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DIRECT AND INVERSE APPROXIMATION THEOREMS

OF FUNCTIONS IN THE ORLICZ TYPE SPACES S
M

STANISLAV CHAICHENKO*, ANDRII SHIDLICH** AND FAHREDDIN ABDULLAYEV***

Abstract. In the Orlicz type spaces SM , we prove direct and inverse approximation theorems
in terms of the best approximations of functions and moduli of smoothness of fractional order.
We also show the equivalence between moduli of smoothness and Peetre K-functionals in the
spaces SM .

1. Introduction

Direct approximation theorems are statements asserting that smoothness of the function f
implies a quick decrease to zero of its error of approximation by polynomials or other approximating
aggregates. On classes of continuously differentiable functions, such theorems were first proved in
terms of the first-order modulus of continuity by Jackson [14] in 1911. Later, Zygmund [32] and
Akhiezer [3] generalized Jackson’s results to the second-order modulus of continuity, and Stechkin
[21] extended these results to the moduli of continuity of an arbitrary integer order k, k ≥ 3.

Inverse approximation theorems are the converse statements that characterize the smoothness
properties of a function depending on the speed of convergence to zero of its approximation by
some approximating aggregates. These theorems were first obtained by Bernstein [5] in 1912. And
already in 1919, direct and inverse approximation theorems, due to Jackson and Bernstein, were
given in the book on approximation theory by de la Vallée Poussin [31].

Investigations of the connection (direct and inverse) between the smoothness properties of func-
tions and the possible orders of their approximations were carried out by many authors on various
classes of functions and for various approximating aggregates. Such results constitute the classics
of modern approximation theory and they are also described quite fully in the monographs [6], [9],
[10], [29].

For the last decades, in addition to the classical direction of theory of direct and inverse approx-
imation theorems, a number of ”non-classical” directions have also been developed fruitfully. It
should be mention the studies on direct and inverse approximation theorems in the Orlicz function
spaces, which results are contained, in particular, in the papers of Ramazanov [17], Garidi [11],
Runovski [18], Israfilov and Guven [13], [12], Akgün and Izrafilov [2], Akgün [1], Chaichenko [8]
and others.

In 2001, Stepanets [22] considered the spaces Sp of 2π-periodic Lebesgue summable functions f
(f ∈ L) with the finite norm

‖f‖
Sp = ‖{f̂(k)}k∈Z‖lp(Z) =

(∑

k∈Z

|f̂(k)|p
)1/p

,
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where f̂(k) := [f ]̂(k) = 1
2π

∫ 2π

0 f(t)e−iktdt, k ∈ Z, are the Fourier coefficients of the function f ,
and investigated some approximation characteristics of these spaces, including in the context of
direct and inverse theorems. Stepanets and Serdyuk [25] introduced the notion of kth modulus of
smoothness in Sp and established direct and inverse theorems on approximation in terms of these
moduli of smoothness and the best approximations of functions. Also this topic was investigated
actively in [26], [30], [24], [29, Ch. 3] and others.

In the papers [19], [20] some results for the spaces Sp were extended to the Orlicz sequence
spaces. In particular, in [20] the authors found the exact values of the best n-term approximations
and Kolmogorov widths of certain sets of images of the diagonal operators in the Orlicz spaces.
The purpose of this paper is to combine the above mentioned studies and prove direct and inverse
theorems in the Orlicz type spaces SM in terms of best approximations of functions and moduli of
smoothness of fractional order.

2. Preliminaries

An Orlicz functionM(t) is a non-decreasing convex function defined for t ≥ 0 such thatM(0) = 0
and M(t) → ∞ as t → ∞. Let SM be the space of all functions f ∈ L such that the following
quantity (which is also called the Luxemburg norm of f) is finite:

‖f‖
M

:= ‖{f̂(k)}k∈Z‖lM(Z)
= inf

{
a > 0 :

∑

k∈Z

M(|f̂(k)|/a) ≤ 1

}
. (2.1)

Functions f ∈ L and g ∈ L are equivalent in the space SM , when ‖f − g‖
M

=0.
The spaces SM defined in this way are Banach spaces. In case M(t) = tp, p ≥ 1, they coincide

with the above-defined spaces Sp.
Let Tn, n = 0, 1, . . ., be the set of all trigonometric polynomials τn(x):=

∑
|k|≤n cke

ikx of the

order n, where ck are arbitrary complex numbers. For any function f ∈ SM , we denote by

En(f)M := inf
τn−1∈Tn−1

‖f − τn−1‖M (2.2)

the best approximation of f by trigonometric polynomials τn−1 ∈ Tn−1 in the space SM .
Similarly to [7], we define the (right) difference of f ∈ L of fractional order α > 0 with respect

to the increment h ∈ R by

∆α
hf(x) :=

∞∑

j=0

(−1)j
(
α

j

)
f(x− jh), (2.3)

where
(
α
j

)
= α(α−1)·...·(α−j+1)

j! , j ∈ N,
(
α
0

)
:= 1, and assemble some basic properties of the fractional

differences.

