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1 Introduction.

In 1975 L.Gross [29] proved the equivalence between the Logarithmic Sobolev
inequality

1P fPdu PP < 5 [ V7P (1)
M M

and the important hypercontractive property for the semigroup of operator H,
associated with quadratic Dirichlet form

(Huf, f)z, / IV f[Pdp

The hypercontractivity means that 3t > 0 such that || exp(—tH,)| 1,— 1,0 =
1. The further investigation of contractive properties of semigroups via Log-
Sobolev inequalities was developed in the papers of J.Rosen [44], E.B.Davies and
B.Simon [20], S.Kusuoka and D.W.Stroock [38] where it were obtained conditions
on super and ultra contractivity. It was also noted by O.S.Rothaus that Log-
Sobolev inequality (1.1 ) has close connection with isoperimetric inequalities for
measure /4 [45].

In the paper of D.Bakry and M.Emery [8] it was proposed the next general con-
dition for measure p on Riemannian manifold M when the Logarithmic Sobolev
inequality (1.1 ) holds:

dA>0Ve € M R,(z) = Ric(z) + VV®(x) > A (1.2)

Here Ric denotes Ricci curvature tensor and VV® denotes the second covariant
derivative of density of measure p: dy = exp(—®)do with respect to Riemannian
volume o.

The interesting applications such inequalities found in the study of infinite-
dimensional lattice systems. The Stochastic Ising models via Log-Sobolev tech-
nique were investigated by E.A.Carlen, R.Holley and D.W.Stroock [31, 13, 32, 33].
In papers of J.-D.Deushel, D.W.Stroock [21] and B.Zegarlinski [54] it was proved
that inequality (1.1 ) for Gibbs measure ensures Dobrushin uniqueness criterion
|22], and in papers [50], [51] it was obtained the equivalence between Log-Sobolev
inequalities and Dobrushin-Shlosman mixing condition |25].

For unbounded spin systems such inequalities found their applications to
the study of ergodic properties of Dirichlet operators semigroups in papers of
S.Albeverio, Yu.G.Kondratiev and M.Réckner |3, 2|. The case of smooth measure
on rigged Hilbert space was discussed in [6].

In this paper we investigate conditions when the next inequality holds

- <
JW(v)dp — (] vdu) <

U (v) < AVu, Vo = du (13)

<5
2A ar



with weight A = A(x) which behaves like R;' (1.2 ) on the infinity of manifold
M.

For example, in Section 2 we prove the next weighted Spectral Gap inequality
(Theorem 2.2)

;/\f—/fdmzduﬁ | = RIS - dp (14)
M M M

with exact weight A = R;l.
In Section 3 we develop Bakry-Emery scheme and obtain sufficient condition

(Theorem 3.1)
IN>0VeeM AR,A+ H!A> )\A (1.5)

for the weighted gradient estimate (1.3 ).
Here H = 3{—div(AV)+ < AV®,V >} is operator associated with
quadratic form

1
(Hlflu,v)L2 = 2/ < AVu, Vv > dp
M

and coefficient operator A is a smooth TV M - valued field.

If U(v) = vinv and v = f? then inequality (1.3 ) transforms to the weighted
Log-Sobolev inequality (see also Appendix A when A(z) = S(z)Id, on T}°M for
function S)

S I f Py = f 2 £ <
<3 <A@V S(), V() - dulo) 1e)

In Section 4 we provide some examples of measures when weighted inequalities
(1.3), (1.6 ) hold. For instance, it is shown in Example 4.1 that choice A = R,
is possible at all.

We demonstrate in Example 4.2 that condition (1.5 ) works even in the situa-
tions when R,-object (1.2 ) is negative at some region on M.

In this section we also prove the set of weighted Log-Sobolev inequalities for
polynomial log-concave measures on R (Theorem 4.3). Note that as a con-
sequence, we obtain classic Log-Sobolev inequality (1.1 ) as a special limit of
weighted ones.

The Sections 5 and 6 are dedicated to the application of the weighted spectral
gap inequality (1.4 ) to the study of uniqueness and decay of correlations for the
lattice Gibbs measures with non-Gaussian interaction.

There is an approach proposed by R.L.Dobrushin, O.E.Lanford and D.Ruelle
|22, 40] to the defining of measure on countable product of metric spaces in terms
of fixed family of local conditional measures. This approach gave possibility to
obtain effective criterions on uniqueness and existence for such measures (see
Dobrishin’s criterion [22]|, Dobrushin-Shlosman mixing condition [25] and their
applications [42, 49]).



In the situation of compact metric spaces the conditions on existence and
uniqueness of Gibbs measures were found by R.L.Dobrushin [22; 23, 24]. In
the papers of L.Gross and B.Simon [30, 48] it was shown that in the essence
of Dobrushin type criterions lie special variational estimates on one-point condi-
tional measures, which admit iteration and application of fixed points theorems.
Moreover such estimates were used by H.Follmer, L.Gross, D.Klein, H.Kiinsch
[30, 37, 26, 34] to the study of decay of correlations and connected questions.

In non-compact situation the most optimal (known to authors) conditions could
be found in paper of M.Cassandro, E.Olivieri, A.Pelegrinotti and E.Presutti [14],
where it was studied the case of Gaussian measure perturbed by one-point poten-
tials (see also [41, Ch.4,88, Ch.7,82]).

In this paper we consider the class of Gibbs measures on lattice product of non-
compact Riemannian manifolds when non-quadratic pair interaction is dominated
by one-point potentials. We work in the spirit of scheme proposed by L.Gross [30]
and H.Follmer [26]. The weighted Spectral Gap inequality (1.4 ) enables us to omit
Lanford-Vasserstein supremum type estimates [52, 39] on one point conditional
measures.

In Section 5 we consider conditions on uniqueness and decay of correlations for
Gibbs measures with convex pair interaction (Theorems 5.7 and 5.9).

In Section 6 we apply results of Section 5 to the study of linear lattice systems.

2 Weighted Spectral Gap inequality for smooth measures on Rieman-
nian manifolds.

Consider finite-dimensional complete connected smooth Riemannian manifold
M, dim M = m, with metric tensor g;;. Let TP9M denote the tangent bun-
dle of p-times contravariant and g-times covariant tensor fields on M, p,q > 0.
Correspondingly let C*(M, TP2M) denote the set of k-times continuously differ-
entiable (p,q) - tensor fields [46], [11]. By CF(M,TP4M) or CE(M,TP4M) we
denote the spaces of k - times continuously differentiable tensor fields bounded
with derivatives or with finite support.

The invariant Riemannian volume on M we denote by o, do = (det gij)l/ 2dx
in local coordinates. The operator V of covariant differentiation acting on tensor
fields is defined by the next expression in local coordinates

11..1p
i1y aujl Ja
Vi J1--J +
K oxy,



p
1.y i1..0p
+Z Ujy .5 Ly Zu]lh]qujﬁ
a=1

where T',”t are Cristoffel symbols of second order and v is p - times contravariant
and ¢ - times covariant tensor field. Hereforth we use the summation convention
on coinciding indexes.

The innner scalar product of tensors u and v on manifold M is the next ex-
pression in local coordinates

p

Tily o i1y = J1-]
= UV mrean= X i, X AR
s= =

where {g/} denotes the inverse to metric tensor. The same way it is defined the
norm of tensor field |u| = (< u,u =)'/,

Consider probability measure p which is absolutely continuous with respect to
Riemannian volume o with density ® € C*(M)

e %do
dp = ———— 2.1
a [ e %do (2.1)
M
Then the next integration by parts formula is valid [11], [15]
/ < VU,U Tpatl)f dlu = / < u, VZU = Tra M d,u (22 )
M

where u,v are smooth finite tensor fields on M and Vv is the next expression in
local coordinates

(VZ )21 Zp o k:jov vt 11..0p +gkjo(v (I)) 1. '.ip

J1--Jq JoJ1--Jq Yjoji-jq
The Dirichlet form [1, 28, 4, 5| of measure p with coefficient operator A is
defined by

af}(u v) / < A(x)Vu(x), Vo(z) = du(x) =

Ov(x)
P / A 8:61 oxJ dpif)
on smooth functions with compact support u,v € C5°(M). Here coeflicient oper-
ator A is a continuous T M - valued field on M such that Vo € M : A(z) > 0
on THOM,.
Due to the integration by parts formula (2.2 ) the corresponding Dirichlet
operator H /f, defined by identity

(H/flu, V) Lo(n) = aﬁ(u, v)
on u,v € C§°(M), admits representation
1
A *
Hju= §VMAVU

The next lemma provides simple conditions when this operator is essentially self-
adjoint in Lo(M, p) with domain C5°(M).



