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Abstract

Approximative properties of linear summation methods of Fourier series are
considered in the Orlicz type spaces SM . In particular, in terms of approxi-
mations by such methods, constructive characteristics are obtained for classes
of functions whose smoothness moduli do not exceed a certain majorant.
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1. Introduction

Linear methods (or processes) of summation of Fourier series are an im-
portant object of research in approximation theory. In particular, this is due
to the fact that most of these methods naturally generate the corresponding
aggregate of approximation. These topics are well studied in classical func-
tional spaces, such as Lebesgue and Hilbert spaces, the spaces of continues
functions, etc. However, there are relatively fewer papers devoted to similar
topics in the Banach spaces of Orlicz type. It particularly concerns the direct
and inverse theorems of approximation by linear summation methods.

http://arxiv.org/abs/1910.12858v1


In the paper, approximative properties of linear summation methods of
Fourier series are studied in the Orlicz type spaces SM . The spaces SM are
defined in the following way. An Orlicz function M(t) is a non-decreasing
convex function defined for t ≥ 0 such that M(0) = 0 and M(t) → ∞
as t → ∞. Let SM be the space of all 2π-periodic Lebesgue summable
functions f (f ∈ L1) such that the following quantity (which is also called
the Luxemburg norm of f) is finite:

‖f‖
M

:= ‖{f̂(k)}k∈Z‖lM (Z)
= inf

{
a > 0 :

∑

k∈Z

M(|f̂(k)|/a) ≤ 1
}
, (1)

where f̂(k) := [f ]̂(k) = (2π)−1
∫ 2π

0
f(t)e−iktdt, k ∈ Z, are the Fourier coef-

ficients of f . Functions f ∈ L1 and g ∈ L1 are equivalent in the space SM ,
when ‖f − g‖

M
=0.

The spaces SM defined in this way are Banach spaces. They were consid-
ered in [6]. In particular, direct and inverse approximation theorems in terms
of the best approximations of functions and moduli of fractional smoothness
are proved for the spaces SM in [6].

In case M(t) = tp, p ≥ 1, the spaces SM coincide with the well-known
spaces Sp [18] of functions f ∈ L1 with the finite norm

‖f‖
Sp = ‖{f̂(k)}k∈Z‖lp(Z) =

(∑

k∈Z

|f̂(k)|p
)1/p

.

In Sp, approximative properties of linear summation methods of Fourier se-
ries were studied in [17], [16]. The purpose of this paper is to continue
this study of approximative properties of linear summation methods in the
spaces SM . In this case, our attention is drawn to the connection of the
approximative properties of these methods with the differential properties of
the functions, namely, direct and inverse theorems of approximation by the
methods of Zygmund, Abel-Poisson, Taylor-Abel-Poisson are proved, and in
terms of approximations by such methods, constructive characteristics are
given for classes of functions of SM such that the moduli of smoothness of
their generalized derivatives do not exceed a certain majorant.

2. Preliminaries

For any function f ∈ L1 with the Fourier series of the form

S[f ](x) :=
∑

k∈Z

f̂(k)eikx,
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consider the following linear transformations Sn, Z
(s)
n , P̺,s and A̺,r:

Sn(f)(x) :=

n∑

k=−n

f̂(k)eikx, n = 0, 1, . . . ,

Z(s)
n (f)(x) :=

n∑

k=−n

(
1−

( |k|

n+ 1

)s)
f̂(k)eikx, s > 0,

P̺,s(f)(x) :=
∑

k∈Z

̺|k|
s

f̂(k)eikx, s > 0, ̺ ∈ [0, 1),

and
A̺,r(f)(x) :=

∑

k∈Z

λ|k|,r(̺)f̂ke
ikx, (2)

where for k = 0, 1, . . . , r − 1, the numbers λk,r(̺) ≡ 1 and

λk,r(̺) :=

r−1∑

j=0

(
k

j

)
(1− ̺)j̺k−j, k = r, r + 1, . . . , ̺ ∈ [0, 1]. (3)

The expressions Sn(f), Z
(s)
n (f) and P̺,s(f) are called the partial sum of

the Fourier series, the Zygmund sum and the generalised Abel-Poisson sum
of the function f , respectively. The expression A̺,r(f) is called the Taylor-

Abel-Poisson sum of the function f . If s = 1, then the sum Z
(s)
n (f) coincides

with the the Fejér sum of the function f , i.e.,

Z(1)
n (f)(x) = σn(f)(x) :=

1

n+ 1

n∑

k=0

Sk(f)(x) =
n∑

k=−n

(
1−

|k|

n+ 1

)
f̂(k)eikx.

