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DIRECT AND INVERSE APPROXIMATION THEOREMS OF

FUNCTIONS IN THE MUSIELAK–ORLICZ TYPE SPACES

FAHREDDIN ABDULLAYEV, STANISLAV CHAICHENKO AND ANDRII SHIDLICH

Abstract. In Musilak-Orlicz type spaces SM , direct and inverse approximation theorems are

obtained in terms of the best approximations of functions and generalized moduli of smoothness.

The question of the exact constants in Jackson-type inequalities is studied.

1. Introduction

In Musilak-Orlicz type spaces SM , we prove direct and inverse approximation

theorems in terms of the best approximations of functions and generalized moduli of

smoothness. Such theorems establish a connection between the smoothness proper-

ties of functions and the behavior of the error of their approximation by various meth-

ods. In particular, direct theorems show that good smoothness properties of a function

(the existence of derivatives of a given order, the specific behavior of the modulus of

smoothness, etc.) imply a good estimate of the error of its approximation. In the case

of best approximation by polynomials, these results are also known as Jackson-type

theorems or Jackson-type inequalities [18]. Inverse theorems characterize smoothness

properties of functions depending on the rapidity with which the errors of best, or any

other, approximations tend to zero. The problem of obtaining inverse theorems in the

approximation of functions was first stated, and in some cases solved, by Bernstein [7].

In ideal cases, the direct and inverse theorems complement each other, and this allows

us to fully characterize a functional class having certain smoothness properties, using,

for example, sequences of best approximations. The results concerning direct and in-

verse connection between the smoothness properties of functions and the errors of their

approximations in classical functional spaces (such as Lebesgue and Hilbert spaces, the

spaces of continues functions, etc) are described quite fully in the monographs [31],

[10], [14], [15], [32] and others.
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In 2001, Stepanets [27] considered the spaces S p =S p(T) of 2π -periodic Lebe-

sgue summable functions f ( f ∈ L ) with the finite norm

‖ f‖p := ‖ f‖
S p = ‖{ f̂ (k)}k∈Z‖lp(Z) :=

(
∑
k∈Z

| f̂ (k)|p
)1/p

, (1)

where f̂ (k) := [ f ]̂(k) = (2π)−1
∫ 2π

0 f (x)e−ikxdx , k ∈ Z , are the Fourier coefficients

of the function f , and investigated some approximation characteristics of these spaces.

Stepanets and Serdyuk [29] introduced the notion of k th modulus of smoothness in S p

and proved direct and inverse theorems on approximation in terms of these moduli of

smoothness and the best approximations of functions. Also this topic was investigated

actively in [30], [33], [34], [28, Ch. 11], [32, Ch. 3], etc.

In [11] and [1], some results for the spaces S p were extended to the Orlicz type

spaces SM and Sp,µ . In particular, in [11] and [1], direct and inverse approxima-

tion theorems were proved in terms of best approximations of functions and moduli of

smoothness of fractional order and a connection was established between K -functional

and such moduli of smoothness. In other Banach spaces, in particular, in Banach spaces

of Orlicz type, topics related to direct and inverse approximation theorems, were inves-

tigated in [16], [4], [19], [20], [26], [3] and others.

Here, we continue such studies and consider the Musilak-Orlicz type spaces SM ,

which are natural generalizations of the spaces SM and Sp,µ . In these spaces, we give

direct and inverse approximation theorems in terms of best approximations of functions

and generalized moduli of smoothness. Particular attention is paid to the study of the

accuracy of constants in Jackson-type inequalities.

2. Preliminaries

Let M = {Mk(u)}k∈Z , u ≥ 0, be a sequence of Orlicz functions. In other words,

for every k ∈ Z , the function Mk(u) is a nondecreasing convex function for which

Mk(0) = 0 and Mk(u)→ ∞ as u → ∞ . The modular space (or Musilak-Orlicz space)

SM is the space of all functions f ∈ L such that the following quantity (which is also

called the Luxemburg norm of f ) is finite:

‖ f‖
M

:= ‖{ f̂ (k)}k∈Z‖lM(Z)
:= inf

{
a > 0 : ∑

k∈Z

Mk(| f̂ (k)|/a)≤ 1

}
. (2)

By definition, we say that the functions f ∈ L and g ∈ L are assumed to be equivalent

in the space SM , when ‖ f − g‖
M
=0.