Lemma 2.1.  Suppose that density ® € C3(M) and coefficient operator A €
C3 N Cy(M, T IM). Then operator H/fl is essentially self-adjoint in Lo(M, ).

Proof is obtained as a direct application of Wienholtz scheme [53] in the Simader
form [47] and is contained in Appendix B to the paper.

The further investigations are based on the powerful technique of energy
identities for the elliptic differential operators (see, for example, monographies
|9, 17, 10, 16] and papers [19, 35, 18, 36]).

Below we need coercitive identity for operator V7 [18, 16] acting on smooth
vector fields v € CJ (M, TOM)

[ VivPdp = [ tr[Vo(Vo)]du+
M M
+ ] < R,v,v = dp (23)
M
Here tr[Vo(Vv)*] = ¢" g*V v,V ;5 and
R,(z) = Ric(x) + VV®(x) (2.4)

where Ric denotes the Ricci curvature tensor on M. This identity simply follows
from (2.2 ) and [V, V}]Jv = R,v on vector field v.

The next theorem provides conditions on the weighted spectral gap. Its proof
is based on the modification of Bochner’ scheme for Laplace-Beltrami operator

[12], [11, Ch.1, §J], [7].

Theorem 2.2. Let probability measure p (2.1 ) have density ® € C3(M).
Suppose that measure p satisfies property

Je>0Vz € M R,(v) >¢eon T)'M

Then we have inequality
1 _
o [\ = [ fdufdu< [ <R,'Vf.Vf = dp (25)
M M M
for e C(M).
Proof. Let coefficient operator A € C, N C3(M, T M) be such that
VeeM R;l(:v) < A(x)
1) We use here variant of coercitive identity (2.3 ) for v = AVu, u € C§°(M)
4/ \(Hlf1 — a)ul*dy = / \VZU\Qd,u—
M M
—404/ < AVu,Vu > du + 4042HUH%2(M) =
M
= [ tr(Vo[Vo)dp + [ < (AR,A = 4aA)Vu, Vu = dy+
M

M
+da?[[ullZ, ) > 4o [[ulZ, )



when o € (0,1/4). Therefore v € (0,1/4) is a regular point for operator H!
and essential self-adjointness of H;f implies that there is no spectrum of H/‘j‘ on
interval (0,1/4).

2) Consider function u € Lo(M, p) such that H;;lu = 0. Then u € D( (Hlfl)l/Q)
and we have that ]\f4 < AVu,Vu > dpu = 0. From A > 0 follows < AVu, Vu ==

0(mod 1) and condition ® € C3(M) implies that |Vu| = 0. So u = const and

we have that )
Hu >1/4 (2.6 )

on the orthocomplement to constant in Lo(M, p).
Inequality (2.6 ) written in the terms of quadratic forms is

;/|f—/fdu|2dp§/<AVf,Vf>du (2.7)
M M M

From arbitrarity of A such that A > R; !, taking the infimum on A in (2.7 )
we obtain inequality (2.5 ). B

Remark. We note that in the case of function ® € C°(M) and R, strictly
positive measure p we have R/jl € C3(M) and so we can directly take A = R;l
in the Theorem 2.2.

3 Weighted Log-Sobolev inequalities and Orlicz space estimates.

Here we provide set of weighted estimates on Orlicz space norms of function
by the special weighted norm of its gradient. In particular case when A = Id,
Theorem 3.1 gives the result of Bakry-Emery [8].

Theorem 3.1  Let probability measure p (2.1 ) have density ® € C3(M). Sup-
pose that the coefficient operator A € C3NCy(M, T M), A > 0 poinwisely, and

VeeM AR,A+H!A> A (3.1)
with constant X > 0.
Then for all ¥ € C*[0,00)) such that ¥" > 0 and (1/9")" < 0 we have

Ty = (] fdp) <

<5 [ V() < AVE VS > d (3.2)

for f € C¥(M), f > 0.

Proof. We partially follow the scheme of [7, 6] in 1.-4.
1. First we show correctness of all expressions appearing in the proof.

Lemma 2.1 gives self-adjointness H /j‘mm = (H},,in)* for the closure H ;flmm of
operator H /;4.



In the next modification of coercitive identity (2.3 )

4 [|H}ulPdp = [ r(V(AVW)[V(AVW)]")dp+
M M

+/<AR AVu,Vu = du =
—/tr V(AVW)[V(AVW)]")dpu+

+= / < (A® A)VVu, VVu = du+

/tr{ (V. ANYVul(V.ADY ju] Fdp+ (3.3)
+3 / (AV)1 A%, V1 (Vou @ Viu) = du+
+ [ < AR, AV, Vu - dy

M
we can integrate by parts in term with V (see (2.2 ))
1
2/ = (AV)1A23, VI(VQU & V3u) — d,u =
M

= [ < (H}A)Vu, Vu - dy
M

This leads to estimate
4/ \H/‘fu\Qdu > / < (AR,A+ H/‘fA)Vu, Vu > dp (3.4)
M M

and condition (3.1 ) imply like in Theorem 2.2 the presence of spectral gap
A
HA > \/4 (3.5)
on the orthocomplement to constant in Lo(M, p).
Here and below for the sake of simplicity we adopt the next convention: the

coinciding integer numbers at tensor fields and V - symbols show the coordinates
on which summation runs. For example

< VQ(AVU)l, Vl(AV)Q —— tr(V(Avu)[v(Avu)]*) _
— Vz(Ajkau) . Vj(AMVg)
< (V1A423)V3u, (VoAp) Vau ==

= tr{(V.ANVu[(V. ANV u]*} = (Vi ANV - (VA V0
< A3, < AVu,V = (Viu ® Viu) ==

= A13AQ4V4U : VQ(Vlu : V3u)
As a consequence of (3.3 ) and (3.4 ) we have characterization of domain of
operator H4

w,min®



feD( Mmm) & f € Lo(M, ) is twice weakly differentiable and the
next integrals are finite:

[ =A@ VY,V = dp < oo

(VA )V AV )y < o0
[t {(VADVf(VAI)V; ] Yy < oo (3.6)
I =< (AR A+ HA+ VL. V[ = dp < o0

For function v € C3(M) we have that
Pou = exp(—tH, )t € D((H,ppin)’)
because H;jlu € Ly(M, 1) and
H?, ..Pu=PH}vueDH, .

,mian L,man

This implies that integrals (3.6 ) are finite for f = P or f = H}}, ; Pu.

As H ;j‘mm coincide with Friedrichtz extension of operator H, 4 we obtain that

semigroup P; preserves positivity [28], [5], i.e.
Yo € C3(M), v>0 = Puv>0 pointwisely

This implies that P, is L,(M, u) — contractive, p € [1, 00] [43, Ch.X, Th.X.55]
and for ¥ € C([0,00) ) we can write the next estimate

¥ (Pru)ll, < ess sup |¥(Pu)(z)] <
xre

<max|V(u)(z)| < max |U(¢)] (3.7)

reM tI<I[ullcyar)

for u e C3(M), p € [1, 0].
2. For every ¥ € C*(Ry) and f € C3(M) consider function g(t) = [ U(P.f)du.

