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It is well-known that any function f ∈ Lp, f 6≡ const, can be approximated by its Abel-Poisson

means f(̺, ·) with a precision not better than 1 − ̺. It relates to the so-called saturation property

of this approximation method. From this property, it follows that for any f ∈ Lp, the relation

‖f − f(̺, ·)‖p = o(1 − ̺), ̺ → 1−, holds only in the trivial case where f ≡ const. Therefore,

any additional restrictions on the smoothness of functions don’t give us the order of approximation

better than 1 − ̺. In this connection, a natural question is to find a linear operator, constructed

similarly to the Poisson operator, which takes into account the smoothness properties of functions

and at the same time, for a given functional class, is the best in a certain sense. In [17], for classes

of convolutions, whose kernels were generated by some moment sequences, the authors proposed the

general method of construction of similar operators that take into account properties of such kernels

and hence, the smoothness of functions from corresponding classes. One example of such operators

are the operators A̺,r, which are the main subject of study in this paper.

The operators A̺,r were first studied in [14], where in the terms of these operators, the author

gave the structural characteristic of Hardy-Lipschitz classes Hr
p Lipα of functions of one variable,

holomorphic on the unit circle of the complex plane. In [15], in terms of approximation estimates

of such operators in some spaces Sp of Sobolev type, the authors give a constructive description of

classes of functions of several variables, whose generalized derivatives belong to the classes SpHω.

http://arxiv.org/abs/1609.09615v1
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Similar operators of polynomial type were studied in [7], [9], [11], [6] etc. In particular, in [7], the

authors found the degree of convergence of the well-known Euler and Taylor means to the functions

f from some subclasses of the Lipschitz classes Lipα in the uniform norm. In [11], the analogical

results for Taylor means were obtained in the Lp–norm.

In this paper, we continue the study of approximation properties of the operators A̺,r. In

particular, we find the relation of these operators with the operators L̺,r and B̺,r, considered in

[10] and [3]. Also we give direct and inverse approximation theorems by the operators A̺,r in the

terms of K–functionals of functions, generated by their radial derivatives.

Let Lp = Lp(T), 1 ≤ p ≤ ∞, be the space of all functions f , given on the torus T, with the usual

norm

‖f‖p := ‖f‖Lp(T) :=

{( 1

2π

∫ 2π

0

|f(x)|dx
)1/p

, 1 ≤ p < ∞,

ess sup
x∈[0,2π]

|f(x)|, p = ∞.

Further, let f ∈ L1, the Fourier coefficients of f are given by

f̂k :=
1

2π

∫ 2π

0

f(x)e−iktdx, k ∈ Z.

We denote by f (̺, x), 0 ≤ ̺ < 1, the Poisson integral (the Poisson operator) of f , i.e.,

f (̺, x) :=
1

2π

∫ 2π

0

f(t)P (̺, x− t)dt, (1)

where P (̺, t) = 1−̺2

|1−̺eit|2 is the Poisson kernel.

Leis [10] considered the transformation

L̺,r(f)(x) :=
r−1∑

k=0

dkf(x)

dnk
· (1− ̺)k

k!
, r ∈ N,

where
df(x)

dn
= −∂f(̺, x)

∂̺

∣∣∣∣
̺=1

is the normal derivative of the function f . He showed that if 1 < p < ∞ and

‖f(̺, ·)− L̺,r(f)(·)‖p = O
((1− ̺)r

r!

)
, ̺ → 1−,

then dr/dnrf ∈ Lp.

Butzer and Sunouchi [3] considered the transformation

B̺,r(f)(x) :=
r−1∑

k=0

(−1)
k+1

2 f {k}(x)
(− ln ̺)k

k!
,

where

f {k}(x) =

{
f (k), k ∈ 2Z+,

f̃ (k), k − 1 ∈ 2Z+.
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They proved the following theorem:

Theorem A [3]. Assume that f ∈ Lp, 1 ≤ p < ∞.

i) If the derivatives f {j}, j = 0, 1, . . . , r − 1, are absolutely continuous and f {r} ∈ Lp, then

‖f(̺, ·)− B̺,r(f)(·)‖p = O
((− ln ̺)r

r!