Lemma 2.1. Assume that f ∈ SM , α, β > 0, x, h ∈ R. Then
(i) ‖∆α

hf‖M ≤ K(α)‖f‖
M
, where K(α) :=

∑∞
j=0 |

(
α
j

)
| ≤ 2{α}, {α} = inf{k ∈ N : k ≥ α}.

(ii) [∆α
hf ]̂(k) = (1− e−ikh)αf̂(k), k ∈ Z.

(iii) (∆α
h(∆

β
hf))(x) = ∆α+β

h f(x) (a. e.).

(iv) ‖∆α+β
h f‖

M
≤ 2{β}‖∆α

hf‖M .
(v) lim

|h|→0
‖∆α

hf‖M = 0.

The proof of Lemma 2.1 and other auxiliary statements of the paper will be given in Section 7.
Based on definition (2.3), the modulus of smoothness of f ∈ SM of the index α > 0 is defined

by
ωα(f, δ)M := ωα(f, δ)SM

= sup
|h|≤δ

‖∆α
hf‖M .
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For convenience, we also assume that ∆0
hf := f and ω0(f, δ)M := ‖f‖

M
. Using the standard

arguments, it can be shown that the functions ωα(f, δ)M possess all the basic properties of ordinary
moduli of smoothness. Before formulating them, we give the definition of the ψ-derivative of a
function.

Let ψ = {ψk}
∞
k=−∞ be an arbitrary sequence of complex numbers, ψk 6= 0, k ∈ Z. If for

a given function f ∈ L with the Fourier series of the form S[f ](x) =
∑
k∈Z

f̂(k)eikx, the series∑
k∈Z\{0} f̂(k)e

ikx/ψk is the Fourier series of a certain function g ∈ L, then g is called (see, for

example, [23, Ch. 9]) ψ-derivative of the function f and is denoted as g := fψ. It is clear that the
Fourier coefficients of functions f and fψ are related by equality

f̂(k) = ψkf̂
ψ(k), k ∈ Z \ {0} (2.4)

and f̂ψ(0) = 0. In case ψk = |k|−r, r > 0, k ∈ Z \ {0}, we use the notation fψ =: f (r).

Lemma 2.2. Assume that f, g ∈ SM , α ≥ β > 0 and δ, δ1, δ2 > 0. Then
(i) ωα(f, δ)M is a non-negative increasing continuous function of δ on (0,∞) such that

lim
δ→0+

ωα(f, δ)M = 0.

(ii) ωα(f, δ)M ≤ 2{α−β}ωβ(f, δ)M .
(iii) ωα(f + g, δ)

M
≤ ωα(f, δ)M + ωα(g, δ)M .

(iv) ω1(f, δ1 + δ2)M ≤ ω1(f, δ1)M + ω1(f, δ2)M .

(v) ωα(f, δ)M ≤ 2{α}‖f‖
M
.

(vi) if there exists a derivative f (β) ∈ SM , then ωα(f, δ)M ≤ δβωα−β(f
(β), δ)

M
.

(vii) ωα(f, pδ)M ≤ pαωα(f, δ)M (α ∈ N, p ∈ N).

(viii) ωα(f, η)M ≤ δ−α(δ + η)αωα(f, δ)M (α ∈ N).

3. Direct approximation theorems

Proposition 3.1. Let ψ = {ψk}
∞
k=−∞ be an arbitrary sequence of complex numbers such that

ψk 6= 0 and lim
|k|→∞

|ψk| = 0. If for the function f ∈ SM there exists a derivative fψ∈SM , then

En(f)M ≤ εnEn(f
ψ)
M
,

where εn = max
|k|≥n

|ψk|.

Proof. For a fixed a > 0 and arbitrary numbers ck ∈ C,
∑

|k|≤n−1

M(|f̂(k)− ck|/a) +
∑

|k|≥n

M(|f̂(k)|/a) ≥
∑

|k|≥n

M(|f̂(k)|/a),

therefore, for any function f ∈ SM we have

En(f)M = ‖f − Sn−1(f)‖M = inf

{
a > 0 :

∑

|k|≥n

M(|f̂(k)|/a) ≤ 1

}
, (3.1)

where Sn−1(f, x) =
∑

|k|≤n−1 f̂(k)e
ikx is the Fourier sum of the function f .

According to (3.1) and (2.4), we have

En(f)M = inf

{
a > 0 :

∑

|k|≥n

M(|ψkf̂
ψ(k)|/a) ≤ 1

}

≤ inf

{
a > 0 :

∑

|k|≥n

M(εn|f̂
ψ(k)|/a) ≤ 1

}
≤ εnEn(f

ψ)
M
.
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In this case, if εn = max
|k|≥n

|ψk| = |ψk0 |, where k0 is an integer, |k0| ≥ n, then for an arbitrary

polynomial of the form τ̃k0(x) := c eik0x, c 6= 0, obviously, the equality holds

En(τ̃k0 )M = εnEn(τ̃
ψ
k0
)
M
.