Then "
/WUWM—@QfdM=*ﬂ@H?=

—_/ t)dt = //\IfPt VHIPf dudt = (3.8)

:2/0 /\1; (P.f) = AVP.f,VPf = dudt
M

The limits ¢(¢) |¢° we substitute using the Lagrange formula for function ¥ on
[0,00). For example, for ¢ = oo we have

[ ¥R = (] ] )| =

\/@ {Pf — /fwwm< (3.9)



/I‘I’ ) )2 | Pf — /fduHLg

Here 6 = 6(x) > 0 is some point between (P.f)(x ) and [ fdu, z € M.
M
The first integral in (3.9 ) is simply estimated by

/ (0)Pdp)* < sup 1)

[ Ny

like in (3.7 ) and the second one tends to zero at t — oo due to the next estimate

|Pf = [l < e M2If = [ £l
M M

which follows from the spectral gap (3.5 ).

The limit tllr(% we substitute using the strong continuity of semigroup P, t > 0:

Ve Lo(M,p) |Pof — fllo — 0, t = 0+

3. We only have to prove inequality (3.2 ) for strictly positive functions
fo=f+e fECHM), e>0
Indeed, tending € — 0 in inequality
JU(f +e)du— V(] fdp+e) <

"(f +e) < AV(f +¢),V(f+e) = du=

1
7{4 (3.10 )

:ﬂj\ff\If”(fan) < AV, Vf = du

for f € C3(M), we obtain the weighted inequality (3.2 ) as an application of
Lebesgue domination theorem to (3.10 ).

4. The representation (3.8 ) enables us to rewrite inequality (3.2 ) as
/ooo/‘l’"(Ptf) < AVP,f, VP, f ~ dudt <
M

1
<[V < AVEVS - dp
M
Therefore it is sufficient to prove that

0< [W'(Pif) < AVPf, VP f = dp <

MW(f) < AVE V- dp
M

or that
K'(t) < =A\K(t) (3.11)

for function

K(t)= [ U"(Pf) < AVPf, VP f = du
M



Introduce notations ¢ = V" P f(x) = h(u(x)) with some function h on line
R' which we will choose later. Then inequality (3.11 ) adopts the form

A/q/) |2 < AVu, Vu = dp <

< z/w ) < AVh(u), VHh(u) = du+
+/ w’(h(u))[h’(unmﬁh(u) < AV, Vu > dy
Using identities .
H;'h(u) = b'Hj'u — f;” < AVu, Vu >

and
V.,V Jv=Ruw, ve CYM, THOM)

we have

A/¢ |2 < AVu, Vu = dp <

<2/¢ ]2 < AR, AVu, Vu > du+

+/l<v2¢Munmh%v¢munmh)>dw+ (3.12)
M
+ [WWPH M < AV, Vu = dp—

M
w/ [h/] Qh//

— 5 | < AVu, Vu = |*du

M
5.The second term on the Lh.s. of (3.12 ) could be transformed

’ /:<VQ¢HVNW)%VNHQNMb)>dM:
N / YR = Va(AVu)y, Vi(AVu)s = dpt
+/ V'R < AVu, Vu = |*du+
+J\f4{[¢h/],h/ t [‘]Z[h']h"} < Va(AVu), Viu @ (AVu)s = dp =

= & [ 61N < Va(AVu), Vi(ATVu)s = dyet

) \

M

/w < (A3 @ Agy) Vi Vau, VaVau = du+t

M

/w VQAlg)Vgu (V AQ4)V4U — d,u—l—

M

+ [[)'| < AVu, Vu = [*dp + By + By (3.13 )
M



In (3.13 ) terms B; and Bg are equal to
B = / WIR'? < (V2A13)Vau, AsyViVau = dp =
= 2/¢ [W]? < Ass(VaAis), Va(Viu @ Viu) = dp =
M
——/¢wz < (HAA)Vu, Vu = dp—

1
5 /W[h] ) < VA3, Aoy Viu ® Viu @ Viu = dpu

M

By = [([N]) < Va(AVu)y, Viu® (AVu)y = dp =
M
= /(WL’V)’ < VoAi13® (AVu)2, Viu ® Viu = du+
M
1
+—= / w < A3, < AVu,Vu > (Vlu & Vgu) —du =
M
=3 / (W[K]D)"| < AVu, Vu = [Pdu+t
M
+ [ @[] Hfu < AV, Vu = dp+
M

1
+5 [N < VaAiy © (AVu)2, Viu ® Vau = dp
M

Arranging all terms we transform estimate (3.12 ) to

A/zp 12 < AVu, Vu = du <
< [ YW < {AR,A + HA}YVu, Vu = dp+
M
+; A/4 VW] < Vo(AVu)1, Vi(AVu)y = dut
2/¢ W2 < (A@ AVVu, VVu = dut
+3 / BII? < (VaAis) Vs, (V1 Az Viu = dyrt
+ / (WP + (W) YHAu < AVu, Vu - dyt

+ Aff{—éxbﬂf[h’]?h” + (IR = 5(W[N]P)"} < AV, Vu - [Pdp
6. We ask the next restriction on the dependence between functions v and h
YINP + WP = 20 (0h') =0
i.e. Yh' = C for some constant C' € R\ {0}.
Then the derivatives of A could be expressed in the terms of ¢

= (C/d(h)) = —Cypl' [¢* = —C2j, [4°



h/// 02¢1/ //w‘s T 302(1/);1)2”/77/}4 —

= CH{—p /0" + 3(¢h)*/¢°}

Therefore we have the next estimate

_;wl[h/Ph” + (¢h/)/h// . 1

S =

*04{+(¢h) O+t = 3(uy) W7} =

WO%(M —2(y4)")/¥*} = WC4{ 1/} =0
due to the assumptions of Theorem 3.1.
7. Finally the estimate (3.11 ) adopts the form

A/¢h’]2<AVu,Vu>du§

W[W)? < {AR,A+ H;!A}Vu,Vu = du+

w\ H:\

/ -< VQ AVu)l, Vl(AVU)Q >~ d,U+
+3 /¢ (W] < (A® A)VVu, VVu = du+

2/ h/] tTlQ{‘< V2A13)V3U [(V1A24)V4U] >'}d:u+

M
+= 04/{ (1/9)" J?}| < AV, Vu = [2du
As four last terms above are nonnegative condition (3.1 ) gives the statement of
Theorem 3.1. W

Remark 3.2.  Condition (3.1 ) of Theorem 3.1 applied to ¥(x) = x* improves
the spectral gap inequality (2.7 ) to

[15 = [ Fauldp < [ < AVF.Vf - d (3.14)
M M M

Note that in the case of autoparallel field A(x) (i.e. VA(z) = 0 for all x € M)
condition (3.1 ) transforms to

AVIR AY? > N >0

In particular case when A = Id, on T, M, v € M we have Bakry-Emery
condition R, > A > 0 for the spectral gap [7]

1
H,=H= S ViV = A/2

on the orthocomplement to constant in Lo(M, p).



Remark 3.3.  Theorem 3.1 applied with ¥(z) = xlnx and f = u? gives the
weighted Logarithmic Sobolev inequality

T nadp — [l ]}, <

% f < AVu,Vu = du (3.15)

For the sake of convenience we give self-contained and more simple proof of
this fact in Appendix A for A(z) = S(x)Id,, S € C3N Cy(M).

In the situation when A = Id, we have condition (3.1 ) in form [§]

R, > A
and the classic Gross’ Log-Sobolev inequality [29]
2
[t mdy — |ulli, I flull?, < 5 [ 1Vul?du (3.16)
M Adr

4 Examples and applications.

Below we investigate situations when we can find at given R, -object the coef-
ficient operator A in (3.15 ) such that it behaves like R and satisfies condition
(3.1 ) of Theorem 3.1.

In the case when R, - object grows at the infinity of manifold M, such choice
of coefficient operator A enables us to improve inequality (3.16 ) to the weighted
Log-Sobolev inequality (3.15 ). The similar problem has already been solved in
Theorem 2.2, inequality (2.5 ).

Example 4.1. We consider situation when A = R;l.