)
, ̺ → 1− . (2)

ii) If the derivatives f {j}, j = 0, 1, . . . , r − 2, r ≥ 2, are absolutely continuous, f {r−1} ∈ Lp,

1 < p < ∞, and relation (2) holds, then f̃ {r−1} is absolutely continuous and f̃ {r} ∈ Lp.

These results summarize the approximation behaviour of the operators L̺,r and B̺,r in the space

Lp. In particular, Leis’s result and the statement ii) of Theorem A represent the so-called inverse

theorems and the statement i) is the so-called direct theorem. Direct and inverse theorems are one

of the central theorems of approximation theory. They were studied by many authors. Here, we

mention only the books [2, 8, 16], which contain fundamental results in this subject. The given

results are based on the investigations in the papers [4, 5], where the authors find the direct and

inverse approximation theorems for the one-parameter semi-groups of bounded linear transformations

{T (t)} of some Banach space X into itself by the “Taylor polynomial”
∑r−1

k=0(t
k/k!)Akf , where Af is

the infinitesimal operator of a semi–group {T (t)}.
The transformations A̺,r, considered in this paper, are similar to the transformations L̺,r and

B̺,r as they are also based on the “Taylor polynomials”. The transformation A̺,r are defined in the

following way:

For ̺ ∈ [0, 1), r ∈ N and f ∈ L1, we set

A̺,r(f)(t) :=
∑

k∈Z
λ|k|,r(̺)f̂ke

ikt, (3)

where for k = 0, 1, . . . , r − 1, the numbers λk,r(̺) ≡ 1 and

λk,r(̺) :=

r−1∑

j=0

(
k

j

)
(1− ̺)j̺k−j, k = r, r + 1, . . . , ̺ ∈ [0, 1]. (4)

The transformation A̺,r can be considered as a linear operator on L1 into itself. Indeed, λk,r(0)=0

and for all k = r, r + 1, . . . and ̺ ∈ (0, 1), we have

r−1∑

j=0

(
k

j

)
(1− ̺)j̺k−j ≤ rqkkr−1, where 0 < q := max{1− ̺, ̺} < 1.

Therefore, for any function f ∈ L1 and for any 0 < ̺ < 1, the series on the right-hand side of (3) is

majorized by the convergent series 2r‖f‖1
∑∞

k=r q
kkr−1.

Note that if the function f ∈ L1 and it has the Fourier series of power type, i.e., f(x) ∼
∑∞

k=0 f̂ke
ikx, then f(̺, x) = f(z) :=

∑∞
k=0 f̂kz

k, z = ̺eix.
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The relation between the operators A̺,r and the “Taylor polynomials” is shown in the following

statement.

Lemma 1. Assume that f ∈ L1. Then for any numbers r ∈ N, ̺ ∈ [0, 1) and x ∈ T,

A̺,r(f)(x) =

r−1∑

k=0

∂kf (̺, x)

∂̺k
· (1− ̺)k

k!
. (5)

Proof. Let us associate the function f with the functions

f1(z) := f̂0/2 +
∞∑

k=1

f̂kz
k and f2(z) := f̂0/2 +

∞∑

k=1

f̂−kz
k, (6)

which are holomorphic in the disc D := {z ∈ C : |z| < 1}.
From Lemma 4 in [14], it follows that for any z ∈ D,

f̂0
2

+

r−1∑

k=1

f̂kz
k +

∞∑

k=r

λk,r(̺)f̂kz
k =

f̂0
2

+

r−1∑

k=1

zkf
(k)
1 (̺z)

(1 − ̺)k

k!
(7)

and
f̂0
2

+

r−1∑

k=1

f̂−kz
k +

∞∑

k=r

λk,r(̺)f̂−kz
k =

f̂0
2

+

r−1∑

k=1

zkf
(k)
2 (̺z)

(1− ̺)k

k!
, (8)

where for r = 1, the sums
∑0

k=1 are assumed to be zero.

Actually, in [14], the relations of the kind as in (7) and (8) were proved for z ∈ D, but such

restrictions are not important.

Adding these two equalities at z = eix and taking into account the relation

eikxf
(k)
1 (̺eix) + e−ikxf

(k)
2 (̺e−ix) =

∂kf (̺, x)

∂̺k
, (9)

we get (5), which proves the Lemma.

