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Abstract. We discuss how one can get the upper bounds on the general second
order operator acting on metric function. The suggested approach does not use
traditional formulas for deviations of geodesics and Jacobi fields construction and
leads to the manifolds version of coercitivity and dissipativity conditions. These
conditions generalize known Krylov-Rosovskii-Pardoux conditions from linear space
to the manifold setting.
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In this paper we turn to the geometric problem of optimal upper estimates on the general
second order operators, acting on metric function. We consider operators of form

L =
1

2

d∑

σ=1

∇2
Aσ +∇A0 , (1)

where A0, Aα represent smooth globally defined vector fields on the oriented smooth connected
Riemannian manifold M without boundary. Such operators are important in applications,
because they give generators of the following Stratonovich diffusions on manifold

yxt = x+

t∫

0

A0(yxs )ds+
∑
σ

t∫

0

Aσ(yxt )δW σ
t (2)

where δW σ means Stratonovich differential with respect to a family of one dimensional inde-
pendent Wiener processes W σ

t , range of index σ corresponds to the dimension of manifold.
The known procedures of differential geometry were mostly invented for the case of ∆ or

similar operators [5, 6], because it was hard to find the implicit representations for arbitrary
differential operators on metric function, defined as a minimum of length functional

ρ2(x, y) = inf{
1∫

0

|γ̇(`)|2d`, γ(0) = x, γ(1) = y} (3)

Corresponding techniques were related with geodesic deviations and arising Jacobi fields, har-
monic tensors and Betti numbers, etc, e.g. [5, 6].

However, for upper bounds we do not need the precise representations for differential op-
erators on metric (!). Below we develop such estimates and demonstrate, that the traditional
approach of geodesic deviations is a little advanced for such simple problem.
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These upper estimates are also important in applications, because, for example, to have
nonexplosion and continuity on initial data estimates on process yxt

Eρ2(yxt , y
y
t ) ≤ eKtρ2(x, y), Eρ2(yxt , o) ≤ eKt(1 + ρ2(x, o))

one should write Itô formula for geodesic distance

ρ2(yxt , y
y
t ) = ρ2(x, y) +

d∑

σ=1

∫ t

0
[(A1

σ + A2
σ)ρ2](yxs , y

y
s )dW

σ
s +

+
∫ t

0
{A1

0 + A2
0 +

1

2

d∑

σ=1

(A1
σ + A2

σ)2}ρ2(yxs , y
y
s )ds (4)

or similar for ρ2(yxt , o) (o ∈M is some point of manifold), and ask for upper estimates by Kρ2.
Notation A1, A2 means vector fields, acting on corresponding first and second variables.

The found conditions on coefficients of operator L generalize the classical Krylov - Rosovskii
- Pardoux conditions [7, 8] from the linear base space to manifold. They relate the coefficients of
operator with the geometric properties of manifold, without traditional separation of geometry:

• dissipativity: ∃ o ∈M such that ∀C ∈ IR1 ∃KC ∈ IR1 such that ∀x ∈M

< Ã0(x),∇xρ2
M(x, o) > +C

d∑

σ=1

‖Aσ(x)‖2 ≤ KC(1 + ρ2
M(x, o)) (5)

• differential coercitivity: ∀C,C ′ ∈ IR1 ∃KC ∈ IR1 such that ∀x ∈M , ∀h ∈ TxM

< ∇Ã0(x)[h], h > +C
d∑

σ=1

‖∇Aσ(x)[h]‖2+C ′
d∑

σ=1

< Rx(Aσ(x), h)Aσ(x), h >≤ KC‖h‖2 (6)

where Ã0 = A0 + 1
2

d∑
σ=1
∇AσAσ and [R(A, h)A]m = R m

p `qA
pA`hq denotes the curvature

operator, related with (1,3) curvature tensor with components

R 2
1 34 =

∂Γ 2
1 3

∂x4
− ∂Γ 2

1 4

∂x3
+ Γ j

1 3Γ 2
j 4 − Γ j

1 4Γ 2
j 3 (7)

For simplicity of further calculations we only point the positions of corresponding indexes.

Notation ∇H[h] means the directional covariant derivative, defined by

(∇H(x)[h])i = ∇jH
i(x) · hj (8)

Main result of article provides

Theorem 1 Suppose that conditions (5) - (6) on smooth vector fields Aα, A0 hold.
Then there is constant K such that

{A1
0 + A2

0 +
1

2

d∑

σ=1

(A1
σ + Ayσ)2}ρ2(x, y) ≤ Kρ2(x, y) (9)

Similarly ∀C ∃KC such that

L1ρ2(x, y) + C
d∑

σ=1

(A1
σρ

2(x, y))2

ρ2(x, y)
≤ K(1 + ρ2(x, y)) (10)
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Proof. First note, that for any vector field H in a vicinity of some point z of manifold there
are following representations

Hf(z) = lim
ε→0

f(zε)− f(z)

ε
, H(Hf)(z) = lim

ε→0

f(zε) + f(z−ε)− 2f(z)

ε2
(11)

that can be verified in local coordinates. Here zε is a shift along field H: zε = z +
∫ ε
0 H(zs)ds.