Let M = R! and density ®(z) = ch(x) in (2.1 ). Then R,(x) = ch(z) and if

we put A(x) = 1/ch(x) the condition (3.1 ) would have the form

1 10 1 0 1
ch(z) 2&U(ch(x)8x(ch(a:)) )+
1sh(a:) 0, 1

chi(z) 3z ch(z)) = )
with constant A = § — (38\/_ —56)/2 - 3% ~ 0.2744.
Therefore for measure
dv(x) = exp(—ch(x) )dx/(/_o; exp(—ch(x) )dx)

we have obtained inequality
Vf(zx
I N T R ey A

() ————dv(x)



with constant C' ~ 7.2884.

Example 4.2 Here we show that condition (3.1 ) enables to obtain classic Log-
Sobolev inequalities (3.16 ) even in the case when R,-object is negative at some
points (4.2 ), (4.3 ).

Consider M = R! and a family of measures p, (2.1 ) with densities

®(z) = az® +2* a>0
Then R, = ®” = 2a + 12z? and choosing
A=1/(1+2%

we have condition (3.1 ) in the form
2a + 12x° 10( 1 8( 1 ) )+
(x2+1)2  20x 22+ 10x 22+ 1

12az + 423 0 1 2a 12
+, () = b

2 2241 Or 22417 (22+1)2 2241

AR, A+ H'A =

(4.1)

—@21_31)24—014-02 > /\/(332+1)
where 9 . 5 6
“= ey T T e
and Co 2ax? + Ax? B 2a 2a
2T TP (@11 @ p
4 8 4

@+1) @1 (@41
Condition (4.1 ) adopts the next form for y = 1/(2*> +1) € [0,1] and x € R!
F(Ly) ={6y* — 9y* — Ay + 8} + 2ay” = A > 0
But the polynomial in brakets is semibounded from below on y € [0, 1]

inf (6y° —9y* —4y+8) =1
yG[O,l]

Therefore (4.1 ) follows from the next condition
1+2ay> —A>0, ye€l0,1]

If a > 0 then we can choose A = 1, for a € (—1/2,0] constant A equals to (1+2a).
So for all a € (—1/2,00) we have obtained the next family of weighted Log-
Sobolev inequalities

P ISP = T g 0 ) <

00 2 4.2
- min(1,21 + 2a) / o dpia() "

14+22""

Note that inequality (4.2 ) is proved even in the case when R,-object is negative

in region {z : |z| < \/—a/6} for a € (=1/2,0).



As 1/(1 4+ 2?) <1, x € R weighted inequality (4.2 ) implies the classic Log-
Sobolev inequality

AP f P = 1T g 0 ) <

2 Py (4.3)
~ min(1, 1 + 2a) / IV Fdpta

—0o0

for measures yi,, a € (—1/2,0] when Bakry-Emery criterion doesn’t work directly.
The next theorem gives weighted Log-Sobolev inequalities for logarithmically
concave polynomial measures on R,
Remark that tending b — oo in (4.4 ) we obtain classic Log-Sobolev inequality
(3.16 ) as a limit of weighted inequalities (4.4 ), (3.15 ).

Theorem 4.3.  Consider probability measure yu (2.1 ) on manifold M = R*.
1

dp = 7 exp(—P(x)) dx

where
P(z) = agx®™ + ... + agnio

15 polynomial with n > 1 and ag > 0.

Suppose that
Je>0VreR' P'(x) >¢

Then 3by = by(P) such that ¥b > by
[P I fPdp — ] 1f1Pdp In() [ f1dp) <
R R R

2 e+b

3 (4.4)
S e—6(b) 4 P b

IV fIPdu

for all f € C3(RY) where
Vb > by |0(b)] <e & bli_)m d(b) =0

1
Proof. Note that for A(z) = Py b>0

P’ 1 1 1
AR A+ HAA= — 4+ _V*
H + iz (P”—i—b)2+2vM(P”—|—bV(P”—|—b))
Therefore condition (3.1 ) has form
P// P// _|_ b P/// P//
-Vl )=t
P/l + b 2 M (P// + b)?) P// _|_ b
1 PI 1% ( P///)2 1 P/ P///

3
- — = >
+2(P”-|—b)2 2(P//+b)3 2(P1/+b)2 —

(4.5)




2n

As P'P" — 2+1(P”)2 is a polynomial of power (4n — 1) then there are
n
dn — 1 1
constants D, C' > 0 and § = n = 2 — — such that
2n 2n
1 ! DI 2n 11\2 /" B
Vee R |P'P"— (P")*|(x) < D(P"(z) + C) (4.6 )
2n+1
2
Now we add and substract term 5 Z 1(P" )% in the nominator of last fraction
n
in (4.5)
2n
P// n (P//)2 1 PP — on - 1 (P”)2 Lo
P'+b 2n+1(P"+b)? 2 (P" 4 b)2 i (4.7)
1 pLv 3 (P///)Q
— — = —A>0 4.8
TP 2Py T (48)
b 1
Using (4.6 ) and setting y = P b € [0, (1+5/b)] we estimate terms in (4.7
) from below by
n
A7) >1—y— 1—2y+y°}— 4.9
(4N 21-y— 5 {12y +y} (4.9)
D 2_5 b - C
_ : 1— — )P =
e A ;oY) = 1) 1
Now we find the condition on b when minimum on interval [0, 1—1—5/[)] of func-
tion f(y) is attained at point y = 1+ /b
1 2ny D(2-0) b—C
/ - _ _ _ 1 ﬁ 1 = ﬂ
W= s 2 v U W
DB b—-C 4 4 b—C 54
— l—— 4.10
toms 5 Y ) (4.10 )

Due to 1 < f =2 —1/2n < 2 we have that the last term in (4.10 ) uniformly
on y € [0, 1] tends to zero when b — oo.
Therefore using that first three terms in (4.10 ) are less than —1/(2n + 1) we

have that 1
by Vb > by Yy € [0, ] +5/b] c (0,1 f'(y) <0
This leads to . 1
(4.7) > - f&l?é/b] fly) =15 ng/b) =
5 ne’ D(e+C)° (4.11)

Tb+e (2n+1)(b+e)? 2 (b+e)?

for all b > by,
Terms in (4.8 ) are estimated from above with usage of next lemma.



Lemma. Let () be polynomial of power m and 0 < v = ;i < k. Then under
conditions of Theorem 4.3 3by = by (Q, P, k) such that Vb > by
Q) | p k=)™
(Pr(a) + 0 = Pk (b — Gy
where constants C} and Dy are such that
Q(z)| < Dy(P"(x) +C))7, zeR!

sup|

Proof. We have that
Q(x)

< F(P”
sup|(P,,(x) b)k ‘ 2}};; (P
with function
(t + 01)7
Bty = Doy

The maximum of function F(¢) on interval ¢ € [g,00) is attained at point

’yb - kCl

ty =
L V(=)
max F(t) = F(to) = Dy "R — O
where ¢y should satisfy ty > € or
b>by = T n
: . : 2n — 2
Note that in notations adopted in lemma above we have k —~v = 2 — 5 =
n

1 2(2n —1 1
14— for the first term in (4.8 ) and k—v = S—L = 1+ — for the second

n n n
term in (4.8 ). Application of this lemma imply 3bj 3D, such that Vb > b
| 1 PIV 3 (P///) | D2
sup | =
xe?g 92 (P// + b)2 (P// + b) — (b + 8)1—1—1/71

Therefore due to (4.11 ) and (4.12 ) condition (4.7 - 4.8 ) finally appears in the

(4.12)

next form c 1
—A— 5(b) >0
' b+e b+e ()
with i) D, . ne . D (e + C)P
b+ 2n+1)(b+e) 2 bite
So we can choose by > max(bj, by') such that |d(b)| < e for all b > by. Then
choice e — 6(b)
A pum—
b+e
1

b>by. W

ensures condition (3.1 ) for A = JZZ



The next theorem gives the conditions on integrability of geodetic distance
8 0
pa(x,zp) mf/ {(A Zj Zk}1/2d

where infimum is taken along smooth paths {z( ), T E [O, T1] } such that z(0) =
and z(T) = x. In the case M = R", p(x,y) = |z — y| the similar result for
renormalized Schrodinger operators —A + V' was obtained in [20].