Note that the transformation A̺,r can be considered as a linear operator
on L1 into itself. Indeed, for k = 0, 1, . . . , r− 1, the numbers λk,r(̺) ≡ 1 and

r−1∑

j=0

(
k

j

)
(1− ̺)j̺k−j ≤ rqkkr−1, where q = max{1− ̺, ̺},

and hence, for any function f ∈ L1 and for any 0 < ̺ < 1, the se-
ries on the right-hand side of (2) is majorized by the convergent series
2r‖f‖

L1

∑∞
k=r q

kkr−1.
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Denote by f (̺, x), 0 ≤ ̺ < 1, the Poisson integral (the Poisson operator)
of f , i.e.,

P (f) (̺, x) :=
1

2π

∫ 2π

0

f(t)P (̺, x− t)dt, (4)

where P (̺, t) = 1−̺2

|1−̺eit|2
is the Poisson kernel.

According to the decomposition of the Poisson kernel in powers of ̺, for
any function f ∈ L1, its Poisson integral P (f)(̺, x), with ̺ ∈ [0, 1) and x ∈ T

can be written in the form

P (f) (̺, x) =
∑

k∈Z

̺|k|f̂ke
ikx. (5)

The sum of the right-hand side of this equality coincides with the sum of the
Abel-Poisson of the series

∑
k∈Z f̂(k)e

ikx, or, what is the same, with the sum
of P̺,1(f)(x). For x = 0, we denote by F (̺) the sum of this series and consider
it as a function of the variable ̺. It is clear that the function F is analytic on
[0, 1). Therefore, in the neighborhood of ̺ ∈ [0, 1) for the functions F , the
following Taylor’s formula is satisfied:

F (t) =
∞∑

k=0

F (k)(̺)

k!
(t− ̺)k.

By direct computation we see that the partial sum of this series of order
r− 1 for t = 1 coincides with the sum A̺,r(f)(0). In particular, for r = 1, we
obtain F (̺) = A̺,1(f)(0) = P̺,1(f)(0).

Consequently, on the one hand, the sum of A̺,r(f)(0) can be interpreted
as the Taylor sum of order r − 1 of the function F , and on the other hand,
for r = 1, it can be interpreted as the Abel-Poisson sum.

The operators A̺,r were first studied in [6], where in the terms of these
operators, the author gives the structural characteristic of Hardy-Lipschitz
classes Hr

p Lipα of one variable functions, holomorphic in the unit disc in
the complex plane. Approximative properties of these operators were also
considered in [16], [13]. In general case, the operators P̺,s were perhaps first
considered as the aggregates of approximation of functions of one variable
in [3], [4]. In special cases when r = s = 1, the operators A̺,1 and P̺,1
coincide with each other and generate the Abel-Poisson summation method
of Fourier series. The problem of approximation of 2π-periodic functions by
Abel-Poisson sums has a long history, full of many results. Here we mention
only the books [1], [20], [5], which contain fundamental results in this subject.
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3. Derivatives and moduli of smoothness

Let ψ = {ψ(k)}k∈Z be a numerical sequence whose members are not all
zero and

Z (ψ) := {k ∈ Z : ψ(k) = 0} .

In what follows, assume that the number of elements of the set Z (ψ) is finite.
If for the function f ∈ L1, there exists the function g ∈ L1 with the

Fourier series of the form

S[g](x) =
∑

k∈Z\Z (ψ)

f̂(k)eikx/ψ(k), (6)

then we say that for the function f , there exists ψ-derivative g, for which we
use the notation g = fψ.

This definition of ψ-derivative is adapted to the needs of the research
described in this paper and it is not fundamentally different from the estab-
lished concept of ψ-derivative of A.I. Stepanets [19, Ch. XI].

In the paper, we consider ψ-derivatives defined by the sequences of the
following two forms: 1) ψ(k) = |k|−s, k ∈ Z, s > 0, and 2) ψ(k) = 0 for
|k| ≤ r − 1 and ψ(k) = (|k| − r)!/(|k|!) for |k| ≥ r, where r ∈ N. In the first
case, for ψ-derivative of f , we use the notation f (s) and in the second case,
we use the notation f [r]. If r = 0 then we set f (0) = f [0] = f. Also note that
f (1) = f [1].

In the terms of Poisson integrals, we give the following interpretation of
the derivative f [r]: Assume that ̺ ∈ [0, 1), then

P (f [r])(̺, x) = ̺r
∂r

∂̺r
P (f)(̺, x) (7)

and by virtue of the well-known theorem on radial limit values of the Poisson
integral (see, eg, [14]), for almost all x ∈ T

f [r](x) = lim
̺→1−

∂r

∂̺r
P (f)(̺, x).

The modulus of smoothness of f ∈ SM of the index α > 0 is defined by

ωα(f, δ)M := sup
|h|≤δ

‖∆α
hf‖M = sup

|h|≤δ

∥∥∥
∞∑

j=0

(−1)j
(
α

j

)
f(x− jh)

∥∥∥
M

,
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where δ > 0,
(
α
0

)
:= 1,

(
α
j

)
= α(α− 1) · . . . · (α− j + 1)/j!, j ∈ N.

Let ω be a function defined on the interval [0, 1]. For α > 0, we set

SMH
α
ω :=

{
f ∈ SM : ωα(f, δ)M = O(ω(δ)), δ → 0+

}
.