Now let us formulate direct and inverse approximation theorems by the operators A̺,r in the

terms of K–functionals of functions, generated by their radial derivatives.

Let us give all necessary definitions. If for a function f ∈ L1 and for a positive integer n, there

exists the function g ∈ L1 such that

ĝk =

{
0, if |k| < n,

|k|!
(|k| − n)!

f̂k, if |k| ≥ n,
, k ∈ Z

then we say that for the function f , there exists the radial derivative g of order n, for which we

use the notation f [n]. Here, we use the term “radial derivative” in view of the following fact.

If the function f [r] ∈ L1, then its Poisson integral can be presented as

f [r](̺, x) = (f(̺, ·))[r](x) = ̺r
∂rf (̺, x)

∂̺r
̺ ∈ [0, 1), ∀ x ∈ T. (10)
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Hence, by virtue of the theorem of limit values of Poisson integral (see, for example, [13, p. 27]), for

almost all x ∈ T, we have f [r](x) = lim̺→1− f [r](̺, x).

Relation (10) can be easily proved by term by term differentiation with respect to the variable ̺

of the decomposition of Poisson integral into the uniformly convergent series

f (̺, x) =
∑

k∈Z
̺|k|f̂ke

ikx ∀ ̺ ∈ [0, 1), x ∈ T. (11)

From the definition of radial derivative, in particular, it follows the differentiation rule:

If f(x) =
∑

|k|≤m f̂ke
ikx, m ∈ Z+, then

f [n](x) =

{
0, if m < n,∑

n≤|k|≤m

|k|!
(|k| − n)!

f̂ke
ikx, if m ≥ n.

(12)

In the space Lp, the K–functional of a function f (see, for example, [8, Chap. 6]) generated by

the radial derivative of order n, is the following quantity:

Kn(δ, f)p := inf
{
‖f − h‖p + δn

∥∥h[n]
∥∥
p
: h[n] ∈ Lp

}
, δ > 0.

Further, we consider the functions ω(t), t ∈ [0, 1], satisfying the following conditions:

1) ω(t) is continuous on [0, 1];

2) ω(t) ↑;
3) ω(t) 6= 0 for any t ∈ (0, 1];

4) ω(t) → 0 as t → 0;

and the well-known Zygmund–Bari–Stechkin conditions (see, for example, [1]):

(Z )

∫ δ

0

ω(t)

t
dt = O(ω(δ)), δ > 0,

(Zn)

∫ 1

δ

ω(t)

tn+1
dt = O

(ω(δ)
δn

)
, δ > 0, n ∈ N.

The main results of this paper are contained in the following two statements:

Theorem 1. Assume that f ∈ Lp, 1 ≤ p ≤ ∞, n, r ∈ N, n ≤ r and the function ω(t), t ∈ [0, 1],

satisfies conditions 1)–4) and (Z ) . If

Kn

(
δ, f [r−n]

)
p
= O(ω(δ)), δ → 0+, (13)

then

‖f − A̺,r(f)‖p = O
(
(1− ̺)r−nω(1− ̺)

)
, ̺ → 1− . (14)
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Theorem 2. Assume that f ∈ Lp, 1 ≤ p ≤ ∞, n, r ∈ N, n ≤ r and the function ω(t), t ∈ [0, 1],

satisfies conditions 1)–4), (Z ) and (Zn) . If relation (14) holds, then f [r−n] ∈ Lp and relation (13)

also holds.

We note that in the case where ω(t) is a power function: ω(t) = tα, α > 0, the results of the

Theorems 1 and 2 were announced in [12].

Remark 1. For a given n ∈ N, from condition (Zn) it follows that lim inf
δ→0+

(δ−nω(δ)) > 0 or,

equivalently, that (1− ̺)r−nω(1− ̺) ≪ (1− ̺)r as ̺ → 1−. Therefore, if condition (Zn) is satisfied,

then the quantity on the right-hand side of (14) decreases to zero as ̺ → 1− not faster, than the

function (1−̺)r. Also note that the relation ‖f−A̺,r(f)‖p = o ((1− ̺)r)) , ̺ → 1−, holds only in the

trivial case when f(x) =
∑

|k|≤r−1 f̂ke
ikx, and in such case, the theorems are easily true. This fact is

related to the so-called saturation property of the approximation method, generated by the operator

A̺,r. In particular, in [14], it was shown that the operator A̺,r generates the linear approximation

method of holomorphic functions, which is saturated in the space Hp with the saturation order (1−̺)r

and the saturation class Hr−1
p Lip 1.