For uniformly logarithmically concave measures on manifold M (i.e. IA > 0
R, (z) > Ald, pointwisely on x € M) and for coefficient operator A(x) = Id,
such result was obtained in |7] for Riemannian distance p(x,y) (see also [6] for
the rigged Hilbert space case).

Theorem 4.4. Let probability measure p (2.1 ) have density ® € C3(M).
Consider coefficient operator A € C3 N Cy(M, T M), A > 0 pointwisely.
1. If AR,A> XA, X >0 then

Vao € M Vp>1 s o) € Ly(M, 1)
2. If AR,A+ HYA > NA, X > 0 then Vg € M pa(-,x9) € Ly(M,p), p > 1
and the next estimate holds for a € (0,\/2)

/ exp(am%(x,xo) Ju(r) <

< eXp{ — //)A x, zo)dp(x) }
A M

Proof. 1. Inequality AR, A > AA implies the spectral gap inequality (2.7 )
A
2ﬂ/4|f—ﬂ/4fdu\2duﬁj\/4<AVf,Vf>du (4.13)

Consider increasing on n > 1 sequence of functions

f — ﬁA(xaxO)a ﬁA(x7$0) Sn (4 14)
" n, ﬁA(Z’,xo) >n .
We have that 0 < [ fgd,u < 00 and
M

T 15,2, = [ P3Gz, z0)dp(z)
M
Suppose for contradiction that lim || fu[|7, = co. Due to the next estimate for

k=1 (we use that < AVpy,Vpy === 1(mod o) )
/ < AV VL - du(x) =

=k pﬁk a, wo)dp(r) < k2/p2k *(2, w0)dp(x)

plx,ze)<n

we have that | < AV f,,Vf, = du < 1.
M

Put g, = fu/lfallz, then
| < AVgy, Vg, = di— 0, n— oo
M



and spectral gap (4.13 ) implies that
[ = [ gudpl2dp =1~ ([ gudps)* — 0 (4.15)
M M M

when n — oo.

But ||gn|/z, = 1 therefore dg* and {g,@)}i>1 such that g,;) — ¢* weakly in
LQ(M, ,u,)

Due to the uniform convergence of g, to zero on sets {y : pa(z,y) <
Clrem, o0 we have ¢g* = 0, which contradicts to (4.15 ). So we have obtained
that

/ﬁj(az,xo)du(aj) < 00
M

Repeating inductively on k > 1 the proof above for functions f* we have statement
1.

2. Under condition AR,A + H;?A > AA by Remark 3.2 we have spectral gap
inequality (3.14 ) which gives

ﬁA('x7$0) € Lp(Ma /’[/)7 p Z 1
like in the proof of statement 1 of this theorem. Moreover this condition gives the
weighted Log-Sobolev inequality (3.15 ).

Consider the sequence of functions on half-line a € [0, 00)
hn(a) = [ exp(af2)dp > 1
M

increasing on both a and n with all derivatives A{¥)(a) > 0, a > 0. Here functions
fn are defined in (4.14 ). Then for functions g, = exp(af?/2) we apply weighted
Log-Sobolev inequality (3.15 )

ahi(a) = [ afiexp(afi)dp = [ g2ing? dp <
M M

2
< )\/ < AV G,, Vg, = du+ hy(a)Inh,(a) <
M

< 20 [ f2exp(af2)du + hula) n hu(a)
)\ M

So we have family of functions h,(a) increasing on both n and @ > 0, h,(0) =1
satisfying inequality
2
a(l — ;)h;(a) < hy(a) In iy (a)
For to find the major function we must set h(0) = 1 and take the highest
growth of its derivative, so

It its obvious that h(a) = eXp(1 5-) for some D. The restriction on D we

)
obtain from the highest growth of h,, at zero

W (0) = [ fidu < [ pi(w,zo)du(z) = D < oo
M M



So we have achieved estimate
a ~
ha(a) < exp{~——, [ pA(x, zo)du(x)}
A M
and tending n — oo we obtain theorem proved. m

5 Gross - Follmer scheme for decay of correlations and Weighted
Spectral Gap.

Below we investigate the connection between the weighted spectral gap inequal-
ity (2.5 ) and the decay of correlations for Gibbs measure with pair interaction on
infinite product of n o n ¢ o m p a ¢t manifolds. We consider the class of lattice
Gibbs measures with convex pair interaction which is dominated by one-point
potentials.

We follow partially the approach of L.Gross and H.Follmer [30], [26]. But
the weighted spectral gap inequality (5.5 ) enables us to omit supremum type
estimates on densities of one-point conditional measures.

Let Z9 be d - dimensional lattice to each point k = = (ky,..., k) € Z% cor-
responds smooth complete connected Riemannian manifold M, with probability

_exp(—Pp(zy) )dop(7y)
dP;(xy) = i exp(—®i () )doy(xr)

measure P

where @), € C3(M).
For A € Z9, |A| < oo denote M* = kxA My, vy ={xp}ren, v € My and let
S

Fa be the Borel o - algebra on product of manifolds M*, A¢ = Z9\A.

Denote by é’zyl(MZd) the set of functions f such that 3 const; € R! and

d
! [ = consty + uy (5.1)
Here Cg5.,, (M 2%) denote the space of smooth cylinder functions on M2 with
compact support, 1.e

Vf € Ce (M3 3A € 2 |A| < 0o IF; € CF (M)

such that Vo € MZ" f(z) = F({z;, j € A})
Consider the family of interactive potentials

Wiy ck#5, k.je2)
which satisfy the next assumptions:
1. Function Wy; € C3(My x M;), k #j

2.3r9>0: Vk,jeZ%: |k—j|>rg W =0 (5.2)

3. Joy; € R such that Wi > au;



For finite subset A C Z9, |A| < oo we introduce the Gibbs measure in volume
A with fixed boundary condition y € M = by next expression:
1

Z(y)

with interactive constant A > 0. Here

Valzaly) = > Wii(2), 2= (za,yae)

dup(zaly) = exp(—AVa(zly) )k>€<A dPy(xy) (5.3 )

{k,jINAFD
and

A keA
These measures are correctly defined because 0 < Z)(y) < oo due to condition 3
n(5.2).

Let p denote the expectation with respect to measure uy(-ly) and p(f) =
[ fdup. Then the next consistency condition is satisfied:

/’[/%1/’(//;2 = /’LZ[J\17 Al :) A2

Definition 5.1  The probability measure pu on MZ" is a Gibbs one with local
specifications {px, N C Z9% iff for each A C Z%: u(pr) = p (Notation p €

G{un})

Remark. For Gibbs measure condition p(uy) = p is equivalent to assumption

that family {ua} form a set of conditional measures for measure p with respect
to Fae [22], [40], [42].

Below we investigate conditions when the weighted spectral gap inequality (2.5
) implies uniqueness and decay of correlations for measures from G{ua}. In this
paper we do not investigate the general conditions when G{ua} # 0, in each
model situation nonemptiness of G{pa} is obtained independently (Section 6).

Now we restrict our considerations to the case when one point conditional
measures { iy freza (5.3 ) satisfy

Vk € Z¢ Jep >0 3By, € C°(My, T My) such that

Ry (wily) > By(wg) > & (5.4)
pointwisely on xy € My, y € MZ*. Here

Ruk (xk]y) = RZCk(ZCk) + Vkvk{q)k + )‘V{k;} }
like in (2.4 ).
Then due to the Theorem 2.2 we have the next spectral gap inequality, like in
(2.5)

om0 )= 5 [ 1) = [ O lo) Pt <
M,



< / < R aw|y) Vi, Vif = du(xily) < (5.5)

< / 1B (20 Vi f (@) oag, dpan ()

for f S ccyl(MZd)
Denote by dx(f) the next expression
ou(f) = sup |B X (w) Vit (@)lras, (56)
zeMz*
for f S ccyl(MZd)

Remark 5.2.  The expression for d;(f) in (5.6 ) could be transformed to the
more convenient form like in [26]
Introduce the next metric on manifold M;

pr(z,y) = i / 1By (=( ( )|TMde (5.7)
Then it simply follows from the Lagrange formula that
x) — .
5k(f) = Sup {‘f( ) f(y)‘a Ty =15, J 7é k}

z,yeMZ? ﬁk(xka yk)

Onfe ccyl(MZd)

Lemma 5.3.  Let potentials {W, ®} satisfy conditions (5.2 ) and (5.4 ).