Further, we consider the functions ω(t), 0 ≤ t ≤ 1, satisfying the following
conditions 1)-4): 1) ω(t) is continuous on [0, 1]; 2) ω(t) is monotonically
increasing; 3) ω(t) 6=0 for t∈(0, 1]; 4) ω(t) → 0 as t→0; and the well-known
Zygmund-Bari-Stechkin conditions (B) and (Bs), s ∈N (see, e.g., [2]):

(B) :
∞∑

v=n+1

v−1 ω(v−1) = O[ω(n−1)]; (Bs) :
n∑

v=1

vs−1 ω(v−1) = O[nsω(n−1)].

Remark 1. From condition (Bs) it follows that lim inf
δ→0+

(δ−sω(δ)) > 0 or that

for any r ≥ s, the quantity (1− ̺)r−sω(1− ̺) ≫ (1− ̺)r as ̺→ 1−.

4. The main results.

Proposition 1. Assume that f ∈ L1, s > 0 and ω is the function satisfying
conditions 1)–4) and (B). The following statements are equivalent:

1) ‖Sn(f
(s))‖

M
= O(nsω(n−1)), n→ ∞;

2)
∥∥∥f − Z

(s)
n (f)

∥∥∥
M

= O(ω(n−1)), n→ ∞;

3) f ∈ SMH
s
ω.

Let us note that in the case when s ∈ N and the function ω satisfies
conditions 1)–4), (B) and (Bs), the relation 1) of Proposition 1 is equivalent
to the corresponding relation for the derivative f [s]:

‖Sn(f
[s])‖

M
= O(nsω(n−1)), n→ ∞. (8)

Indeed, by the definition for |k| < s we have 0 = |f̂ [s](k)| ≤ |f̂ (s)(k)| and for
|k| ≥ s,

|f̂ [s](k)| = |k|(|k| − 1) · . . . · (|k| − s + 1)f̂(k) ≤ |k|s|f̂(k)| = |f̂ (s)(k)|.

Therefore, if the statement 1) of Proposition 1 holds, then

‖Sn(f
[s])‖

M
≤ ‖Sn(f

(s))‖
M

= O(nsω(n−1)), n→ ∞.
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On the other hand, for |k| ≥ s, we have

|f̂ [s](k)| = |k|s ·
(
1−

1

|k|

)
· . . . ·

(
1−

s− 1

|k|

)
|f̂(k)| ≥

|k|s

ss
|f̂(k)| = s−s|f̂ (s)(k)|.

Therefore, taking into account Remark 1, we see that relation (8) yields the
statement 1):

‖Sn(f
(s))‖

M
≤ ‖Ss−1(f

(s))‖
M

+
∥∥∥

∑

s≤|k|≤n

|k|sf̂(k)eikx
∥∥∥
M

≤ ‖Ss−1(f
(s))‖

M
+ ss‖Sn(f

[s])‖
M

= O(nsω(n−1)), n→ ∞.

Hence, the following assertion is valid:

Proposition 2. Assume that f ∈ L1, s ∈ N and ω is the function, satisfying
conditions 1)–4), (B) and (Bs). The following statements are equivalent:

1) ‖Sn(f
{s})‖

M
= O(nsω(n−1)), n→ ∞, where f {s} is one of the deriva-

tives f [s] or f (s);

2)
∥∥∥f − Z

(s)
n (f)

∥∥∥
M

= O(ω(n−1)), n→ ∞;

3) f ∈ SMH
s
ω.

In the case when s = 1, we have f (1) = f [1] and Z
(1)
n (f) = σn(f).

Corolarly 1. Assume that f ∈ L1 and ω is the function, satisfying condi-
tions 1)–4) and (B). The following statements are equivalent:

1) ‖Sn(f
[1])‖

M
= O(nω(n−1)), n→ ∞;

2) ‖f − σn(f)‖
M

= O(ω(n−1)), n→ ∞;

3) f ∈ SMH
1
ω.

The proof of these and others assertions will be given in Section 6. Let us
give some comments. First, let us note that in the proposed assertions,the
equivalence 2) ⇔ 3) is the statement of the type direct and inverse theorem
for Zygmund and Fejér method [5].

In the papers [9, 10, 11, 12], Móricz investigated properties of 2π-periodic
functions represented by Fourier series, which convergent absolutely. In par-
ticular, in [9] and [12], the author found the conditions under which such
functions satisfy the Lipshitz and Zygmund condition respectively.

In the cases where M(t) = t and ω(t) = tβ, the implication 1) ⇒ 3) of
Corollary 1 (β ∈ (0, 1)) coincides with the statements (i) of Theorem 1 [9]
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and the implication 1) ⇒ 3) of Proposition 1 (β ∈ (0, 2)) coincides with the
statements (i) of Theorem 1 [10].

In the following theorem, we give the direct and inverse theorem of the
approximation of functions by the linear operator A̺,r in the space SM and
constructive characteristics for classes of functions of SM such that the moduli
of smoothness of their generalized derivatives do not exceed majorants ω.