Before proving the Theorems 1 and 2, let us give some auxiliary results. For any f ∈ L1, 1 ≤ p≤∞,

0 ≤ ̺ < 1 and r = 0, 1, 2, . . ., we set

Mp(̺, f, r) := ̺r
∥∥∥∂

rf (̺, ·)
∂̺r

∥∥∥
p
=
∥∥∥(f(̺, ·))[r](·)

∥∥∥
p
. (15)

Lemma 2. Assume that f ∈ Lp, 1 ≤ p ≤ ∞. Then for any numbers n ∈ N and ̺ ∈ [1/2, 1),

1

2n!
(1− ̺)nMp (̺, f, n) ≤ Kn (1− ̺, f)p

≤ ‖f −A̺,n(f)‖p +
4n − 1

3
(1− ̺)nMp (

√
̺, f, n) .

Proof. First, let us note that the statement of Lemma 2 is trivial in the case, if f is a trigonometric

polynomial of order not exceeding n−1, i.e., if f(x) =
∑

|k|≤n−1 f̂ke
ikx, as well as in the case, if ̺ = 0.

Therefore, further in the proof, we exclude these two cases.

Let g be a function such that g[n] ∈ Lp.

Since
1− ̺2

|1− ei(x−t)̺|2 =
1

1− ei(x−t)̺
+

1

1− e−i(x−t)̺
− 1,

then by virtue of (1), for any numbers ̺ ∈ [0, 1) and x ∈ T, we have

∂nf (̺, x)

∂̺n
=

1

2π

∫ 2π

0

(f(t)− g(t))
∂n

∂̺n

(
1− ̺2

|1− ei(x−t)̺|2
)
dt+

∂ng(̺, x)

∂̺n

=
n!

2π

∫ 2π

0

(f(t)− g(t))

(
eir(x−t)

(1− ei(x−t)̺)n+1
+

e−ir(x−t)

(1− e−i(x−t)̺)n+1

)
dt+

∂ng(̺, x)

∂̺n
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=
n!

π

∫ 2π

0

(f(t)− g(t))Re
eir(x−t)

(1− ei(x−t)̺)n+1
dt+

∂ng(̺, x)

∂̺n
.

Hence, changing the variables of integration and using the integral Minkowski inequality, we obtain

∥∥∥∂
nf (̺, ·)
∂̺n

∥∥∥
p

≤ n!

π

∫ 2π

0

dt

|1− ̺eit|n+1
‖f − g‖p +

∥∥∥∂
ng (̺, ·)
∂̺n

∥∥∥
p

≤ 2n!

(1− ̺)n
‖f − g‖p +

∥∥∥∂
ng (̺, ·)
∂̺n

∥∥∥
p
.

Taking into account (10), (15) and the inequality ‖g[n](̺, ·)‖p ≤ ‖g[n]‖p, we see that for any

̺ ∈ (0, 1),
1

2n!
(1− ̺)nMp (̺, f, n) ≤ ‖f − g‖p + (1− ̺)n

∥∥g[n]
∥∥
p
.

Considering the infimum over all functions g such that g[n] ∈ Lp, we conclude that

1

2n!
(1− ̺)nMp (̺, f, n) ≤ Kn (1− ̺, f)p .

On the other hand, from the definition of the K–functional, it follows that

Kn (1− ̺, f)p ≤ ‖f − A̺,n(f)‖p + (1− ̺)n
∥∥∥(A̺,n(f))

[n]
∥∥∥
p
. (16)

According to (5) and (10), we have

(A̺,n(f))
[n](x) =

( n−1∑

k=0

(f(̺, ·))[k](·)
̺kk!

(1− ̺)k
)[n]

(x)

=
n−1∑

k=0

((f(̺, ·))[k](·))[n](x)
̺kk!

(1− ̺)k.

Since for any nonnegative integers k and n

((f(̺, ·))[n](·))[k](x) = ((f(̺, ·))[k](·))[n](x), (17)

we obtain

(A̺,n(f))
[n](x) =

n−1∑

k=0

((f(̺, ·))[n](·))[k](x)
̺kk!