Suppose that Vk # j € Z¢

sup | B, "/”

reMZ?

Then for all f € Cyl(MZ ) such that ¥jcza §;(f) < 0o we have
0j(pur(f) ) < 0;(f) + Cirdr(f)

B;1/2Vijij|TMk®TMj < 00 (5.8 )

for j #k € Z%. Here
Cjr =2\ sup |B, 12 71/2Vijij| (5.9 )
zeMZ?

Proof. The next identity for j # k, j,k € Z¢
Vit(f) = pe(Vif) = Acovu (f, ViWi;)

leads to

(ki (f)) = sup | B 2V (i) )] =
= sup |ux(B; B;'*v, if) — Acovy, (f, Bj_l/QVjij)‘j <

< 0;(F) + Asup leouy, (f, BV ;Wi
Here |ul; = (< w,u =7a1,)'/?, j € Z°%



Using the inequality
lcovu(f, 9)| < covy*(f, f) - covy/*(g, g)

with function g(z) = Bj_l/zijkj(x), i = pg(zy) and the following modification
of the weigted spectral gap inequality (5.5 )

cov, (f, f) < 262(f)

we have By
sup |covy, (f, By "V iWij)|; <

reMZ?

< sup coviéz(f, (2 /Mk \B,;l/QBfl/QVijij’%kaTdeMk)l/Q <

< 26,(f) sup |By *B; PV, Wl =

reMZ4

= QCk](Sk(f) [ |

Below we investigate conditions on the uniqueness and the fast decay of core-
lations for the Gibbs measures p with conditional measures (5.3 ) from the Do-
brushin’s uniqueness region i.e. for which the following holds

0 d < 5.10
sup /Mzd (@, 2i)dp(z) < o0 (5.10 )

for some point z € MZ?" and p defined in (5.7 ). In Section 6 we control this
condition for systems with non-Gaussian interaction.

Definition 5.4. Let p,v be arbitrary probability measures on Tichonov o-
algebra on MZ". The vector ar = {a;}jeza is called an estimate for p and v if
for f € Cclyl(MZd) such that dej(f) < 00 we have

jEZ

| fdp— [ fdv|< Y a;5(f) (5.11)

VEL MED jezd
where 0;(f) are defined in (5.6 ).

Lemma 5.5. Let u, v be arbitrary probability measures on Tichonov o-algebra
on MZ" which satisfy condition (5.10 ) with some z € MZ*
Then ¥ f € CL (M%), Zd5j(f) < o0 there is the next estimate
jEZ

cyl
| fdp— [ fdv|<a ¥ ()

MZd Mzd ]€Zd
with constant

o = sup /Mzd P, ze){dp(z) + dv(z)} < oo
kezd

Proof. The remark 5.2 implies that for any function f € C! (MZd) such that

cyl
¥ §;(f) < oo we have inequality
jeZd

Va,z € MZ |f(@) = @I < ¥ 0(Dp(ew )



Therefore

| [ a f(@)dp(a /Mzdf Jdv(z)| <
<| [l f (@) = F(2)dp(a)|+
+ [ alf (@) = f(@)]dv(@)] <

< X §(f) sup [ o ou(er 2){d(e) + dv(2)} m

jezd kezZd

Theorem 5.6.  Let potentials {W, @} satisfy conditions (5.2 ), (5.4 ) and (5.8
).

1. Let probability measures p,v € G{ur} (5.3 ). If the vector {a;};cza is an
estimate (5.11 ) then vector

aC ={ X a;Cjr}reze
jezd
is an estimate too. Here matriz C = {Cy;} is defined in (5.9 ).

2. Consider probability measure pu € G{up} (5.3 ) which satisfies (5.10 ) with
some z € MZ" and probability measure v such that

dv=gdu, geC2,(M*), [ gdp=1
Mz
If the vector {a;};eza is an estimate for measures v and v (5.11) then vector

aC + b= { Z CLjCjk + bk}kezd
jezd

is an estimate too. Matriz C is defined in (5.9 ) and vector b has coordinates

by = 25,(9) (5.12)

Proof. This theorem is proved by induction on set J C Z% |J| < oo, like in
[26].

Put aJ_{CLk, k.
7 min(ay, (aC + b)), k€ J
Here b, =0, k € Z¢ in the first situation for p,v € g{,uA} and b are defined in
(5.12 ) in the second situation dv = gdu, g € Ccyl(]WZ ), u(g) = 1.
The inductive base J = () is trivial because {a} is an estimate.
First of all we remark that for the function f € Cyl(MZd), 'e%d 9;(f) < o0
J

from Lemma 5.3 it follows that

S 0 f) < oo, ke 2
jezd

Moreover the assumptions on the potentials {®, W} give that
d
pi(f) € Coy(M*)



Let now K = J U {k} and suppose that vector {aj}1cz¢ is an estimate for
measures i and v. Then

() = () < (n—v) {/f 1) dpi(-ly) Y+
+\Vy{/f |y)dp(-ly) — /f Jy)dv(-|y)} <

< > afo;(p(f ))+{b—t€?“m}

jezd
where v;(+ly) and pg(-|ly) are one point conditional measures for v and u.
The {b — term} equals to zero in the first situation for pu,v € G{ua} because
i = vg, under definition of G{pp }.
In the second situation we estimate {b — term} from above using the spectral
gap inequality (5.5 ). We use below that the conditional measures

dvy = d

1 (9)
and that dv = g du:

{b—term} = v, { [ fdmly) = [ fdvi(-|y)}] =
= 1 { Aé(f — ()l — Mjg) dp]}] =
=l (s [ = ()0 = (o) e )

M,
The expression under the integral on M doesn’t depend on variable x; € M

therefore

{b—term} = [pf pur(

Nk(9>> ' Jék(f — () g — plg) )dpr}| =

= |uf [ (f = () g = plg) ) }| <

< sup ([ [FCly) — ph(F)Pdu(-ly) )7

yeM=" i,
- sup ([ 9Cly) — mh(9)Ppi(-|y) )'* <
yeM=" jp,
<2 sup ([ 1By (wr) Vs Pdpu)
yeM=" iy,
- sup ([ |Bg P (wn) VagPdp)'? < 200(£)8(9)
ye M= i,

Here we have used the spectral gap inequality (5.5 ).
Now we apply Lemma 5.3 for to obtain the final estimate

[ Fdp— [ fdv] < 5 alo;(u(f)) + 0u(f)br <

jezd

< _gka;’{éj(f) + Ciudr(£)} + 0u(fbr +a -0 =
J



= > ajd;(f) + (aC +0)ror(f) < X aj 6;(f)
JF#k jezd
Recall that by = 0 in the first situation and by = 20x(¢) in the second one. H

Theorem 5.7.  Let potentials {W, ®} satisfy conditions (5.2 '), (5.4 ) and (5.8
).

Suppose that

v=sup > Ci <1 (5.13)
keZd jezd
where constants Cy; are defined in (5.9 ).

Then
1. Set of u € G{ua}, such that for some z € MZ" the condition (5.10 ) is
satisfied, consists of only one point 1 € G{p}-

2. Forpn,Vf ge C> (Mzd) we have

c,eyl
lcova(f,9)l <2 32 Dijor(f)9;(9) (5.14)
k,jezZd
where D = 5 C™ with matriz C defined in (5.9).

m=0

Proof. Theorem 5.6 implies that
aC" + nz_:l bC™
is an estimate if a is an estimate. There?oroe
aC" + iojo bC™

is an estimate too. As measure u satisfies condition (5.10 ) with some z € MZd,

00 d
dv = gdp, g€ Cx, (M), /gdu =1
also satisfies (5.10 ) with the same z € MZ",
Lemma 5.5 implies that there is an estimate a = {a;} for the measures u, v.