The spaces SM defined in this way are Banach spaces. Sequence spaces of this

type have been studied by mathematicians since the 1940s (see, for example, the mono-

graphs [23], [24]). If all functions Mk are identical (namely, Mk(u)≡M(u) , k ∈Z), the

spaces SM coincide with the ordinary Orlicz type spaces SM [11]. If Mk(u) = µkupk ,

pk ≥ 1, µk ≥ 0, then SM coincide with the weighted spaces Sp,µ with variable expo-

nents [1]. If all Mk(u) = up , p ≥ 1, then the spaces SM are the above-defined spaces

S p .
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In addition to the Luxembourg norm (2), in the space SM , consider the Orlicz

norm that is defined as follows. Let M̃ = {M̃k(v)}k∈Z be the sequence of functions

defined by the relations

M̃k(v) := sup{uv−Mk(u) : u ≥ 0}, k ∈ Z.

Consider the set Λ=Λ(M̃) of sequences of positive numbers λ = {λk}k∈Z such that

∑k∈Z M̃k(λk)≤1. For any function f ∈ SM , define its Orlicz norm by the equality

‖ f‖∗
M

:= ‖{ f̂ (k)}k∈Z‖l∗M(Z)
:= sup

{
∑
k∈Z

λk| f̂ (k)| : λ ∈ Λ
}
. (3)

The following auxiliary Lemma 1 establishes the equivalence of the Luxembourg

norm (2) and the Orlicz norm (3).

LEMMA 1. For any function f ∈ SM , the following relation holds:

‖ f‖
M

≤ ‖ f‖∗
M

≤ 2‖ f‖
M
. (4)

Relation (4) follows from the similarly relation for corresponding norms in the

modular Orlicz sequence spaces (see, for example [23, Ch. 4]).

Further, denote by ‖ · ‖ one of the norms ‖ · ‖
M

or ‖ · ‖∗
M

.

Let Tn , n = 0,1, . . . , be the set of trigonometric polynomials tn(x) = ∑|k|≤n ckeikx

of the order n , where ck are arbitrary complex numbers. For any f ∈ SM , denote

by En( f )
M

and En( f )∗
M

the best approximations of f by trigonometric polynomials

tn−1 ∈ Tn−1 in the space SM with respect to the norms ‖ ·‖
M

and ‖ ·‖∗
M

respectively,

i.e.,

En( f )
M

:= inf
tn−1∈Tn−1

‖ f − tn−1‖M
and En( f )∗

M
:= inf

tn−1∈Tn−1

‖ f − tn−1‖
∗
M
. (5)

The following auxiliary Lemma 2 characterizes the polynomial of the best approx-

imation in SM .

LEMMA 2. Assume that f ∈ SM . Then

En( f ) := inf
tn−1∈Tn−1

‖ f − tn−1‖= ‖ f − Sn−1( f )‖, (6)

where Sn−1( f ) = Sn−1( f , ·) = ∑|k|≤n−1 f̂ (k)eik· is the Fourier sum of the function f .

Proof. Indeed, for any polynomial tn−1 = ∑|k|≤n−1 ckeik· ∈ Tn−1 , the quantities

|( f − tn−1)̂(k)| = | f̂ (k)− ck| when |k| ≤ n− 1 and |( f − tn−1)̂(k)| = | f̂ (k)| when

|k| ≥ n . Therefore, in view of (2) and (3), the infimum in (6) is reached in the case

when all ck = f̂ (k) , i.e., when tn−1 = Sn−1( f ) . ✷

Let ωα( f ,δ ) be the modulus of smoothness of a function f ∈SM of order α > 0,

i.e.,

ωα( f ,δ ) := sup
|h|≤δ

‖∆α
h f‖ = sup

|h|≤δ

∥∥∥
∞

∑
j=0

(−1) j

(
α

j

)
f (·− jh)

∥∥∥, (7)
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where
(

α
j

)
= α(α−1)·...·(α− j+1)

j!
for j ∈N and

(
α
j

)
= 1 for j = 0. By the definition, for

any k ∈ Z , we have

|[∆α
h f ]̂(k)|= |1− e−ikh|α | f̂ (k)|= 2α

∣∣∣sin
kh

2

∣∣∣
α
| f̂ (k)|. (8)

Now consider the set Φ of all continuous bounded nonnegative pair functions ϕ such

that ϕ(0) = 0 and the Lebesgue measure of the set {t ∈R : ϕ(t) = 0} is equal to zero.