�

Theorem 3.2. If f ∈ SM , then for any numbers α > 0 and n ∈ N the following inequality holds:

En(f)M ≤ C(α)ωα(f, n
−1)M . (3.2)

where C = C(α) is a constant that does not depend on f and n.
Before proving Theorem 3.2, we formulate the auxiliary Lemma 3.1. This assertion establishes

the equivalence of the Luxemburg norm (2.1) and the Orlicz norm, where the latter is defined as
follows. Consider the function

M̃(v) := sup{uv −M(u) : u ≥ 0} (3.3)

and the set Λ = Λ(M̃) of all sequences of positive numbers λ = {λk}k∈Z such that
∑

k∈Z
M̃(λk) ≤ 1.

For any function f ∈ SM , define its Orlicz norm by the equality

‖f‖∗
M

:= sup
{∑

k∈Z

λk|f̂(k)| : λ ∈ Λ
}
. (3.4)

Lemma 3.1. For any function f ∈ SM , the following relation holds:

‖f‖
M

≤ ‖f‖∗
M

≤ 2 ‖f‖
M
. (3.5)

Proof of Theorem 3.2. Let us use the proof scheme from [21]. Let {Kn(t)}
∞
n=1 be a sequence of

kernels (where Kn(t) is a trigonometric polynomial of order not greater than n) such that for all
n = 1, 2, . . . the following conditions are fulfilled:

∫ π

−π

Kn(t) dt = 1, (3.6)

∫ π

−π

|t|r|Kn(t)| dt ≤ C(r)(n + 1)−r, r = 0, 1, 2, . . . . (3.7)

In the role of such kernels, in particular, we can take the well-known Jackson kernels of sufficiently
great order, that is,

Kn(t) = bp

( sin pt/2
sin t/2

)2k0
,

where k0 is an integer that does not depend on n, 2k0 ≥ r + 2, the positive integer p is deter-
mined from the inequality n/(2k0) < p ≤ n/(2k0) + 1, and the constant bp is chosen due to the
normalization condition (3.6).

It was shown in [21] that for any sequence of kernels {Kn(t)} satisfying conditions (3.6)–(3.7),
the following estimate holds:

∫ π

−π

(|t|+ n−1)r |Kn(t)| dt ≤ C(r)n−r , (r, n = 1, 2, . . .). (3.8)

Let us first consider the case of α ∈ N. Set

σn−1(x) = (−1)α+1

∫ π

−π

Kn−1(t)

α∑

j=1

(−1)j
(
α

j

)
f(x− jt) dt.
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It is clear that σn−1(x) is a trigonometric polynomial which order does not exceed n. Further, in
view of (3.6), we have

f(x)− σn−1(x) = (−1)α
∫ π

−π

Kn−1(t)
α∑

j=0

(−1)j
(
α

j

)
f(x− jt)dt = (−1)α

∫ π

−π

Kn−1(t)∆
α
t f(x)dt.

Hence, taking into account relations (3.4)–(3.5) and the definition of the set Λ, we obtain

En(f)M ≤ ‖f − σn−1‖M ≤ ‖f − σn−1‖
∗

M
=
∥∥∥(−1)α

∫ π

−π

Kn−1(t)∆
α
t f dt

∥∥∥
∗

M

= sup
{∑

k∈Z

λk

∣∣∣ 1
2π

∫ π

−π

(∫ π

−π

Kn−1(t)∆
α
t f(x) dt

)
e−ikx dx

∣∣∣ : λ ∈ Λ
}
.

Applying now the Fubini theorem and again using estimate (3.5), we find

En(f)M ≤

∫ π

−π

|Kn−1(t)| sup
{∑

k∈Z

λk

∣∣∣ 1
2π

∫ π

−π

∆α
t f(x) e

−ikx dx
∣∣∣ : λ ∈ Λ

}
dt

≤ 2

∫ π

−π

|Kn−1(t)| ‖∆
α
t f(x)‖

∗

M
dt ≤ 2

∫ π

−π

|Kn−1(t)| ‖∆
α
t f(x)‖M dt

≤ 2

∫ π

−π

|Kn−1(t)|ωα(f, |t|)M dt. (3.9)

To estimate the integral on the right-hand side of (3.9), we use the property (viii) of Lemma 2.2.
Setting η = |t|, δ = n−1, we see that

ωα(f ; |t|)M ≤ nα(|t|+ n−1)αωα(f, n
−1)

M
.

This inequality together with (3.8) yields
∫ π

−π

|Kn−1(t)|ωα(f, |t|)M dt ≤ nαωα(f, n
−1)

M

∫ π

−π

(|t|+ n−1)α|Kn−1(t)|dt ≤ C(α)ωα(f, n
−1)M .