Then
[aC"||; (zey = asup Y |Cf| =
kGZdeZd
=asup Y - > > Cyny - Cimon; < (5.15)

keZd j1)ezd  j(n—1)ezd jezd

<a(sup Y Cy)" < av”
kGZdjeZd

then measure

1. For measures p, v € G{pp} we have from Theorem 5.6 (statement 1) and (5.15
) that for f € C2, (M?")

c,eyl

| [ fdu— [ fdv]< X (@CM)ibi(f) <

Mzd Mzd Zezd

< Y Gi(MaC™ ey zey < ™ D2 6i(f)

i€Zd ieZd



Tending n — 0o we obtain that

00 d
VfeCx(M*) [ fdu= [ fdv (5.16)
Mz4 M=
for every pu,v € G{up}.
Relation (5.16 ) implies that projections of measures from G{us} coincide on
Borel o-algebras
{B%%HWQ,ACZZﬂ\AM<aﬂ
S
Therefore due to the Kolmogorov theorem p = v and the set of all Gibbs measures
consists of only one point.
2. In (5.14 ) we can always make by linearity [ g du = 1 and g > 0 to be

M1
strictly positive because

cov,(f,g) = cov,(f 4+ c1,9 + ¢2)

for every ¢y, cy € R
Then Theorem 5.6, part 2, implies that for measures p and v such that dv =
gdp the vector aC™ + D is an estimate, so

covufog)l =1 [ fdu— [ fdv]<

VEL Arzd
<2 > Diio(f)o;(g) +a > 6;(f) 90"
kjezd jezd

Tending n — oo we obtain Theorem 5.7 proved. ®

Corollary 5.8. Under conditions of Theorem 5.7 we have statements (5.16 )
and (5.14 ) for functions f € E where E is a class of functions which are limits

of f, € C, (M?") in seminorm ¥, &;(f), i.e.

c,cyl
Y jeZd

>, 0i(f = fu) =0, n— o0

jezd

The next theorem provides conditions on decay of correlations for Gibbs mea-
sures [26].

Theorem 5.9. Under conditions of Theorem 5.7 and condition

Vg = sup > ed(k’j)ij <1
kEZdjeZd
for some semimetric d(k,j) on lattice Z% (for evample d(k,j) = |k — j| or
d(k,j) = In(1 + |k — j|) ) for any p € G{uar} which satisfies (5.10 ) we have
estimate

2
> Jeovu(f, meg)|e®™ < ——| fllallglla (5.17)
kezd 1 —1Jq

where Tj, denotes the shift on vector k € Z% and

Iflla= 3 e®®08(f)

kezd



Note that always 94 > V.

Proof. Using the triangle inequality for semimetric d(-, ) and inequality (5.14 )

we have ‘
lcov,(f, :9)] "0 <

<2 ¥ ed(j’k)Djked(’f’O)(Sk(f)ed(i’j)dj_i(g)
k,jezd
Summing up on i € Z¢ we have the stated decay of correlations proved. ®

6 Gibbs measures with convex pair interaction.

In this section we consider M; = R, k € Z? and potentials {W, ®} such that
1. For function F(t) = F(—t) € C*°(R) such that

Je>0 F'(t)>¢ teR! (6.1)

we have

Oy (zy) = F(xp), ke 2
2. For functions G,(t) = G;(—t) € C®(R}), j € Z°

such that
Vie 24 GU(t)>0 teR (6.2)
we have .
ij(a:k,xj) = Gk—j(l'k — J}j), k,j €z
and

g >0V €24 |j|>rg G;=0 (6.3 )

Lemma 6.1.  Under conditions (6.1 - 6.3 ) on potentials {W, ®} for all X > 0
the set of Gibbs measures p € G{ux} which satisfy condition

2
sup /Mzd ¢ (wp)dp(z) < oo (6.4)

18 mon-empty. Here -
a(wy) = [ VF"(7)dr
and |q(x)| = pr(zk, 0) (see Remark 5.2).

Proof. Choose boundary condition y = {y;} € RZ", y; = 0. Conditional
measures (5.3 ) have the next representation

d = — d
pa(a | 0) Z0(0) exp(—Ua(za|0) )k>6<A Ty
where
Un(xal0) = > Flop) + A > Gry(& = &)
kel {k,j NALD
and € = (x5, 0x¢). Due to assumptions (6.1 - 6.3 ) we have for all A > 0
Ryun(10) = AVVU(2A|0) i jen (65)

> {0 F" (k) bijen > €{0kjtrjer >0



as the functions G; are convex.
Inequality (6.5 ) and the weighted spectral gap (Thm.2.2) give the next in-
equality 1
5 Jen T C) = [ @) dpua(2]0) YPdpua(10) <

Vi f|?
< oo £ p s dua (o)

Applying this estimate to the function g(x) = fy* /F"(7)dT and using the sym-
metry of measure gy (+0):

/RA q(x)dpp(zpa|0) =0

we obtain estimate
VkeACZdQ/ 2(z)dpa(-]0) < 1 (6.6 )

As function ¢ is a compact function on R! = M, : |q(x1)| > €|xi| then by
the Prochorov’s Theorem [49,Ch.1,85] it follows the existence of the weak limit
i - A(RZ") =1 of measures {un (-]0)}ns1 for some subsuquence {A,} which
exhaust the lattice Z¢.

The assumption on the finiteness of interactive radius give the Gibbs property
of the limit measure /.

Tending n — oo we also have the property (6.6 ) for g. ®

Due to the assumptions (6.2 ) on functions G; we can estimate constants C;
(5.9 ) from above by

”_'(xk _x‘)
Cij <2\ sup |[——=—2 |
! verzt \VF" (1) F" (1))

Theorem 6.2.  Let potentials {W, ®} satisfy conditions (6.1 - 6.3 ) and

Glxr —x
_ Z ecl(k;,O) sup | //k:( k ”0)
kezZd reRZ! \/F (xk)\/F (o)

with some semimetric d(-,-) on Z°.

Then for

| < o0

we have that
1. Set G{ua} # 0 and consists of at most one point fi.

2. For measure [i the fast decay of correlations holds

> " covn(f, 7i9)] <

keZzd
< (A0 NS, a0) 67)

fOT’ f:g < ccyl(RZd)



3. The support of measure i belongs to

supp i C {y € RZ" 3 |ak|P () < o0} Va € £1(2%
kezd
for function q(t) = [{/F"(7)dT
Proof. Set G{ux} # 0 due to Lemma 6.1. Statement 1) and 2) follow from
Theorems 5.7 and 5.9.
From inequality (6.6 ) for the measure f it follows that

1 ~
5 ot & i) dii(x) < 3 a; < o
jeZd jezd
Therefore the set of points where the following function
T =A{Tj}jeze = X a;jq*(z;)
jezd
is bounded has the full i - measure. ™

Model 1. (Anharmonic oscilators)
Potentials of finite volumes A C Z¢ are defined by the next expressions

Uy = Flap)+X Y alk—j) (z, — ;)
kEA {k,jNAAD

Here function F' satisfies requirement (6.1 ) and
Vie Z%a(j) >0 & IrgV|j| >ro:alj) =0
Then for

g
0< A<
8llall4

we have statements of Theorem 6.2. Here

lalla = > a(j)e’? < oo
jezd

for some semimetric d(-,-) on Z4.

Model 2. Here potentials are defined by

Uy =D 1+z)" "+ XN Y alk—j)(zp — ;)™
ke (k5 1NAAD

and assumptions on coefficients {a(7)} are as in Model 1.
Then for 1

0< )<
- (n+1)220H lal|q
the statement of Theorem 6.2 is valid.

Below we show that for interactive potentials (6.1 - 6.3 ) the corresponding
Gibbs measure has Log-Sobolev inequality.

The discussions of various applications and conditions on Log-Sobolev inequal-
ities for Gibbs measures could be found in papers cited in the introduction to the

paper.