For a fixed function ϕ ∈ Φ , h ∈R and for any f ∈SM , we denote by {[∆
ϕ
h f ]̂(k)}k∈Z

the sequence of numbers such that for any k ∈ Z ,

[∆
ϕ
h

f ]̂(k) = ϕ(kh) f̂ (k). (9)

If there exists a function ∆
ϕ
h f ∈ L whose Fourier coefficients coincide with the numbers

[∆
ϕ
h f ]̂(k) , k ∈ Z , then, as above, the expressions ‖∆

ϕ
h f‖

M
and ‖∆

ϕ
h f‖∗

M
denote Lux-

emburg and Orlicz norms of the function ∆
ϕ
h f . If such a function does not exist, then we

also keep the notation ‖∆
ϕ
h f‖

M
and ‖∆

ϕ
h f‖∗

M
. But in this case, by these notations we

mean the corresponding norm ‖ · ‖
lM(Z)

or ‖ · ‖
l∗M(Z)

of the sequence {[∆
ϕ
h f ]̂(k)}k∈Z .

Also we denote by ‖∆
ϕ
h f‖ any of the expressions ‖∆

ϕ
h f‖

M
and ‖∆

ϕ
h f‖∗

M
Similarly to [25], [8], [9], [22], define the generalized modulus of smoothness ωϕ

of a function f ∈ SM by the equality:

ωϕ( f ,δ ) = sup
|h|≤δ

‖∆
ϕ
h

f‖. (10)

In particular, we set

ωϕ( f ,δ )
M

:= sup
|h|≤δ

‖∆
ϕ
h f‖

M
and ωϕ( f ,δ )∗

M
:= sup

|h|≤δ

‖∆
ϕ
h f‖∗

M
.

It follows from (8) that ωα( f ,δ ) = ωϕ( f ,δ ) when ϕ(t) = 2α |sin(t/2)|α .

3. Direct approximation theorems

In this section, we prove direct approximation theorems in the space SM in terms

of the best approximations and generalized moduli of smoothness, and also establish

Jackson type inequalities with the constants that are the best possible in some important

cases.

Let V (τ) , τ > 0, be a set of bounded nondecreasing functions v that differ from

a constant on [0,τ] .

THEOREM 1. Assume that f ∈ SM . Then for any τ > 0 , n ∈ N and ϕ ∈ Φ , the

following inequality holds:

En( f )∗
M

≤Cn,ϕ(τ)ωϕ

(
f ,

τ

n

)∗

M

, (11)
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where

Cn,ϕ(τ) := inf
v∈V (τ)

v(τ)− v(0)

In,ϕ(τ,v)
, (12)

and

In,ϕ(τ,v) := inf
k∈N:k≥n

τ∫

0

ϕ
(ku

n

)
dv(u). (13)

In this case, there exists a function v∗ ∈V (τ) that realizes the greatest lower bound in

(13).

Proof. Let f ∈ SM , n ∈ N and h ∈ R . According to (6) and (3), we have

En( f )∗
M

= ‖ f − Sn−1( f )‖∗
M

= sup
{

∑
|k|≥n

λk| f̂ (k)| : λ ∈ Λ
}
, (14)

and by the definition of supremum, for arbitrary ε > 0 there exists a sequence λ̃ ∈ Λ ,

λ̃ = λ̃ (ε) , such that the following relations holds:

∑
|k|≥n

λ̃k| f̂ (k)|+ ε ≥ sup
{

∑
|k|≥n

λk| f̂ (k)| : λ ∈ Λ
}
.