(1− ̺)k.

This yields

‖(A̺,n(f))
[n]‖p ≤

r−1∑

k=0

‖((f(̺, ·))[n](·))[k]‖p
̺kk!

(1− ̺)k. (18)

By virtue of the definition of the Poisson integral, for any k = 0, 1, . . . , r − 1, we have

((f(̺, ·))[n](·))[k](x) =
(∑

|j|≥n

|j|!
(|j| − n)!

f̂j̺
|j|
2 eijx̺

|j|
2

)[k]
(x)
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=
( 1

2π

2π∫

0

(f(
√
̺, ·))[n](t)P (

√
̺, t− ·)dt

)[k]
(x)

=
1

2π

2π∫

0

(f(
√
̺, ·))[n](t)

∑

|ν|≥k

|ν|!
(|ν| − k)!

̺
|ν|
2 eiν(t−x)dt

=
1

2π

2π∫

0

(f(
√
̺, ·))[n](t+ x)

∑

|ν|≥k

|ν|!
(|ν| − k)!

̺
|ν|
2 eiνtdt

=
1

2π

2π∫

0

(f(
√
̺, ·))[n](t+ x)

(
τk

∂k

∂τk
P (τ, t)

)∣∣∣
τ=

√
̺
dt.

Using the integral Minkowski inequality, for k = 0, we obtain

‖((f(̺, ·))[n](·))[k]‖p = ‖(f(̺, ·))[n]‖p

≤ Mp(
√
̺, f, n)

1

2π

2π∫

0

|P (
√
̺, t)|dt = Mp(

√
̺, f, n). (19)

If k = 1, 2, . . ., then

∂k

∂τk
P (τ, t) =

∂k

∂τk

( 1

1− τeit
+

τe−it

1− τe−it

)
=

k! eikt

(1− τeit)k+1
+

k! e−ikt

(1− τe−it)k+1
.

This similarly yields

‖(f [n](̺, ·))[k]‖p ≤ Mp(
√
̺, f, n)

1

2π

2π∫

0

∣∣∣
(
τk

∂k

∂τk
P (τ, t)

)∣∣∣
τ=

√
̺

∣∣∣dt

≤ 2k!Mp(
√
̺, f, n)

1

2π

2π∫

0

dt

|1−√
̺eit|k+1

≤ Mp(
√
̺, f, n)

2kk!

(1− ̺)k
. (20)

Combining relations (18)–(20), we see that for any ̺ ∈ [1/2, 1),

∫ 1

̺

‖(A̺,n(f))
[n]‖p ≤ Mp(

√
̺, f, n) +Mp(

√
̺, f, n)

n−1∑

k=1

4k

= Mp(
√
̺, f, n)

4n − 1

3
. (21)

By virtue of (21) and (16), we conclude that

Kn (1− ̺, f)p ≤ ‖f − A̺,n(f)‖p +
4n − 1

3
(1− ̺)nMp(

√
̺, f, n)

which proves the Lemma.
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Lemma 3. Assume that r ∈ N, 1 ≤ p ≤ ∞ and ̺ ∈ [1/2, 1). Then for any function f ∈ Lp

‖(A̺,r(f))
[r]‖p ≤ Cr

‖f‖p
(1− ̺)r

, (22)

where the constant Cr depends only on r.

Proof. By virtue of (10), for any function f ∈ Lp and all x ∈ T, we have

(f(̺, ·))[r](x) =
̺r

2π

∫ 2π

0

f(t)
∂r

∂̺r

(
1− ̺2

|1− ei(x−t)̺|2
)
dt

=
r!̺r

2π

∫ 2π

0

f(t)

(
eir(x−t)

(1− ei(x−t)̺)r+1
+

e−ir(x−t)

(1− e−i(x−t)̺)r+1

)
dt

=
r!̺r

π

∫ 2π

0

f(t) Re
eir(x−t)

(1− ei(x−t)̺)r+1
dt.

Making a change of variables of integration and using the integral Minkowski inequality, we obtain

Mp (̺, f, r) ≤
r!

π

∫ 2π

0

dt

|1− ̺eit|r+1
‖f‖p ≤

2r!