Theorem 1. Assume that f ∈ L1, s, r ∈ N, s ≤ r and ω is the function,
satisfying conditions 1)–4), (B) and (Bs). The following statements are
equivalent:

1) ‖f − A̺,r(f)‖M = O((1− ̺)r−sω(1− ̺)), ̺→ 1−;

2)
∥∥P (f [r])(̺, ·)

∥∥
M

= O((1− ̺)−sω(1− ̺)), ̺→ 1−;

3) ‖Sn(f
[r])‖

M
= O(nsω(n−1)), n→ ∞;

4) f [r−s] ∈ SMH
s
ω.

Let us note that the implication 2) ⇒ 3) is the statement of the Hardy-
Littlewood type theorems [8].

Remark 2. In Remark 1 it is noted that from the condition (Bs) it follows
that (1 − ̺)r−sω(1 − ̺) ≫ (1 − ̺)r as ̺ → 1−. Therefore, if the condition
(Bs) is satisfied, then the quantity on the right-hand side of the relation
in statement 1) decreases to zero as ̺ → 1− not faster, than the function
(1−̺)r. Also note that the relation ‖f−A̺,r(f)‖M = o ((1− ̺)r)) , ̺→ 1−,

holds only in the trivial case when f(x) =
∑

|k|≤r−1 f̂ke
ikx, and in such case,

the theorems are easily true. This fact is related to the so-called saturation
property of the approximation method, generated by the operator A̺,r. In
particular, in [15], it was shown that the operator A̺,r generates the linear
approximation method of holomorphic functions, which is saturated in the
Hardy space Hp with the saturation order (1 − ̺)r and the saturation class
Hr−1
p Lip 1.
Consider approximative properties of the sums P̺,s(f) in the space SM .
Let us prove that for any function f ∈ SM such that the derivative f (s) ∈

SM , the following relation holds:

‖f−P̺,s(f)‖M ∼ ‖f (s−1)−P̺,1(f
(s−1))‖

M
∼ (1−̺)‖f (s)‖

M
, ̺→ 1− . (9)

For this, let us show that

‖f − P̺,s(f)‖M ∼ (1− ̺)‖f (s)‖
M
, ̺→ 1− . (10)

8



The second relation in (9) is proved similarly.
For any n ∈ N, we have 1−̺n = (1−̺)(1+ ̺+ . . .+ ̺n−1). Then setting

b1 := (1− ̺)‖f (s)‖
M
, we get for all ̺ ∈ (0, 1),

∑

k∈Z

M
(
(1− ̺|k|

s

)|f̂(k)|/b1

)
≤

∑

k∈Z

M
(
(1− ̺)|k|s|f̂(k)|/b1

)
≤ 1.

Therefore, ‖f − P̺,s(f)‖M ≤ (1− ̺)‖f (s)‖
M
.

On the other hand side, since f (s) ∈ SM , then for any ε > 0 there exists
a number N ∈ N such that for all n ≥ N

‖Sn(f
(s))‖

M
≥ ‖f (s)‖

M
− ε/4

and by the definition of the norm

∑

|k|≤N

M
( |k|s|f̂(k)|

‖f (s)‖
M

− ε/2

)
≥

∑

|k|≤N

M
( |k|s|f̂(k)|

‖Sn(f (s))‖
M

− ε/4

)
> 1.

Choosing ̺0 such that for all ̺ ∈ (̺0, 1) and |k| ≤ N , the following inequality
holds:

(‖f (s)‖
M

− ε/2)(1 + ̺+ . . .+ ̺|k|
s−1) > |k|s(‖f (s)‖

M
− ε)

we see that for such ̺ and b2 := (1− ̺)(‖f (s)‖
M

− ε)

∑

k∈Z

M
(
(1−̺|k|

s

)|f̂(k)|/b2

)
≥

∑

|k|≤N

M
(
(1−̺)(1+̺+ . . .+̺|k|

s−1)|f̂(k)|/b2

)

=
∑

|k|≤N

M
((1 + . . .+ ̺|k|

s−1)|f̂(k)|

‖f (s)‖
M

− ε

)
>

∑

|k|≤N

M
( |k|s|f̂(k)|

‖f (s)‖
M

− ε/2

)
> 1.

Thus, for all ̺ ∈ (̺0, 1), we have ‖f − P̺,s(f)‖M ≥ (1− ̺)(‖f (s)‖
M

− ε) and
hence relation (10) holds.

It is clear that
P̺,1(f)(x) = A̺,1(f)(x).

Therefore, applying Theorem 1 to the function f = g(s−1) with r = 1 and
taking into account relation (9), we obtain the following result.

9



Theorem 2. Assume that f ∈ L1, s ∈ N, and ω is the function, satisfying
conditions 1)–4), (B) and (Bs). The following statements are equivalent:

1) ‖f − P̺,s(f)‖M = O(ω(1− ̺)), ̺→ 1−;

2)
∥∥P (f (s))(̺, ·)

∥∥
M

= O(ω(1−̺)
1−̺

), ̺→ 1−;

3) f (s−1) ∈ SMH
1
ω.