Thus, in the case of α ∈ N, the theorem is proved.
If α > 0, α 6∈ N, then we denote by β an arbitrary positive integer satisfying the condition

β − 1 < α < β. Due to property (ii) of Lemma 2.2, we obtain

En(f)M ≤ C(β) ωβ(f, n
−1)M ≤ C(β) ωα(f, n

−1)M .
�

4. Inverse approximation theorems

The key role in proving of the inverse approximation theorems is played by the known Bernstein
inequality in which the norm of the derivative of a trigonometric polynomial is estimated in terms
of the norm of this polynomial (see, e.g. [27, Ch. 4], [29, Ch. 4]).

Proposition 4.1. Let ψ = {ψk}
∞
k=−∞ be an arbitrary sequence of complex numbers, ψk 6= 0. Then

for any τn ∈ Tn, n ∈ N, the following inequality holds:

‖τψn ‖M ≤
1

ǫn
‖τn‖M , ǫn := min

0<|k|≤n
|ψk|, (4.1)
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Proof. Let τn(x) =
∑

|k|≤n cke
ikx, ck ∈ C. By the definition of the ψ-derivative and equalities

(2.4), we get

‖τψn ‖M = inf
{
a > 0 :

∑

0<|k|≤n

M
(
|ck|/|aψk|

)
≤ 1
}

≤ max
0<|k|≤n

|ψk|
−1 inf

{
a > 0 :

∑

0<|k|≤n

M
(
|ck|/a

)
≤ 1
}
=

1

ǫn
‖τn‖M .

�

In this case, if ǫn = min
0<|k|≤n

|ψk| = |ψk0 |, then for an arbitrary polynomial of the form τ̃k0(x) :=

c eik0x, c 6= 0, we have

‖τ̃ψk0‖M = inf
{
a > 0 : M

(
|c|/|aψk0 |

)
≤ 1
}
=

1

ǫn
‖τk0‖M .

Corollary 4.1.1. Let ψ = {ψk}
∞
k=−∞ be an arbitrary sequence of complex numbers such that

|ψ−k| = |ψk| ≥ |ψk+1| > 0. Then for any τn ∈ Tn, n ∈ N,

‖τψn ‖M ≤
1

|ψn|
‖τn‖M . (4.2)

In particular, if ψk = |k|−r, r > 0, k ∈ Z \ {0}, then

‖τψn ‖M = ‖τ (r)n ‖
M

≤ nr‖τn‖M .

Theorem 4.2. If f ∈ SM , then for any α > 0 and n ∈ N, the following inequality is true:

ωα(f, n
−1)M ≤

C(α)

nα

n∑

ν=1

να−1Eν(f)M , (4.3)

where C = C(α) is a constant that does not depend on f and n.
For the spaces Lp of 2π-periodic functions integrable to the pth power with the usual norm,

inequalities of the type (4.3) were proved in [28] (see also [27, Ch. 6], [29, Ch. 2]). In the spaces
Sp, similar results were obtained in [25], [26].

Proof. Let us use the proof scheme from [27, Ch. 6]. Let f ∈ SM and Sn := Sn(f) be the Fourier
sum of f . Then, due to Lemma 2.2 (v) and relation (3.1) for an arbitrary m ∈ N, we have

ωα(f, n
−1)M ≤ ωα(f − S2m+1 , n−1)M + ωα(S2m+1 , n−1)M

≤ 2{α}E2m+1+1(f)M + ωα(S2m+1 , n−1)M . (4.4)

Further, using property (vi) of Lemma 2.2 and the properties of the norm, we obtain

ωα(S2m+1 , n−1)M ≤ n−α‖S
(α)
2m+1‖M ≤ n−α

(
‖S

(α)
1 ‖

M
+

m∑

k=0

‖S
(α)

2k+1 − S
(α)

2k
‖
M

)
.

Moreover, on the basis of Corollary 4.1.1,

‖S
(α)

2k+1 − S
(α)

2k
‖
M

≤ 2(k+1)α‖S2k+1 − S2k‖M ≤ 2(k+1)α+1E2k+1(f)M ,

and ‖S
(α)
1 ‖

M
= ‖S

(α)
1 − S

(α)
0 ‖

M
≤ 2E1(f)M . Therefore,

ωα(S2m+1 , n−1)M ≤ n−α‖S
(α)
2m+1‖M ≤ 2n−α

(
E1(f)M +

m∑

k=0

2(k+1)αE2k+1(f)M

)
.
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Taking into account the relation

2(k+1)αE2k+1(f)M ≤ 22α
2k+1∑

ν=2k−1+2

να−1Eν(f)M , k = 1, 2, . . . ,

we get

ωα(S2m+1 , n−1)M ≤ 22α+1n−α
(
E1(f)M + E2(f)M +

m∑

k=1

2k+1∑

ν=2k−1+2

να−1Eν(f)M

)

≤
c∗(α)

nα

2m+1∑

k=1

kα−1Ek(f)M .

Choosing now an integer m so that 2m + 1 ≤ n ≤ 2m+1 and substituting this estimate into (4.4),
we get (4.3). �

Corollary 4.2.1. Assume that the sequence of the best approximations En(f)M of a function
f ∈ SM satisfies the following relation for some β > 0:

En(f)M = O(n−β).