In the vicinity of geodesic γ from x to y that minimizes (3) consider a vector field H.
Introduce a family of paths

[0, 1]× (−δ, δ) 3 (`, s)→ γ(`, s) ∈M
such that at s = 0 path γ(`, s)

s=0
= γ(`) gives the minimal geodesic above and parameter s

appears as a result of evolution along H:

∂

∂s
γ(`, s) = H(γ(`, s)) (12)

Picture 1. How to avoid complications with geodesic deviations.

Field H (white vectors) in a vicinity of geodesic from x to y determines a set of paths,
parameterized by s. The resulting smooth 2-dimensional surface is parameterized by
(`, s) ∈ [0, 1] × (−δ, δ). Note that for s 6= 0 each path γ(`, s)

s−fixed must not be
geodesic, unlike in formulas for geodesic deviations.

Using the minimal property of geodesic, i.e. that the path path γ(`, s) is longer than geodesic
from γ(0, s) to γ(1, s), we can estimate terms with ±ε in (11) from above and obtain (point at
which we get rid of implicit representations)

(H1 +H2)ρ2(x, y) = lim
ε→0

ρ2(γ(1, ε), γ(0, ε))− ρ2(x, y)

ε
≤
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≤ lim
ε→0

∫ 1
0 |

∂

∂`
γ(`, s)|2d`− ∫ 1

0 |
∂

∂`
γ(`, 0)|2d`

ε
=

1∫

0

∂

∂s s=0
| ∂
∂`
γ(`, s)|2d` (13)

Let us now make a comparison of approach (13) with the classical deviations of
geodesic formulas. If we had not used the above estimate ≤ in (13), the path γ(`, s),
that realizes the distance ρ2(γ(0, s), γ(1, s)), would have to be geodesic and we
would obtain a standard picture

Picture 2. Classical deviations of geodesics.

Field H constructs only paths γ(0, s) and γ(1, s) that go through points x
and y correspondingly. After that for any s ∈ (−δ, δ) the points γ(0, s)
and γ(1, s) must be connected by geodesic γ(`, s), parameter ` ∈ [0, 1] being
proportional to the geodesic length parameter.

Before turning back to the proof, let us briefly remark how Jacobi fields appear in
the approach of picture 2. One calculates a formal line

∇`(∇`
∂γ

∂`
) =

(1)
∇`(∇s

∂γ

∂`
) =

(2)
∇s(∇`

∂γ

∂`
)−R(

∂γ

∂`
,
∂γ

∂s
)
∂γ

∂`
(14)

where at step (1) one uses that fields
∂γ

∂s
and

∂γ

∂`
commute as forming 2-dimensional

surface, so ∇`
∂γ

∂s
= ∇s

∂γ

∂`
. At step (2) one should commute [∇`,∇s] to get the

curvature.

Taking into account that ∇`
∂γ

∂`
= 0 (equation of geodesic γ(`, s)

s−fixed) one gets

∇2
`

∂γ

∂s
+R(

∂γ

∂`
,
∂γ

∂s
)
∂γ

∂`
= 0 or

d2

d`2
(
∂γ

∂s
) +R(

∂γ

∂`
,
∂γ

∂s
)
∂γ

∂`
= 0 (15)
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i.e. the second order Sturm-Liouville equation for Jacobi field
∂γ

∂s
. Jacobi fields

describe small increments of geodesics, that again form geodesics, the study of their
different properties is seriously complicated by the behaviour of geometry in the whole
[5, 6].

In comparison to the approach of picture 2 the one, suggested in picture 1 and in-
equality (13) avoids these complications. Moreover, it is in some sense dual to the
approach of picture 2, because further calculations at lines (19)-(25) are similar to the

lines (14)-(15), but we calculate below
d2

ds2

dγ

d`
instead of

d2

d`2

dγ

ds
and, therefore, do not

need to introduce Jacobi fields (recall that γ(`, s)
s−fixed,s 6=0

should not be geodesic

in our case).

In such a sense the approach of picture 1 changes the implicit approach of geodesic
deviations (picture 2) to the explicit level of direct calculations. We conclude that
the approach of geodesic deviations is too advanced for such a simple problem, like
estimates (9), (10).