Let us note that in the case where M(t) = tp, p ≥ 1, that is in the spaces
Sp, Proposition 1, Theorem 1 (for s = 1) and Theorem 2 were proved in [16].

5. The equivalence between moduli of smoothness and K-functionals

It is known that approximative properties of functions are well expressed
by their K-functionals. In [16] the authors showed the dependence of the
order of approximation of a given function by the Taylor-Abel-Poisson means
and the behavior of its modulus of smoothness in the spaces Sp. In [13] the
dependence was found for the order of approximation of a given function
by the Taylor-Abel-Poisson means and the behavior of K-functionals of the
function generated by its radial derivatives in the spaces Lp. It is natural
to study the relations the modulus of smoothness and such K-functionals of
functions in the spaces SM .

In the space SM , the Petree K-functional of a function f (see, e.g. [7,
Ch. 6]), which generated by its radial derivative of order n ∈ N, is the
following quantity:

Kn(δ, f)M = inf
{
‖f − g‖

M
+ δn‖g[n]‖

M
: g[n] ∈ SM

}
, δ > 0. (11)

Theorem 3. For any n ∈ N, there exist constants C1(n), C2(n) > 0, such
that for each f ∈ SM and all δ > 0

C1(n)ωn(f, δ)M ≤ Kn(δ, f)M

+δn
∥∥∥

∑

0<|k|≤n−1

f̂(k)eikx
∥∥∥
M

≤ C2(n)ωn(f, δ)M . (12)

Remark 3. Let f ∈ SM . For any α > 0, h ∈ R and k ∈ Z, we have

[∆α
hf ]̂(k) =

[ ∞∑

j=0

(−1)j
(
α

j

)
f(· − jh)

]
̂(k)

10



= f̂(k)
∞∑

j=0

(−1)j
(
α

j

)
e−ikjh = (1− e−ikh)αf̂(k). (13)

For a fixed r = 0, 1, . . . we denote by fr the function from SM such that
f̂r(k) = 0 when |k| ≤ r, and f̂r(k) = f̂(k) when |k| > r. Then according to
(13), we have ‖∆α

hf‖M = ‖∆α
hf0‖M and therefore,

ωα(f, δ)M = ωα(f0, δ)M . (14)

On the other hand, by virtue of (11) and the definition of the radial derivative,
it is clear that infimum on the right-hand side of (11) is attained at the set

Gn,f of all functions g ∈ SM such that g[n] ∈ SM and ĝ(k) = f̂(k) for
|k| ≤ n− 1. Hence,

Kn(δ, f)M = Kn(δ, fn−1)M . (15)

Thus, in (12), we use the term δn
∥∥∥
∑

0<|k|≤n−1 f̂(k)e
ikx

∥∥∥
M

which takes into

account the peculiarities of relations (14) and (15).

6. Proof of the results.

Proof of Proposition 1. Implication 1) ⇒ 2). For any n ∈ N, we
have

∥∥f − Z(s)
n (f)

∥∥
M

≤ (n + 1)−s
∥∥∥
∑

|k|≤n

|k|sf̂(k)eikx
∥∥∥
M

+
∥∥∥
∑

|k|>n

f̂(k)eikx
∥∥∥
M
. (16)

Therefore, if relation 1) holds, then

(n + 1)−s
∥∥∥
∑

|k|≤n

|k|sf̂(k)eikx
∥∥∥
M

= (n+ 1)−s
∥∥∥
∑

|k|≤n

f̂ (s)(k)eikx
∥∥∥
M

=

= (n+ 1)−s‖Sn(f
(s))‖

M
= O(ω(n−1)), n→ ∞. (17)

To estimate the second term in (16), fix an integer N > n and apply the
Abel transformation,

∥∥∥
∑

n<|k|≤N

f̂(k)eikx
∥∥∥
M

=
∥∥∥

∑

n<|k|≤N

|k|−sf̂ (s)(k)eikx
∥∥∥
M

11



=
∥∥∥

N−1∑

j=n+1

( 1

js
−

1

(j + 1)s

) ∑

|k|≤j

f̂ (s)(k)eikx

+N−s
∑

|k|≤N

f̂ (s)(k)eikx − (n + 1)−s
∑

|k|≤n

f̂ (s)(k)eikx
∥∥∥
M

Then ∥∥∥
∑

n<|k|≤N

f̂(k)eikx
∥∥∥
M

≤ s

N−1∑

j=n+1

j−s−1‖Sj(f
(s))‖

M

+N−s‖SN(f
(s))‖

M
+ (n+ 1)−s‖Sn(f

(s))‖
M
.

If relation 1) holds, then there exist a number C1 > 0 such that for all integers
N > n,

∥∥∥
∑

n<|k|≤N

f̂(k)eikx
∥∥∥
M

≤ C1

( N−1∑

j=n+1

ω(j−1)/j + ω(N−1) + ω(n−1)
)

≤ C1

( ∞∑

j=n+1

ω(j−1)/j + 2ω(n−1)
)
.