Then, for any α > 0, one has

ωα(f, t)M =





O(tβ) for β < α,
O(tα| ln t|) for β = α,

O(tα) for β > α.

5. Constructive characteristics of the classes of functions defined by the αth
moduli of smoothness

In the following two sections some applications of the obtained results are considered. In par-
ticular, in this section we give the constructive characteristics of the classes SMH

ω
α of functions

for which the αth moduli of smoothness do not exceed some majorant.
Let ω be a function defined on interval [0, 1]. For a fixed α > 0, we set

SMH
ω
α =

{
f ∈ SM : ωα(f, δ)M = O(ω(δ)), δ → 0 +

}
. (5.1)

Further, we consider the functions ω(δ), δ ∈ [0, 1], satisfying the following conditions 1)–4): 1)
ω(δ) is continuous on [0, 1]; 2) ω(δ) ↑; 3) ω(δ) 6= 0 for any δ ∈ (0, 1]; 4) ω(δ) → 0 as δ → 0+;
as well-known condition (Bα), α > 0:

∑n
v=1 v

α−1ω(v−1) = O(nαω(n−1)) (see, e.g. [4]).

Theorem 5.1. Assume that α > 0 and ω is a function, satisfying conditions 1)– 4) and (Bα).
Then, in order a function f ∈ SM to belong to the class SMH

ω
α , it is necessary and sufficient that

En(f)M = O(ω(n−1)). (5.2)

Proof. Let f ∈ SMH
ω
α , by virtue of Theorem 3.2, we have

En(f)M ≤ C(α)ωα(f ;n
−1)

M
, (5.3)

Therefore, relation (5.1) yields (5.2). On the other hand, if relation (5.2) holds, then by virtue of
Theorem 4.2, taking into account the condition (Bα), we obtain

ωα(f, n
−1)M ≤

C(α)

nα

n∑

ν=1

να−1Eν(f)M ≤
C1

nα

n∑

ν=1

να−1ω(v−1) = O(ω(n−1)). (5.4)
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Thus, the function f belongs to the set SMH
ω
α . �

The function ϕ(t) = tr, r ≤ α, satisfies the condition (Bα). Hence, denoting by SMH
r
α the class

SMH
ω
α for ω(t) = tr, 0 < r ≤ α, we establish the following statement:

Corollary 5.1.1. Let α > 0, 0 < r ≤ α. In order a function f ∈ SM to belong to SMH
r
α, it is

necessary and sufficient that

En(f)M = O(n−r).

6. The equivalence between αth moduli of smoothness and K-functionals

K-functionals were introduced by Lions and Peetre in 1961, and defined in their usual form
by Peetre in the monograph [16] as a basis for his theory of operator interpolation. Unlike the
moduli of continuity expressing the smooth properties of functions, K-functionals express some
of their approximative properties. In this section we prove the equivalence between our moduli
of smoothness and certain Peetre K-functionals. This connection is important for studying the
properties of the modulus of smoothness and theK-functional, and also for their further application
to the problems of approximation theory.

In the space SM , the Petree K-functional of a function f (see, e.g. [9, Ch. 6]), which generated
by its derivative of order α > 0, is the following quantity:

Kα(δ, f)M = inf
{
‖f − h‖

M
+ δα‖h(α)‖

M
: h(α) ∈ SM

}
, δ > 0.

Theorem 6.1. For each f ∈ SM , α > 0, there exist constants C1(α), C2(α) > 0, such that for
δ > 0

C1(α)ωα(f, δ)M ≤ Kα(δ, f)M ≤ C2(α)ωα(f, δ)M . (6.1)

Proof. Consider an arbitrary function h ∈ SM such that h(α) ∈ SM . Then we have by Lemma 2.2
(iii), (v) and (vi)

ωα(f, δ)M ≤ ωα(f − h, δ)
M

+ ωα(h, δ)M ≤ 2{α}‖f − h‖
M

+ δα‖h(α)‖
M
.

Taking the infimum over all h ∈ SM such that h(α) ∈ SM , we get the left-hand side of (6.1).
To prove the right-hand side of (6.1), let us formulate the following auxiliary lemma.

Lemma 6.1. Assume that α > 0, n ∈ N and 0 ≤ h ≤ 2π/n. Then for any τn ∈ Tn
( sin(nh/2)

n/2

)α
‖τ (α)n ‖

M
≤ ‖∆α

hτn‖M ≤ hα‖τ (α)n ‖
M
. (6.2)

Now let δ ∈ (0, 2π) and n ∈ N such that π/n < δ < 2π/n. Let also Sn := Sn(f) be the Fourier
sum of f . Using Lemma 6.1 with h = π/n and property (i) of Lemma 2.1, we obtain

‖S(α)
n ‖

M
≤ 2−α+1nα‖∆α

π/nSn‖M ≤ 2(π/δ)α
(
‖∆α

π/n(Sn − f)‖
M

+ ‖∆α
π/nf‖M

)

≤ 2(π/δ)α
(
2{α}‖f − Sn‖M + ‖∆α

π/nf‖M

)
. (6.3)

By virtue of (3.1) and Theorem 3.2, we have

‖f − Sn‖M = En(f)M ≤ C(α)ωα(f, δ)M . (6.4)

Combining (6.3), (6.4) and the definition of modulus of smoothness, we obtain the relation

‖S(α)
n ‖

M
≤ C2(α)δ

−αωα(f, δ)M ,
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where C2(α) := 2πα(2{α}C(α) + 1), which yields the right-hand side of (6.1):

Kα(δ, f)M ≤ ‖f − Sn‖M + δα‖S(α)
n ‖

M
≤ C2(α)ωα(f, δ)M .