Let us now return to the proof of theorem. To proceed further, we need a preparatory
calculation from Riemannian geometry: for any vector fields U, V in vicinity of path γ(`, s)
one has

∂

∂s
< U, V >Tγ(`,s)

=
∂

∂s
[ gij(γ)U i(γ)V j(γ) ] =

= gij[V
j∂kU

i∂γ
k

∂s
+ U i∂kV

j ∂γ
k

∂s
] + ∂kgij

∂γk

∂s
U iV j =

=< ∇U [
∂γ

∂s
], V > + < U,∇V [

∂γ

∂s
] > (16)

where we applied autoparallel property of Riemannian connection

∂kgmn(x) = ghnΓ h
k m + gmhΓ

h
k n (17)

and substituted the definition of covariant derivative of vector field. We also used notation (8).

To find from (16) the representation of
∂

∂s
|γ̇(`, s)|2 we first calculate this expression in local

coordinates, that have (`, s) as the coordinate functions and return, after that, to the invariant
notations

{∇∂γ
∂`
}[∂γ
∂s

]i = ∇k
∂γi

∂`
· ∂γ

k

∂s
= [∂k

∂γi

∂`
− Γ i

k h

∂γh

∂`
]
∂γk

∂s
=

=
∂

∂s
(
∂γi

∂`
)− Γ i

k h

∂γh

∂`

∂γk

∂s
=

∂

∂`
(
∂γi

∂s
)− Γ i

k h

∂γh

∂`

∂γk

∂s
=

=
∂

∂`
H i(γ)− Γ i

k h

∂γh

∂`

∂γk

∂s
= {∇H}[∂γ

∂`
]i (18)

Above we commute
∂

∂s
and

∂

∂`
, because by construction and C∞ differentiability of field H

variables (`, s) form a part of local coordinate system in the vicinity of geodesic for a.e. `.
We continue (13) and find from (16) and (18) that

(H1 +H2)ρ2(x, y) ≤ 2
∫ 1

0
< ∇H[γ̇], γ̇ > d`
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In case when
∂

∂`
and

∂

∂s
do not commute, i.e. there are points along γ where vector field

H is parallel to
∂γ

∂`
, one should first consider a small deformation Hδ = H + δV by C∞ field

V , such that V = 0 at points where H = 0 or is not parallel to
∂γ

∂`
. From another side we

demand for all small δ that field Hδ should be not parallel to
∂γ

∂`
in parts of geodesic, where H

was parallel. Then the above commutation becomes correct for these small δ > 0.
Tending the resulting inequality to limit δ → 0, one comes to the statements above. We

remark that in such a way we also avoid the usual problems of zeros and behaviour on the
infinity of Jacobi fields, traditional for the deviations of geodesics approach.

In a similar way,

(H1 +H2)(H1 +H2)ρ2(x, y)) = lim
ε→0

ρ2(γ(1, ε)γ(0, ε)) + ρ2(γ(1,−ε), γ(0, ε))− 2ρ2(x, y)

ε2
≤

≤ lim
ε→0

∫ 1
0 |

∂

∂`
γ(`, ε)|2d`+

∫ 1
0 |

∂

∂`
γ(`,−ε)|2d`− 2

∫ 1
0 |

∂

∂`
γ(`, 0)|2d`

ε2
=

1∫

0

∂2

∂s2
s=0
| ∂
∂`
γ(`, ε)|2d`

By (16) and (18) we find, like before, that

∂2

∂s2
|∂γ(`, s)

∂`
|2 = 2

∂

∂s
< ∇H[

∂γ

∂`
],
∂γ

∂`
>=

= 2|∇H[
∂γ

∂`
] |2+ < ∇{∇H[

∂γ

∂`
]}[∂γ
∂s

],
∂γ

∂`
> (19)

and have to calculate the last expression.
Turning to the coordinate representations we find

(∇{∇H[
∂γ

∂`
]}[∂γ
∂s

])n =
∂γk

∂s
∇k[∇jH

n · ∂γ
j

∂`
] = (20)

= ∇jH
n(
∂γk

∂s
∇k

∂γj

∂`
) +∇k∇jH

n∂γ
k

∂s

∂γj

∂`
= (21)

= ∇jH
n∂γ

k

∂`
∇kH

j +Hk ∂γ
j

∂`
∇k∇jH

n = (22)

= (∇(∇HH)[
∂γ

∂`
])n −Hj ∂γ

k

∂`
∇k∇jH

n +Hk ∂γ
j

∂`
∇k∇jH

n = (23)

= (∇(∇HH)[
∂γ

∂`
])n +Hk ∂γ

j

∂`
R n
` kjH

` = (24)