(1− ̺)r
‖f‖p. (23)

Combining this relation and relation (21) with n = r, we conclude that

‖(A̺,r(f))
[r]‖p ≤ Mp(

√
̺, f, r)

4r − 1

3
≤ 2r!(4r − 1)

3(1−√
̺)r

‖f‖p

≤ r!(23r+1 − 2r+1)

3
· ‖f‖p
(1− ̺)r

.

Lemma 4. Assume that r ∈ N and 0 ≤ ̺ < 1. Then for any function f ∈ Lp, 1 ≤ p ≤ ∞, such

that ∫ 1

̺

∥∥∥∂
rf(ζ, ·)
∂ζr

∥∥∥
p
(1− ζ)r−1dζ < ∞ (24)

and for almost all x ∈ T,

f(x)− A̺,r(f)(x) =
1

(r − 1)!

∫ 1

̺

∂rf(ζ, x)

∂ζr
(1− ζ)r−1dζ. (25)

Proof. For fixed r ∈ N and 0 ≤ ̺ < 1, the integral on the right-hand side of (25), defines a

certain function F (x). By virtue of (24) and the integral Minkowski inequality, we conclude that the

function F belongs to the space Lp. Let us find the Fourier coefficients of F and compare them with

the Fourier coefficients of the function G := f −A̺,r(f). Since for r ∈ N,

∂rf(ζ, x)

∂ζr
=
∑

|k|≥r

|k|!
(|k| − r)!

f̂kζ
|k|−reikx,

then F̂k = 0, when |k| < r. If |k| ≥ r, then integrating by parts, we see that

F̂k =
1

2π

∫ 2π

0

F (t)e−iktdt = f̂k

|k|∑

j=r

(|k|
j

)
(1− ̺)j̺|k|−j. (26)
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On the other hand, if |k| < r the Fourier coefficients Ĝk of the function G are equal to zero. If

|k| ≥ r, then in view of the equality

k∑

j=0

(
k

j

)
(1− ̺)j̺k−j = ((1− ̺) + ̺)k = 1, k = 0, 1, . . . ,

we see that

Ĝk = (1− λ|k|,r(̺))f̂k = f̂k

|k|∑

j=r

(|k|
j

)
(1− ̺)j̺|k|−j.

Therefore, for all k ∈ Z, we have F̂k = Ĝk. Hence, for almost all x ∈ T, relation (25) holds.

Proof of Theorem 1. Assume that the function f is such that f [r−n] ∈ Lp and relation (13)

is satisfied. Let us apply the first inequality of Lemma 2 to the function f [r−n]. In view of (10) and

(15), we obtain
1

2n!
(1− ̺)nMp (̺, f, r) ≤ Kn

(
1− ̺, f [r−n]

)
p
.

This yields

Mp (̺, f, r) ≤ C
ω(1− ̺)

(1− ̺)n
, ̺ → 1− . (27)

Using relations (15), (27) and (Z ) and the integral Minkowski inequality, we obtain

∫ 1

̺

∥∥∥∂
rf(ζ, ·)
∂ζr

∥∥∥
p
(1− ζ)r−1dζ ≤

∫ 1

̺

Mp (ζ, f, r)
(1− ζ)r−1

ζr
dζ

≤ 2rC(1− ̺)r−n

∫ 1

̺

ω(1− ζ)

1− ζ
dζ

= O
(
(1− ̺)r−nω(1− ̺)

)
, ̺ → 1− . (28)

Therefore, for almost all x ∈ T, relation (25) holds. Hence, by virtue of (25), using the integral

Minkowski inequality and (28), we finally get (14):

‖f − A̺,r(f)‖p ≤ 1

(r − 1)!

∫ 1

̺

Mp (ζ, f, r)
(1− ζ)r−1

ζr
dζ

= O
(
(1− ̺)r−nω(1− ̺)

)
, ̺ → 1− .

Proof of Theorem 2. First, let us note that for any function f ∈ Lp, 1 ≤ p ≤ ∞, and all fixed

numbers s, r ∈ N and ̺ ∈ (0, 1)

‖A[s]
̺,r(f)‖p =

∥∥∥
∑

|k|≥s

|k|!
(|k| − s)!