�

7. Proof of the auxiliary statements

Proof of Lemma 2.1. Let us set f(x − jh) =: fjh(x). For any k ∈ Z and j = 0, 1, . . ., we have

f̂jh(k) = f̂(k)e−ikjh. Therefore,

‖∆α
hf‖M = inf

{
a > 0 :

∑

k∈Z

M
(
|[∆α

hf ]̂(k)|/a
)
≤ 1

}

= inf

{
a > 0 :

∑

k∈Z

M
(∣∣∣
[ ∞∑

j=0

(−1)j
(
α

j

)
fjh

]
̂(k)

∣∣∣/a
)
≤ 1

}

= inf

{
a > 0 :

∑

k∈Z

M
(∣∣∣f̂(k)

∞∑

j=0

(−1)j
(
α

j

)
e−ikjh

∣∣∣/a
)
≤ 1

}
.

For a fixed a > 0

∑

k∈Z

M
(∣∣∣f̂(k)

∞∑

j=0

(−1)j
(
α

j

)
e−ikjh

∣∣∣/a
)

≤
∑

k∈Z

M
( ∞∑

j=0

∣∣∣
(
α

j

)∣∣∣ |f̂(k)|/a
)

≤
∑

k∈Z

M
(
2{α}|f̂(k)|/a

)
. (7.1)

and hence (i) holds. Property (ii) is obvious:

[∆α
hf ]̂(k) =

[ ∞∑

j=0

(−1)j
(
α

j

)
fjh

]
̂(k) = f̂(k)

∞∑

j=0

(−1)j
(
α

j

)
e−ikjh = (1 − e−ikh)αf̂(k), (7.2)

and property (iii) is its consequence. Part (iv) follows by (i)–(iii).
To prove (v) we first show that the following relation holds:

lim
|h|→0

‖∆α
hτn‖M = 0 (7.3)

where τn is an arbitrary polynomial of the form τn(x)=
∑

|k|≤n cke
ikx, n ∈ N, ck ∈ C.

Since ‖τn‖M = inf{a > 0 :
∑

|k|≤nM(|ck|/a) ≤ 1}, then taking into the account (ii), for

a0 = |nh|α‖τn‖M , we obtain

∑

|k|≤n

M
(
|[∆α

hτn]̂(k)|/a0
)
=
∑

|k|≤n

M
(
|1− e−ikh|α|ck|/a0

)
=
∑

|k|≤n

M
(
2α
∣∣∣ sin kh

2

∣∣∣
α

|ck|/a0

)

≤
∑

|k|≤n

M
(
|kh|α|ck|/a0

)
≤
∑

|k|≤n

M
(
|nh|α|ck|/a0

)
=
∑

|k|≤n

M
(
|ck|/‖τn‖M

)
≤ 1. (7.4)

Therefore, ‖∆α
hτn‖M ≤ |nh|α‖τn‖M . For an arbitrary ε > 0, we set δ := δ(ε) =

(
ε/nα‖τn‖M

)1/α
.

Then for all |h| < δ, we have ‖∆α
hτn‖M < ε, i.e., relation (7.3) is indeed fulfilled.

Now let f is an arbitrary function from SM and Sn(f, x) =
∑

|k|≤n f̂(k)e
ikx is its Fourier sum.

Since the value ‖f − Sn(f)‖M tends to zero as n → ∞, then for any ε > 0 there exist a positive
integer n0 = n0(ε) such that for any n > n0, we have

‖f − Sn(f)‖M < ε/2{α}+1,
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Furthermore, by virtue of (7.3), there exist a number δ := δ(ε, n) such that ‖∆α
hSn(f)‖M < ε

2

when |h| < δ. Then using properties of norm and (i), for n > n0 we get

‖∆α
hf‖M ≤ ‖∆α

h(f − Sn(f))‖M + ‖∆α
hSn(f)‖M ≤ 2{α}‖f − Sn(f)‖M + ‖∆α

hSn(f)‖M < ε,

which yields (v). �

Proof of Lemma 2.2. In (i), the convergence to zero for δ → 0+ follows by Lemma 2.1 (v).
Part (v) is the consequence of Lemma 2.1 (i). Property (iii), non-negativity and increasing of the
function ωα(f, t)M follow from the definition of modulus of smoothness. According to Lemma 2.1
(i) and (iii), for arbitrary numbers 0 < β ≤ α, we have