In view of the condition (B), this yields that

∥∥∥
∑

|k|>n

f̂(k)eikx
∥∥∥
M

= O(ω(n−1)), n→ ∞. (18)

Combining relations (16)–(18), we get the relation 2). Furthermore, since
ω(δ)→0 as δ → 0+, then from 2), it follows that f ∈ SM .

2) ⇒ 3). Let us set n := [1/δ] − 1. By virtue of (13), for any |h| ≤ δ
and |k| ≤ n, we have

|[∆s
hf ]̂(k)| = |1− e−ikh|s|f̂(k)| =

∣∣∣2 sin hk
2

∣∣∣
s

|f̂(k)|

≤ δs|k|s|f̂(k)| ≤ (n+ 1)−s|k|s|f̂(k)|,

and |[∆s
hf ]̂(k)| ≤ |f̂(k)| when |k| > n. Let a1 := ‖f − Z

(s)
n (f)‖

M
. Then

∑

k∈Z

M(|[∆s
hf ]̂(k)|/a1) ≤

∑

|k|≤n

M((n + 1)−s|k|s|f̂(k)|/a1)

12



+
∑

|k|>n

M(|f̂(k)|/a1) ≤ 1

Therefore, for any |h| ≤ δ,

‖∆s
hf‖M ≤ ‖f − Z(s)

n (f)‖
M

= O(ω(n−1)) = O(ω(δ)), δ → 0+,

and hence f ∈ SMH
s
ω.

3) ⇒ 1). Setting hn := π/n, n ∈ N, and a2 := (n/2)s‖∆s
hn
f‖

M
, by

virtue of the inequality thn ≤ π sin(thn/2), which is valid for all t ∈ [0, n],
we see that

∑

|k|≤n

M
(
|f̂ (s)(k)|/a2

)
=

∑

|k|≤n

M
(
hsn|k|

s|f̂(k)|/(a2h
s
n)
)

≤
∑

|k|≤n

M
(
πs
∣∣∣ sin khn

2

∣∣∣
s

|f̂(k)|/(a2h
s
n)
)
≤

∑

k∈Z

M
(∣∣∣2 sin khn

2

∣∣∣
s |f̂(k)|

‖∆s
hn
f‖

M

)
≤ 1.

Thus,
‖Sn(f

(s))‖
M

≤ (n/2)s‖∆s
hnf‖M

≤ (n/2)sωs(f, π/n)M = O(nsω(n−1)), n→ ∞.
�

It should be noted that in the case where M(t) = t, ω(t) = tβ, β > 0, the
equivalence of the relations 1) and (18) was also proved in [9, Lemma 1].

Proof of Theorem 1. It is shown above that the Theorem 2 follows
from Theorem 1. Therefore, it remains to prove the truth of Theorem 1.

1) ⇒ 2). Since

ν∑

j=0

(
ν

j

)
(1− ̺)j̺ν−j = ((1− ̺) + ̺)ν = 1, ν = 0, 1, . . . , (19)

then for a3 := ‖f −A̺,r(f)‖M , we have

1 ≥
∑

|k|≥r

M
(
|1− λ|k|,r(̺)||f̂(k)|/a3

)

=
∑

|k|≥r

M
(∣∣∣1−

r−1∑

j=0

(
|k|

j

)
(1− ̺)j̺|k|−j

∣∣∣|f̂(k)|/a3
)

13



=
∑

|k|≥r

M
( |k|∑

j=r

(
|k|

j

)
(1− ̺)j̺|k|−j|f̂(k)|/a3

)

≥
∑

|k|≥r

M
((|k|

r

)
(1− ̺)r̺|k|−r|f̂(k)|/a3

)
. (20)

On the other hand, by virtue of (7),

‖P (f [r])(̺, ·)‖
M

=
∥∥∥̺r ∂

r

∂̺r
P (f)(̺, ·)

∥∥∥
M

= inf
{
a > 0 :

∑

|k|≥r

M
(
r!

(
|k|

r

)
̺|k||f̂(k)|/a

)
≤ 1

}
.

Combining these relations and equality (7), we see that for ̺→ 1−,

‖P (f [r])(̺, ·)‖
M

≤ r!̺r(1− ̺)−r‖f −A̺,r(f)‖M = O((1− ̺)−sω(1− ̺)).

2) ⇒ 3). For a4 := ‖P (f [r])(̺, ·)‖
M

and for any numbers n > r and
̺ ∈ [0, 1), we have

1 ≥
∑

|k|≥r

M
((|k|

r

)
r!̺|k||f̂(k)|

a4

)

≥
∑

r≤|k|≤n

M
(
̺n
(
|k|

r

)
r!|f̂(k)|

a4

)
=

∑

r≤|k|≤n

M
(̺n|f̂ [r](k)|

a4

)
.