ω|k|(̺)f̂ke
ikt
∥∥∥
p

≤ 2r‖f‖p
(
C +

∑

k≥max{s,r}
qkks+r−1

)
< ∞,
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where 0 < q = max{1− ̺, ̺} < 1.

Put ̺k := 1 − 2−k, k ∈ N, and Ak := Ak(f) := A̺k ,r(f). For any x ∈ T and s ∈ N, consider the

series

A
[s]
0 (f)(x) +

∞∑

k=1

(A
[s]
k (f)(x)−A

[s]
k−1(f)(x)). (29)

According to the definition of the operator A̺,r, we see that for any ̺1, ̺2 ∈ [0, 1) and r ∈ N,

A̺1,r (A̺2,r(f)) = A̺2,r (A̺1,r(f)) .

By virtue of Lemma 3 and relation (14), for any k ∈ N and s ∈ N, we have

∥∥∥A[s]
k − A

[s]
k−1

∥∥∥
p
=
∥∥∥A[s]

k (f − Ak−1(f))− A
[s]
k−1(f −Ak(f))

∥∥∥
p

≤
∥∥∥A[s]

k (f −Ak−1(f))
∥∥∥
p
+
∥∥∥A[s]

k−1(f − Ak(f))
∥∥∥
p

≤ Cs

‖f −Ak−1(f)‖p
(1− ̺k)s

+ Cs

‖f −Ak(f)‖p
(1− ̺k−1)s

= O

(
ω(1− ̺k−1)

(1− ̺k)s−r+n

)
+O

(
ω(1− ̺k)

(1− ̺k−1)s−r+n

)
, k → +∞. (30)

Therefore, for any s ≤ r − n,

∥∥∥A[s]
k − A

[s]
k−1

∥∥∥
p
= O (ω(1− ̺k−1)) = O

(
ω(2−(k−1))

)
, k → +∞. (31)

Consider the sum
∑N

k=1 ω(2
−(k−1)), N ∈ N. Taking into account the monotonicity of the function ω

and (Z ) , we see that for all N ∈ N,

N∑

k=1

ω(2−(k−1)) ≤ ω(1) +

∫ N

1

ω(2−(t−1))dt

= ω(1) +
1

ln 2

∫ 1

2−N+1

ω(τ)

τ
dτ ≤ Cω(1) < ∞. (32)

Combining relations (31) and (32), we conclude that for all 1 ≤ p ≤ ∞, the series in (29)

converges in the norm of the space Lp. Hence, by virtue of the Banach–Alaoglu theorem, for any

s = 0, 1, . . . , r − n, there exists the subsequence

S
[s]
Nj
(x) = A

[s]
0 (f)(x) +

Nj∑

k=1

(A
[s]
k (f)(x)−A

[s]
k−1(f)(x)), j = 1, 2, . . . (33)

of partial sums of this series, converging to a certain function g ∈ Lp almost everywhere on T as

j → ∞.
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Let us show that g = f [s]. For this, let us find the Fourier coefficients of the function g. For any

fixed k ∈ Z and all j = 1, 2, . . . , we have

ĝk :=
1

2π

∫ 2π

0

S
[s]
Nj
(t)e−iktdt+

1

2π

∫ 2π

0

(g(t)− S
[s]
Nj
(t))e−iktdt.

Since the sequence {S [s]
Nj
}∞j=1 converges almost everywhere on T to the function g, then the second

integral on the right-hand side of the last equality tends to zero as j → ∞. By virtue of (33) and the

definition of the radial derivative, for |k| < s the first integral is equal to zero, and for all |k| ≥ s,

1

2π

∫ 2π

0

S
[s]
Nj
(t)e−iktdt = λ|k|,r(1− 2−Nj)

|k|!
(|k| − s)!

f̂k −→
j→∞

|k|!
(|k| − s)!

f̂k.

Therefore, the equality g = f [s] is true. Hence, for the function f and all s = 0, 1, . . . , r − n, there

exists the derivative f [s] and f [s] ∈ Lp.

