
∫
M

euS|∇u|2dµ ≤ (7.7 )

≤ 2
∫
M

S ≺ ∇u,∇HS
µ e

u � dµ−
∫
M

HS
µ e

u · S|∇u|2dµ
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The �rst term in (7.7 ) could be transformed to the next terms

2
∫
M

S ≺ ∇u,∇HS
µ e

u � dµ = 4
∫
M

HS
µu ·HS

µ e
udµ =

=
∫
M

eu ≺ SRµS∇u,∇u � dµ+

+
∫
M

tr(∇(S∇u)[∇(S∇eu)]∗)dµ =

=
∫
M

eu ≺ SRµS∇u,∇u � dµ+

+
1

2

∫
M

eutr(∇(S∇u)[∇(S∇u)]∗)dµ+

+
1

2

∫
M

eu| ≺ ∇S,∇u � |2dµ+

+
1

2

∫
M

euS2tr(∇∇u[∇∇u]∗)dµ+

+
1

2

∫
M

euS ≺ ∇S,∇ � |∇u|2dµ+

+
∫
M

eutr(∇(S∇u) · S[∇u⊗∇u]∗)dµ

The second term in (7.7 ) is transformed to

−
∫
M

HS
µ e

u · S|∇u|2dµ = +
1

2

∫
M

euS2|∇u|4dµ−

−
∫
M

euHS
µu · S|∇u|2dµ =

1

2

∫
M

euS2|∇u|2dµ−

−1

2

∫
M

euS2|∇u|2dµ− 1

2

∫
M

eu ≺ S∇u,∇(S|∇u|2) � dµ =

= −
∫
M

euS · tr( (∇u⊗∇u) · [∇(S∇u)]∗)dµ+

+
1

2

∫
M

eu ≺ S∇S,∇u � |∇u|2dµ =

= −
∫
M

euS · tr(∇(S∇u) · [∇u⊗∇u]∗)dµ−

−1

2

∫
M

eu ≺ S∇S,∇ � |∇u|2dµ+
∫
M

eu(HS
µS)|∇u|2dµ

Finally estimate (7.7 ) transforms to

λ
∫
M

euS|∇u|2dµ ≤
∫
M

≺ (SRµS +HS
µS)∇u,∇u � dµ+

+
1

2

∫
M

eutr(∇(S∇u) · [∇(S∇u)]∗)dµ+

+
1

2

∫
M

eu{S2tr(∇∇u · [∇∇u]∗) + | ≺ ∇S,∇u � |2}dµ

therefore the condition (7.1 ) is su�cient.
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8 Appendix B.

Proof of Lemma 2.1. Consider function ξ ∈ C∞0 (M), 0 ≤ ξ ≤ 1 such that
ξ(x) = 1 on some ball x ∈ BR(x0)= {y ∈M : ρ(x0, y) < R}. The operator HξA

µ

is essentially self-adjoint in L2(M,µ) because the Cauchy problem
∂
∂tu(x, t) = −HξA

µ u(x, t)

u(x, 0) = u0(x)

could be smoothly solved in C2
0(M) due to the assumptions on the coe�cients of

operator HξA
µ [27, Ch.9, �6, Th.8].

We have to show that from condition

∀ϕ ∈ C∞0 (M) :
∫
M

≺ (1 +HA
µ )ϕ, u � dµ = 0 (8.1 )

follows that u ≡ 0 which gives the required essential self-adjointness for operator
HA
µ [43, Ch.X, Th.X.1].
Consider function η ∈ C∞0 (M) such that 0 ≤ ξ ≤ η ≤ 1 and η ↑supp ξ= 1.

Then restrictions HηA
µ ↑supp ξ= HA

µ ↑supp ξ coincide.
Therefore∫

M

≺ (1 +HA
µ )ϕ, uξ � dµ =

∫
M

≺ (1 +HηA
µ )ϕ, uξ � dµ =

=
∫
M

≺ (1 +HηA
µ )ϕξ, u � dµ+

∫
M

≺ [ξ,HηA
µ ]ϕ, u � dµ = (8.2 )

=
∫
M

≺ {≺ A∇ξ,∇· � ϕ− (HA
µ ξ)ϕ}, u � dµ

due to (ϕξ) ∈ C∞0 (M) and (8.1 ). Put ψ = (1+HηA
µ )1/2ϕ then the above identity

transforms to ∫
M

≺ (1 +HηA
µ )1/2ψ, uξ � dµ =

=
∫
M

≺ ≺ A∇ξ,∇· � (1 +HηA
µ )−1/2ψ, u � dµ−

−
∫
M

≺ (HA
µ ξ)(1 +HηA

µ )−1/2ψ, u � dµ = B1 +B2

We obtain estimates

|B1| ≤ ‖u‖L2(µ)(
∫
M

| ≺ A∇ξ,∇ � (1 +HηA
µ )−1/2ψ|2dµ)1/2 ≤

≤ ‖u‖L2
sup
M
| ≺ A∇ξ,∇ξ � |1/2·

·(
∫

supp ξ

≺ A∇(1 +HηA
µ )−1/2ψ,∇(1 +HηA

µ )−1/2ψ � dµ)1/2 ≤

≤ C ′ξ,u(
∫
M

≺ ηA∇(1 +HηA
µ )−1/2ψ,∇(1 +HηA

µ )−1/2ψ � dµ)1/2 =

= C ′ξ,u‖(HηA
µ )1/2(1 +HηA

µ )−1/2ψ‖L2(µ) ≤ C ′ξ,u‖ψ‖L2(µ)

|B2| ≤ max |HA
µ ξ| · ‖u‖L2

· ‖(1 +HηA
µ )−1/2ψ‖L2

≤ C ′′ξ,u‖ψ‖L2
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The previous estimates and identity (8.2 ) imply that

(uξ) ∈ D( (HηA
µ )1/2)

Therefore the weak derivation D on function (uξ) is de�ned. Put ϕ = uξ in (8.2
). Then

‖uξ‖2
L2

+ ‖(HηA
µ )1/2uξ‖2

L2
=

=
∫
M

{−|u|2ξHηA
µ ξ+ ≺ u,≺ A∇ξ,D· � uξ �}dµ =

=
∫

supp ξ

{−|u|2ξHηA
µ ξ + η ≺ D

|u|2

2
, A∇ξ

2

2
�}dµ+

+
∫

supp ξ

|u|2 ≺ A∇ξ,∇ξ � dµ = −
∫

supp ξ

|u|2ξHηA
µ ξdµ+

+
∫

supp ξ

{1
2
|u|2HηA

µ ξ2 + |u|2 ≺ A∇ξ,∇ξ �}dµ =

=
1

2

∫
M

|u|2 ≺ A∇ξ,∇ξ � dµ

So we have proved the following estimate

‖uξ‖2
L2
≤ C

∫
M

|u|2|∇ξ|2dµ

Here we use that A ∈ Cb(M,T 1,1M).
Let F be smooth function on half-line R+ such that

F (x) =

 1, x ∈ [0, 1]
0, x ∈ [2,∞)

and |F ′| ≤ α, x ∈ R+. Then choosing sequence
ξn = F (ρ(x, x0)/n) we have ξn ↗ 1 and

|∇ξn| ≤ max
t∈[1,2]

F ′(t)

n
→ 0, n→∞

Therefore ‖u‖L2
= 0 and so u ≡ 0.
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