‖∆α
hf‖M = ‖∆α−β

h (∆β
hf)‖M ≤ 2{α−β}‖∆β

hf‖M ,

whence passing to the exact upper bound over all |h| ≤ δ, we obtain (ii). Part (iv) is proved by
the following standard arguments:

ω1(f, δ1 + δ2)M = sup
|h1|≤δ1,|h2|≤δ2

‖f(x+ h1 + h2)− f(x)‖
M

≤ sup
|h2|≤δ2

‖f(x+ h1 + h2)− f(x+ h1)‖M

+ sup
|h1|≤δ1

‖f(x+ h1)− f(x)‖
M

≤ ω1(f, δ2)M + ω1(f, δ1)M .

In particular, this yields the continuity of the function ω1(f, δ)M , since for arbitrary δ1 > δ2 > 0,
ω1(f, δ1)M − ω1(f, δ2)M ≤ ω1(δ1 − δ2)M → 0 as δ1 − δ2 → 0.

Let us prove the continuity of ωα(f, δ)M for arbitrary α > 0. Let 0<δ1<δ2 and h = h1 + h2,

where 0 < h1 ≤ δ1, 0 < h2 ≤ δ2 − δ1. Since ∆α
hf(δ) = ∆α

h1
f(δ) +

∑∞
j=0

(
α
j

)
(−1)j∆1

jh2
f(δ − jh1)

and
∥∥∥

∞∑

j=0

(
α

j

)
(−1)j∆1

jh2
fjh1

∥∥∥
M

= inf

{
a > 0 :

∑

k∈Z

M
(∣∣∣
[ ∞∑

j=0

(
α

j

)
(−1)j∆1

jh2
fjh1

]
̂(k)

∣∣∣/a
)
≤ 1

}

≤ inf

{
a > 0 :

∑

k∈Z

M
(
|2{α}α[∆1

h2
f ]̂(k)|/a

)
≤ 1

}
≤ 2{α}α‖∆1

h2
f‖

M
,

then ‖∆α
hf‖M ≤ ‖∆α

h1
f‖

M
+2{α}α‖∆1

h2
f‖

M
and ωα(f, δ2)M ≤ ωα(f, δ1)M+2{α}αω1(f, δ2−δ1)M .

Hence, we obtain the necessary relation:

ωα(f, δ2)M − ωα(f, δ1)M ≤ 2{α}αω1(f, δ2 − δ1)M → 0, δ2 − δ1 → 0.

If there exists a derivative f (β) ∈ SM , 0 < β ≤ α, then by virtue of (7.2) and (2.4), for arbitrary
numbers k ∈ Z \ {0} and h ∈ [0, δ], we have
∣∣∣[∆α

hf ]̂(k)
∣∣∣ = 2β

∣∣∣ sin kh
2

∣∣∣
β

|1−e−ikh|α−β |f̂(k)| ≤ δβ|k|β |1−e−ikh|α−β |f̂(k)| ≤ δβ
∣∣∣[∆α−β

h f (β)]̂(k)
∣∣∣,

and therefore property (vi) holds.
If α ∈ N and p ∈ N, then using the representation

∆α
phf(x) =

p−1∑

k1=0

. . .

p−1∑

kα=0

∆α
hf(x− (k1 + k2 + . . .+ kα)h),

and the relation
∣∣∣[∆α

hf(x− (k1 + . . .+ kα)h)]̂(k)
∣∣∣ =

∣∣∣ 1
2π

∫ π

−π

α∑

j=0

(−1)j
(
α

j

)
fjh(x− (k1 + . . .+ kα)h)e

−ikx dx
∣∣∣

≤
∣∣∣ 1
2π

∫ π

−π

α∑

j=0

(−1)j
(
α

j

)
fjh(x)e

−ikx dx
∣∣∣ =

∣∣∣[∆α
hf(x)]̂(k)

∣∣∣,
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we get

‖∆α
phf(x)‖M = inf

{
a > 0 :

∑

k∈Z

M
(∣∣∣

p−1∑

k1=0

. . .

p−1∑

kα=0

[∆α
hf(x− (k1 + . . .+ kα)h)]̂(k)

∣∣∣/a
)
≤ 1
}

≤ inf
{
a > 0 :

∑

k∈Z

M
(
pα
∣∣∣[∆α

hf(x)]̂(k)
∣∣∣/a
)
≤ 1
}
≤ pα‖∆α

hf(x)‖M ,

and property (vii) is proved. To prove (viii) it is sufficient to consider the case δ < η (for δ ≥ η,
property (viii) is obvious). Choosing the number p such that η

δ ≤ p < η
δ + 1, by virtue (i) and

(vii), we obtain

ωα(f ; η) ≤ ωα(f ; pδ)M ≤ pαωα(f ; δ)M ≤ (
η

δ
+ 1)αωα(f, δ)M .