= (∇(∇HH)[
∂γ

∂`
])n +R(H,

∂γ

∂`
)H (25)

where we have made the following transformations
– come from invariant to coordinate representations in (20)
– splitted ∇(AB) = (∇A)B + A(∇B) to transfer from (20) to (21)
– substituted representation (18) for the first term in (21) to get the first term in (22)
– rewrote term (22)1 to the first two terms in (23)

– extracted curvature from commutator Hk ∂γ
j

∂`
[∇k,∇j]H

n in terms (23)2+3.
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Returning to (19) we finally get estimate

(H1 +H2)2ρ2(x, y)) ≤
1∫

0

{|∇H[γ̇] |2+ < ∇(∇HH)[γ̇], γ̇ > + < R(H, γ̇)H, γ̇ >}d`

Taking now H = A0 for the first order estimate and H = Aα for the second order estimate
we find

{A1
0 + A2

0 +
1

2

d∑

α=1

(A1
α + Ayα)2}ρ2(x, y) ≤

∫ 1

0
(< ∇Ã0[γ̇], γ̇ > +

+
1

2

d∑

α=1

{|∇Aα[γ̇] |2+ < R(Aα, γ̇)Aα, γ̇ >})d`

Coercitivity assumption (6), in view of (3) leads to the statement (9).

To get estimate (10), one proceeds like above with choice

∂

∂s
γ(`, s) = c(`)H(γ(`, s))

instead of (12), taking c = a and c = b for the first A0 and second (Aα)2 order operators
correspondingly. One comes to the estimate

{A1
0 +

1

2

d∑

α=1

(A1
α)}ρ2(x, y) ≤

∫ 1

0
(a < ∇A0[γ̇], γ̇ > +

∂a

∂`
< A0, γ̇ > +

+
d∑

α=1

{b2|∇Aα[γ̇] |2 +
∂b2

∂`
< Aα,∇Aα[γ̇] > +(

∂b

∂`
)2|Aα(γ)|2+

+b2 < ∇(∇AαAα)[γ̇], γ̇ > +b2 < R(Aα, γ̇)Aα, γ̇ > +
∂b2

∂`
< ∇AαAα, γ̇ >})d` (26)

Taking further a(`) = b2(`), b(`) = 1− ` and using estimate

| < ∇Aα[γ̇], Aα > | ≤ (1− `)
2
|∇Aα[γ̇] |2 +

1

2(1− `) |Aα|
2

we find

L1ρ2(x, y) ≤ 2
∫ 1

0
{(1− `)2(< ∇Ã0[γ̇], γ̇ > +

d∑

α=1

3/2|∇Aα[γ̇] |2 +R(Aα, γ̇)Aα, γ̇ >)+ (27)

+2(1− `) < Ã0(γ), γ̇ > +2
d∑

α=1

|Aα|2}d` (28)

Now by proportionality arguments

∇ρ2(γ(`), y) = 2ρ(γ(`), y)∇ρ(γ(`), y) = 2(1− `)ρ(x, y)
γ̇(`)

ρ(x, y)
= 2(1− `)γ̇

so the first term in the last line gives

2(1− `) < Ã0(γ), γ̇ >=< Ã0(γ),∇γ(`)ρ2(γ(`), y) >

Finally, using the coercitivity and dissipativity assumption (5-6) for lines (27) and (28)
correspondingly, we conclude

L1ρ2(x, y) ≤ 2
∫ 1

0
{KC(1− `)2|γ̇|2KC′(1 + ρ2(γ(`), y))}d` ≤ K(1 + ρ2(x, y))
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Term
(A1

αρ
2(x, y))2

ρ2(x, y)
in (10) is treated like the first order term in (13) with choice of coefficient

c(`) = b(`). We get

A1
αρ

2(x, y) ≤
1∫

0

{∂b
∂`

< Aα(γ), γ̇ > +b < ∇Aα[γ̇], γ̇ >}d`

therefore

(A1
αρ

2(x, y))2 ≤ 2

1∫

0

{(∂b
∂`

)2‖Aα‖2 + b2‖∇Aα[γ̇] ‖2}d` ·
1∫

0

|γ̇|2d`

The last integral gives ρ2(x, y) by (3), therefore we can add these expressions to (26) and,
applying again the dissipativity and coercitivity conditions (5)-(6), finish estimate (10).

Let us again recall that for x, y ∈M such that there appear points along geodesic γ at which

field H is parallel to
∂γ

∂`
, one should first consider its perturbations Hδ, like discussed for the

first order estimate above. One can also go into extra dimensions by embedding theorems if
prefers.

The applications of upper bounds (9)-(10) to the smooth properties of parabolic equations
on manifolds are discussed in [1]-[4].
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