Now, let us prove the estimate (27). By virtue of (15), (30), for any k ∈ N and ̺ ∈ (0, 1), we have

Mp (̺, Ak −Ak−1, r) ≤
∥∥∥A[r]

k − A
[r]
k−1

∥∥∥
p
= O

(
ω(1− ̺k−1)

(1− ̺k)n

)

+O

(
ω(1− ̺k)

(1− ̺k−1)n

)
= O

(
2knω(2−k+1) + 2(k−1)nω(2−k)

)

= O
(
2(k−1)nω(2−(k−1))

)
, k → +∞. (34)

According to (23) and (14), for any r ∈ N, ̺ ∈ (0, 1) and x ∈ T, we obtain

Mp (̺, f −A̺,r(f), r) ≤ 2r!
‖f − A̺,r(f)‖p

(1− ̺)r
= O

(
ω(1− ̺)

(1− ̺)n

)
, ̺ → 1− .

Therefore, for any positive integer N ,

Mp

(
̺
N
, f −AN (f), r

)
= O

(
ω(1− ̺

N
)

(1− ̺
N
)n

)

= O
(
2Nnω(2−N)

)
, N → +∞. (35)

Consider the sum
∑N

k=1 2
(k−1)nω(2−(k−1)), N ∈ N. Since the function ω satisfies the condition

(Zn) , the function ω(t)/tn almost decreases on [0, 1] (see, for example [1]). Therefore,

C1

N∑

k=1

2(k−1)nω(2−(k−1)) ≤ 2(N−1)nω(2−(N−1)) +

∫ N

1

2(t−1)nω(2−(t−1))dt

≤ 2(N−1)nω(2−(N−1)) +
1

ln 2

1∫

2−N+1

ω(τ)/τn+1dτ ≤ C22
(N−1)nω(2−(N−1)). (36)
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Putting ̺ = ̺
N

and taking into account relations (34), (35), (36) and

A0(x) = Sr−1(f)(x) =
∑

|k|≤r−1

f̂ke
ikx,

we get

Mp (̺N , f, r) = Mp (̺N , f − Sr−1(f), r)

= Mp

(
̺N , f −A̺

N
+

N∑

k=1

(Ak − Ak−1), r

)
= O

(
N∑

k=1

2(k−1)nω(2−(k−1))

)

= O
(
2Nnω(2−N)

)
= O

(
ω(1− ̺

N
)

(1− ̺
N
)n

)
, N → +∞. (37)

If the function ω satisfies the condition (Zn) , then for all t ∈ [0, 1] ω(2t) ≤ Cω(t) (see, for

example [1]). Furthermore, for all ̺ ∈ [̺
N−1

, ̺
N
], we have 1 − ̺

N
≤ 1 − ̺ ≤ 2(1 − ̺

N
). Hence,

relation (37) yields the estimate (27).

Now, applying the second inequality in Lemma 2 to the function f [r−n], we get

Kn

(
1− ̺, f [r−n]

)
p

≤ ‖f [r−n] − A̺,n(f
[r−n])‖p

+
4n − 1

3
(1− ̺)nMp(

√
̺, f, r). (38)

By virtue of (15) and (27), we see that for ̺ ∈ [1/2, 1),

∫ 1

̺

∥∥∥∂
nf [r−n](ζ, ·)

∂ζn

∥∥∥
p
(1− ζ)n−1dζ =

∫ 1

̺

∥∥∥(f(ζ, ·))[r](x)
∥∥∥
p

(1− ζ)n−1

ζn
dζ

=

∫ 1

̺

Mp (ζ, f, r)
(1− ζ)n−1

ζn
dζ ≤ 2nC

∫ 1

̺

ω(1− ζ)

1− ζ
dζ

= O (ω(1− ̺)) , ̺ → 1− . (39)

Therefore, we can apply Lemma 4 to the function f [r−n]. Taking into account (15), we obtain

f [r−n](x)− A̺,n(f
[r−n])(x) =

1

(n− 1)!

∫ 1

̺

(f(ζ, ·))[r](x)(1− ζ)n−1

ζn
dζ.

Using the integral Minkowski inequality and (39), we conclude

‖f [r−n] − A̺,n(f
[r−n])‖p ≤ 1

(n− 1)!

∫ 1

̺

Mp (ζ, f, r)
(1− ζ)n−1

ζn
dζ

= O (ω(1− ̺)) , ̺ → 1− . (40)

Combining relations (38), (27) and (40), we get (13).
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