This yields ‖Sn(f
[r])‖

M
≤ ̺−n‖P (f [r])(̺, ·)‖

M
and putting ̺ = 1 − 1/n and

taking into account statement 2), we see that

‖Sn(f
[r])‖

M
≤ (1− 1/n)−nO(nsω(n−1)) = O(nsω(n−1)), as n→ ∞.

3) ⇒ 4). Let us set g := f [r−s]. By the definition, for |k| ≥ r, we have

|f̂ [r](k)| =
|k|!|f̂(k)|

(|k| − r)!
= |g[s](k)|

(|k| − r + 1)(|k| − r + 2) · . . . · (|k| − r + s)

|k|(|k| − 1) · . . . · (|k| − s+ 1)

≥ |g[s](k)|
(
1−

r − 1

|k|

)s
≥ r−s|g[s](k)|.

14



Therefore, taking into account Remark 1, we get

‖Sn(g
[s])‖

M
≤ ‖Sr−1(g

[s])‖
M

+
∥∥∥

∑

r≤|k|≤n

g[s](k)eikx
∥∥∥

≤ ‖Sr−1(g
[s])‖

M
+ rs‖Sn(f

[r])‖
M

= O(nsω(n−1)), n→ ∞.

Then by virtue of Proposition 2, we see that ‖g−Z
(s)
n (g)‖

M
= O(ω(n−1)),

n→ ∞, hence, g = f [r−s] ∈ SM , f ∈ SM and f [r−s] ∈ SMH
s
ω.

4) ⇒ 3). If g := f [r−s], then according to Proposition 2, we get

‖Sn(g
[s])‖

M
= O(nsω(n−1)), n→ ∞.

For |k| < r we have f̂ [r](k) = 0 and for |k| ≥ r,

|f̂ [r](k)| =
|k|!

(|k| − r)!
|f̂(k)| ≤

|k|!

(|k| − s)!

|k|!

(|k| − r + s)!
|f̂(k)| = |g[s](k)|.

Thus
‖Sn(f

[r])‖
M

≤ ‖Sn(g
[s])‖

M
= O(nsω(n−1)), n→ ∞.

3) ⇒ 1). From identity (19), it follows that for any ̺ ∈ [0, 1],

ν∑

j=r

(
ν

j

)
(1− ̺)j̺ν−j ≤ 1, ν ≥ r.

This implies the relation

∑

|k|≥r

M
(
|1− λ|k|,r(̺)|

|f̂(k)|

a5

)
=

∑

|k|≥r

M
( |k|∑

j=r

(
|k|

j

)
(1− ̺)j̺|k|−j

|f̂(k)|

a5

)

≤
∑

|k|≥r

M
( |f̂(k)|

a5

)
≤ 1,

where a5 := ‖f‖
M
, and therefore, we have ‖f − A̺,r(f)‖M ≤ ‖f‖

M
< ∞.

From this relation, we conclude that for any ε > 0 there exists the number
n0 such that for all n > n0 and all ̺ ∈ [0, 1),

‖f − A̺,r(f)‖M ≤
∥∥∥

∑

r≤|k|≤n

|k|∑

j=r

(
|k|

j

)
(1− ̺)j̺|k|−jf̂(k)eikx

∥∥∥
M

+ ε. (21)
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Let us use the following inequality

ν∑

j=r

(
ν

j

)
(1− ̺)j̺ν−j ≤

(
ν

r

)
(1− ̺)r (22)

which is valid for all ν ≥ r and ̺ ∈ [0, 1] (see, for example [16]). Putting
a6 := (1− ̺)r‖Sn(f

[r])‖
M
/r!, we get

∑

r≤|k|≤n

M
( |k|∑

j=r

(
|k|

j

)
(1−̺)j̺|k|−j

|f̂(k)|

a6

)
≤

∑

r≤|k|≤n

M
(
(1−̺)r

(
|k|

r

)
|f̂(k)|

a6

)
≤ 1.

Thus,

∥∥∥
∑

r≤|k|≤n

|k|∑

j=r

(
|k|

j

)
(1− ̺)j̺|k|−j f̂(k)eikx

∥∥∥
M

≤
(1− ̺)r

r!
‖Sn(f

[r])‖
M
. (23)

Combining relations (21) and (23) and putting n := n̺ = [(1 − ̺)−1], where
[·] means the integer part of the number, we get

‖f −A̺,r(f)‖M ≤
(1− ̺)r

r!
‖Sn(f

[r])‖
M

+ ε

= (1− ̺)rO(ns̺ω(n
−1
̺ )) + ε = O((1− ̺)r−sω(1− ̺)) + ε,

as ̺ → 1−. By virtue of arbitrary ε, from this relation it follows that the
implication 3) ⇒ 1) is true.

�

Proof of Theorem 3. Before proving Theorem 3, let us formulate some
known auxiliary statements.

Lemma 4. [6] Assume that f, g ∈ SM , α, δ > 0, h ∈ R. Then
(i) ‖∆α

hf‖M ≤ K(α)‖f‖
M
, where K(α) :=

∑∞
j=0 |

(
α
j

)
| ≤ 2{α},

{α} = inf{k ∈ N : k ≥ α}.
(ii) ωα(f + g, δ)

M
≤ ωα(f, δ)M + ωα(g, δ)M .