�

Proof of Lemma 3.1. The right-hand side of inequality (3.5) is obtained from the Young

inequality uv ≤M(u) + M̃(v), where u, v ≥ 0, (see, e.g. [15, Ch. 1, §2]) as follows

‖f‖∗
M
/‖f‖

M
=

∥∥∥f/‖f‖M
∥∥∥
∗

M

= sup
{∑

k∈Z

λk|f̂(k)|/‖f‖M : λ ∈ Λ
}

≤ sup
{∑

k∈Z

(
M(|f̂(k)|/‖f‖

M
) + M̃(λk)

)
: λ ∈ Λ

}
≤ 2.

To prove the left-hand side of the inequality (3.5), we choose an arbitrary function f ∈ SM such
that ‖f‖∗

M
= 1, and show that for this function the inequality ‖f‖

M
≤ 1 holds.

Using the relationM(u) =
∫ u
0
p(t) dt, u ≥ 0, we define the function p = p(t), t ≥ 0, and consider

the sequence λ∗ = {λ∗k}k∈Z, where λ
∗
k := p(|f̂(k)|). Then for any k ∈ Z, the inequality

λ∗k|f̂(k)| =M(|f̂(k)|) + M̃(λ∗k). (7.5)

holds (see [15]). Also note that for any Orlicz function M the function M̃ , defined by (3.3), is also
convex (see [15]) and satisfies the inequality

M̃(µv) ≤ µM̃(v), 0 ≤ µ ≤ 1. (7.6)

If we assume that
∑

k∈Z
M̃(λ∗k) > 1, then by (7.6) we see that

∑

k∈Z

M̃

(
λ∗k∑

j∈Z
M̃(λ∗j )

)
≤
∑

k∈Z

M̃(λ∗k)∑
j∈Z

M̃(λ∗j )
≤ 1. (7.7)

Taking into account (7.5), (7.7), the definition of the set Λ and the equality ‖f‖∗
M

= 1, we get the

contradiction
∑

k∈Z

M(|f̂(k)|) +
∑

k∈Z

M̃(λ∗k) =
∑

k∈Z

λ∗k|f̂(k)| =
∑

i∈Z

M̃(λ∗i )
∑

k∈Z

|f̂(k)|
λ∗k∑

i∈Z
M̃(λ∗i )

≤
∑

i∈Z

M̃(λ∗i ) sup
{∑

k∈Z

λk|f̂(k)| : λ ∈ Λ
}
=
∑

k∈Z

M̃(λ∗k).

Consequently,
∑

k∈Z
M̃(λ∗k) ≤ 1 and therefore λ∗k ∈ Λ. Then, taking into account (7.5), we obtain

∑

k∈Z

M(f̂(k)) ≤
∑

k∈Z

|f̂(k)|λ∗k ≤ ‖f‖∗
M

= 1,

hence, ‖f‖
M

≤ 1. �
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Proof of Lemma 6.1. Since for any polynomial of the form τn(x)=
∑

|k|≤n cke
ikx we have

‖τ
(α)
n ‖

M
= inf{a > 0 :

∑
|k|≤nM(|k|α|ck|/a) ≤ 1}, then similarly to (7.4), we obtain

∑

|k|≤n

M
(
|[∆α

hτn]̂(k)|/a1
)
≤
∑

|k|≤n

M
(
|kh|α|ck|/a1

)
≤
∑

|k|≤n

M
(
|k|α|ck|/‖τ

(α)
n ‖

M

)
≤ 1,

when a1 := |h|α‖τ
(α)
n ‖

M
. Therefore, ‖∆α

hτn‖M ≤ |h|α‖τ
(α)
n ‖

M
.

In (6.2), the first inequality is trivial in the cases where h = 0 or |h| = 2π/n. So, now let
0 < |h| < 2π/n. Since

‖∆α
hτn‖M = inf

{
a > 0 :

∑

|k|≤n

M
(
2α
∣∣∣ sin kh

2

∣∣∣
α

|ck|/a
)
≤ 1
}

and the function t/ sin t increase on (0, π), then for a2 :=
∣∣∣ n/2
sin(nh/2)

∣∣∣
α

‖∆α
hτn‖M we get

∑

|k|≤n

M(|k|α|ck|/a2) =
∑

|k|≤n

M
(∣∣∣ kh/2

sin(kh/2)

∣∣∣
α∣∣∣sin(kh/2)

h/2

∣∣∣
α

|ck|/a2

)

≤
∑

|k|≤n

M
(∣∣∣ nh/2

sin(nh/2)

∣∣∣
α∣∣∣ sin(kh/2)

h/2

∣∣∣
α

|ck|/a2

)
=
∑

|k|≤n

M
(
2α
∣∣∣ sin kh

2

∣∣∣
α

|ck|/‖∆
α
hτn‖M

)
≤ 1.

Thus, the first inequality in (6.2) also holds. �
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[1] AKGÜN R.: Approximating polynomials for functions of Weighted Smirnov-Orlicz spaces, Journ. of Funct.
Spaces and Applic. 2012 (2012), 1–41.
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