Remark 6.3. Under conditions of Theorem 6.2 we have Log-Sobolev inequality
for measure p € G{up}

S AP fPdp — (I fIPIn | £IIP <
RZ4

<% 5 |ViflPdu
RZ4 keZd

(6.8)

on f e Cx (R

c,cyl

Indeed, log-concavity of measures {ux(-|0)} imply the set of Log-Sobolev in-
equalities (see Remark 3.3)

[P Papl = 113, g 0 117 ) <
RA

2
< */ > VifPduy

RA kEsuppey f
for all f € é"c}yl(de), suppeyf C A.
By [49, Ch.1,85] and (6.6 ) we have local weak convergence for sequence of

measures

0
0,
e (8 hlm)

Then from finite radius of interaction assumption we see that the weak local limit
should be Gibbs measure, so tending A * Z¢ we have inequality (6.8 ).

See also [3, 2| where different conditions for Gibbs measures with Gaussian
interaction were obtained.

7 Appendix A.

Theorem A.1.  Let probability measure p (2.1 ) have density ® € C3(M).
Suppose that there is a function S € C3N Cy(M), S > 0 pointwisely, and

SRS + H;S > \S(x) (7.1)

with constant A > 0.
Then we have weighted Logarithmic Sobolev inequality

LI fPdu = [ fllz L flz. <

<2 | S@IVPduta) )

for f € CZ(M).
Proof.

Inequality (7.2 ) it is sufficient to prove on non-negative functions f > 0,
f € C3(M) due to the following estimate

[SIVlul Pdu < [ S|Vul*dy
M M



on functions v € C3(M). This is a common fact from the theory of Dirichlet
forms. The simplest proof could be found in [43, Ch.X, Th.X.27|.
Moreover we only have to prove inequality (7.2 ) for strictly positive functions

fo=f+e fECHM), >0 (7.3)
Indeed, tending € — 0 in inequality
L1f el lnlf+efdu—|If + e nflf +]* <

<31 SIV(f +e)Pdu =1 [ SIV Py (7.4)

for f € CZ(M), we obtain the weighted inequality (7.2 ) as an application of
Lebesgue domination theorem to (7.4 ).

In this place the steps 1.-2. of Theorem 3.1 proof should be repeated literally
for U(z) = xInx and A(x) = S(z)ld,.

In particular we have representation
fvlnv dyp — (f vdp)In( fvdp) =
M M

L (7.5)

Powl?du dt
Po SIVEw|”dp

100
=177
20 i

for P, = exp(—tHE) and v € C*(M), to be strictly positive. Then inequality
(7.2 ) transforms to

/ / 5 SV P dudt < / =S|Vl du
Here we used representation (7.5 ). Therefore it is sufficient to prove that

1 1
0< /—S|VPtv|2dﬂ < e‘At/—S|VU\2d,u
MPtU Y

or that
K'(t) < =AK(t) (7.6)
for function 1 ,
K(t)= | =—S|VPwv|d
(0= | gy SIVPwldn
Introduce notations Pv = exp(u(z)) Then using

1
Ve' =e"Vu & Hje" =e"Hju— 56“5|Vu|2
inequality (7.6 ) adopts the form
)\/e“S\VuFd,u < (7.7)
M

<2 [8<Vu, VHe" = du— [ Hie"- S|Vul*du
M

M



The first term in (7.7 ) could be transformed to the next terms
2/S < Vu,VH;fe“ —dp = 4/H5U-H56“du =
M M

—/euSR SVu, Vu = du+
+/tr V(SVu)[V(SVe")]")du =

- / " < SR,SVu, Vu > du+
M

1, )
+3 J\/4 e"tr(V(SVu) [V (SVu)]*)du+

+2A/4 €| < VS, Vu = |2du+
/ " S2tr(VVu[VVu]*)du+
+= 74 “S < VS,V = |Vul*du+
+ [ ]‘i (SVu) - S[Vu @ Vu]*)dp
The second term in (7M7 ) is transformed to

1
—/ng“ -S| Vul?dp = —|—2/e“S2|Vu|4du—

M
1
—/ “Hsu S|Vulrdy = 2/6“52|Vu|2du—
M
1
el 2 2 —
2/ S%|Vu d,LL—Q/e < SVu, V(S|Vul?) = dp =

M

— / 'S - tr((Vu ® V) - [V(SVu)]*)du+
+= /e < SVS, Vu = |Vul*du =
= / “S tr(V(SVu) - [Vu @ Vu]*)du—

——/e < SV, V = |Vu du+/ (HS)|Vul*dy

Finally estimate (7 7 ) transforms to

A [ eS| Vul?dp < / < (SR,S + H3S)Vu, Vu = du+
M
+3 / e"tr(V(SVu) - [V(SVu)]*)du+

+3 / “{S2tr(VVu [VVu]*) + | < VS, Vu = [*}du

therefore the COIldlthIl (7.1 ) is sufficient. =



8 Appendix B.

Proof of Lemma 2.1. Consider function £ € C*(M), 0 < £ < 1 such that
&(x) = 1 on some ball x € Br(zo)= {y € M : p(xo,y) < R}. The operator H5*
is essentially self-adjoint in Lo(M, ut) because the Cauchy problem

{ au(r,t) = —HﬁAu(x, t)
u(x,0) = uo(x)
could be smoothly solved in C3(M) due to the assumptions on the coefficients of
operator HSA |27, Ch.9, §6, Th.8|.
We have to show that from condition

Vo e C°(M /< 1+HA)¢,u>du—0 (8.1)

follows that © = 0 which gives the requ1red essential self-adjointness for operator
H{' 43, Ch.X, Th.X.1].

Consider function n € C5°(M) such that 0 < & < n < 1 and n Teppe= 1.
Then restrictions HZA Touppe= H /j‘ Touppe coincide.

Therefore

/< 1+HA)go,u£>d,u /< 1—|—H’7A)g0,u£>d,u—
—/< H”A ¢§,u>du+/< HZA]go,u>d/L: (8.2)
—/<%HW&V>¢—Gﬁ®Mw>WL
M
due to (p€) € C°(M) and (8.1 ). Put ¢ = (1+HZ]‘4)1/2¢ then the above identity
transforms to
[ = (4 P2, ug = dp =
M
= [ < < AVE, V- = (14 HJY) V20 0= dp—
M
— [ < (H) (1 + H*) Y2, u = dp = By + By

We obtain estimates
Bl < llull ([ | < AVE Y = (1+ HIA) 2y 2dp) /2 <
M

< JullL, S1A14p| < AVE, VE = V2
([ <AV HIY P, V(1 HEA) P dp)' <
< ngzlzf/ < nAV(1 + HZA)_1/2¢7V(1 4 HZA)_I/% . du)1/2 _
M
= CllCH (14 HIY 2] 1y < Ct ol

|By| < max [ - lullr, - | (L + )20, < LWL,



The previous estimates and identity (8.2 ) imply that
(u€) € D((H}M'?)

Therefore the weak derivation D on function (uf) is defined. Put ¢ = uf in (8.2

). Then ) ANL2 12
[u€llz, + 1(CH) " ugllz, =

= /{—\U\25H2A5+ <u, < AVE D= ué =}dp =
M

2

2
= [ {-luPeHp +n < pl AV - Yt

2
supp §
+ [ JuP < AVEVE=du=— [ |JuPeH ¢dp+
supp § | supp §
b [ GMPHPAE + ul < AVE, VE = }dyu =
supp §

1
_ 2/ u> < AVE, VE = du
M
So we have proved the following estimate

luglli, < C [ [u?|V¢Pdp
M

Here we use that A € Cy(M, T M).
Let F' be smooth function on half-line R such that

) :{ 1, z €[0,1]

0, € [2,00)
and |F'| < a, z € Ry. Then choosing sequence
&, = F(p(x,19)/n) we have &, 7 1 and

F'(t
V&L < max ()
te[l,2] n

— 0, n— o0

Therefore ||ul|z, =0 andsou=0. =m
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