(iii) ωα(f, δ)M ≤ 2{α}‖f‖
M
.

Lemma 5. [6] Assume that α > 0, n ∈ N and 0 ≤ h ≤ 2π/n. Then for any
polynomial τn(x)=

∑
|k|≤n cke

ikh

(sin(nh/2)
n/2

)α
‖τ (α)n ‖

M
≤ ‖∆α

hτn‖M ≤ hα‖τ (α)n ‖
M
. (24)
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Lemma 6. [6] If f ∈ SM , then for any numbers α > 0 and m ∈ N the
following inequality holds:

‖f − Sm(f)‖M = Em+1(f)M ≤ C(α)ωα(f,m
−1)M . (25)

where C = C(α) is a constant that does not depend on f and n.
Consider an arbitrary function g from the set Gn,f defined in Remark 3.

By virtue (13), if |h| < δ, then [∆n
hg]̂(0) = 0, for all 0 < |k| ≤ n− 1,

∣∣∣[∆n
hg]̂(k)

∣∣∣ =
∣∣∣2 sin kh

2

∣∣∣
n

|ĝ(k)| ≤ δn|k|n|ĝ(k)|

≤ δn(n− 1)n|ĝ(k)| ≤ δn(n− 1)n|f̂(k)|, (26)

and for |k| ≥ n,
∣∣∣[∆n

hg]̂(k)
∣∣∣ ≤ |k|nδn|ĝ(k)| ≤ δnnn|k| . . . (|k| − n + 1)|ĝ(k)| = δnnn|ĝ[n](k)|.

Therefore, for any |h| < δ, we have

‖∆n
hg‖M ≤ δn(n− 1)n

∥∥∥
∑

0<|k|≤n−1

f̂(k)eikx
∥∥∥
M

+ δnnn‖g[n]‖
M

and hence,

ωn(g, δ) ≤ δn(n− 1)n
∥∥∥

∑

0<|k|≤n−1

f̂(k)eikx
∥∥∥
M

+ δnnn‖g[n]‖
M
. (27)

By virtue of Lemma 4 (ii) and (iii) and relation (27), for any g ∈ Gn,f ,
we have

ωn(f, δ)M ≤ ωn(f − g, δ)
M

+ ωn(g, δ)M

≤ 2n‖f − g‖
M

+ δn(n− 1)n
∥∥∥

∑

0<|k|≤n−1

f̂(k)eikx
∥∥∥
M

.

Taking the infimum of the right hand side of the last relation over all h ∈
Gn,f , we get the left-hand side of (12) with the constant C1 = min{2−n, n−n}.

Now we shall prove the right-hand side of (12). Let Sm := Sm(f0), m ≥ n,
be the Fourier sum of f0 defined in Remark 3. Then for n ≤ |k| ≤ m the

Fourier coefficients of the derivative S
[n]
m

|[S [n]
m ] (̂k)| = |k|(|k| − 1) . . . (|k| − n+ 1)|f̂(k)| ≤ |k|n|f̂(k)| = |[S(n)

m ] (̂k)|
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and [S
[n]
m ] (̂k) = 0 for |k| ∈ N \ [n,m]. Therefore, ‖S

[n]
n ‖

M
≤ ‖S

(n)
m ‖

M
.

Now let δ ∈ (0, 2π) and m ∈ N such that π/m < δ < 2π/m. Using
Lemma 5 with h = π/m and property (i) of Lemma 4, we obtain

‖S [n]
n ‖

M
≤ ‖S(n)

m ‖
M

≤ (m/2)n‖∆n
π/mSm‖M

≤ (m/2)n‖∆n
π/mf‖M ≤ (π/δ)nωn(f, δ)M (28)

and ∥∥∥
∑

0<|k|≤n−1

f̂(k)eikx
∥∥∥
M

≤
∥∥∥

∑

0<|k|≤m

|k|nf̂(k)eikx
∥∥∥
M

≤ (m/2)n‖∆n
π/mf‖M ≤ (π/δ)nωn(f, δ)M . (29)

By virtue of Lemma 6, we have

‖f0 − Sm‖M = Em+1(f0)M ≤ C(n)ωn(f0, δ)M = C(n)ωn(f, δ)M . (30)

Setting C2(n) := C(n) + 2πn and combining (28)–(30) we obtain the
right-hand side of (12):

Kn(δ, f)M + δn
∥∥∥

∑

0<|k|≤n−1

f̂(k)eikx
∥∥∥
M

=Kn(δ, f0)M + δn
∥∥∥

∑

0<|k|≤n−1

f̂(k)eikx
∥∥∥
M

≤ ‖f0 − Sm‖M + δn‖S [n]
m ‖

M
+ δn

∥∥∥
∑

0<|k|≤n−1

f̂(k)eikx
∥∥∥
M

≤ C2(α)ωn(f, δ)M .

�
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