In view of (3) and (9), we have

‖∆
ϕ
h f‖∗

M
≥ sup

{
∑
|k|≥n

λkϕ(kh)| f̂ (k)| : λ ∈ Λ
}
≥ ∑

|k|≥n

λ̃kϕ(kh)| f̂ (k)|=

=
In,ϕ(τ,v)

v(τ)− v(0) ∑
|k|≥n

λ̃k| f̂ (k)|+ ∑
|k|≥n

λ̃k| f̂ (k)|
(

ϕ(kh)−
In,ϕ(τ,v)

v(τ)− v(0)

)
.

For any u ∈ [0,τ] , we get

‖∆
ϕ
u
n

f‖∗
M

≥
In,ϕ(τ,v)

v(τ)− v(0) ∑
|k|≥n

λ̃k| f̂ (k)|+ ∑
|k|≥n

λ̃k| f̂ (k)|

(
ϕ
(ku

n

)
−

In,ϕ(τ,v)

v(τ)− v(0)

)
. (15)

The both sides of inequality (15) are nonnegative and, in view of the boundedness of the

function ϕ , the series on its right-hand side is majorized on the entire real axis by the

absolutely convergent series C(ϕ)∑|k|≥n λ̃k| f̂ (k)| , where C(ϕ) := maxu∈Rϕ(u) . Then

integrating this inequality with respect to dv(u) from 0 to τ, we get

τ∫

0

‖∆
ϕ
u
n

f‖∗
M

dv ≥ In,ϕ(τ,v) ∑
|k|≥n

λ̃k| f̂ (k)|+ ∑
|k|≥n

λ̃k| f̂ (k)|

( τ∫

0

ϕ
(ku

n

)
dv− In,ϕ(τ,v)

)
.

By virtue of the definition of In,ϕ(τ,v) , we see that the second term on the right-hand

side of the last relation is nonnegative. Therefore, for any function v ∈V (τ) , we have

τ∫

0

‖∆
ϕ
u
n

f‖∗
M

dv≥ In,ϕ(τ,v) ∑
|k|≥n

λ̃k| f̂ (k)| ≥ In,ϕ(τ,v)

(
sup

{
∑
|k|≥n

λk| f̂ (k)| : λ ∈Λ
}
−ε

)
,

5



wherefrom due to an arbitrariness of choice of the number ε , we conclude that the

inequality
τ∫

0

‖∆
ϕ
u
n

f‖∗
M

dv ≥ In,ϕ(τ,v)En( f )∗
M

is true. Hence,

En( f )∗
M

≤
1

In,ϕ(τ,v)

τ∫

0

‖∆
ϕ
u
n

f‖∗
M

dv ≤
1

In,ϕ(τ,v)

τ∫

0

ωϕ

(
f ,

u

n

)∗

M

dv,

whence taking into account nondecreasing of the function ωϕ , we immediately obtain

relation (11). The existence of the function v∗ ∈ V (τ) realizing the greatest lower

bound in (13) will be given below in the proof of Theorem 2. ✷

COROLLARY 1. Assume that f ∈ SM . Then for any τ > 0 , n ∈ N and ϕ ∈ Φ ,

the following inequality holds:

En( f )
M

≤ 2Cn,ϕ(τ)ωϕ

(
f ,

τ

n

)

M

, (16)

where the quantity Cn,ϕ(τ) is defined by (19).

COROLLARY 2. Assume that f ∈SM . Then for any τ > 0 , n ∈N and α > 0 the

following inequality holds:

En( f ) ≤ 2Cn,α(τ)ωα

(
f ,

τ

n

)
,

where the quantity Cn,α(τ) is defined by (19) with ϕ(t) = 2α |sin(t/2)|α .

For moduli of smoothness ωα( f ,δ )
M

, in the mentioned above spaces SM and

Sp,µ , the inequalities of the type (16) were proved in [11] and [1] correspondingly.

Unlike to [11] and [1], here we find the constant Cn,ϕ (τ) in Jackson-type inequality

(11). Let us see how accurate this constant is. For this, consider the case where all

functions Mk(u) = up
(

p−1/pq−1/q
)p

, p > 1, 1/p+1/q= 1. In this case, all functions

M̃k(v) = vq , the set Λ is a set of all sequences of positive numbers λ = {λk}k∈Z such

that ‖λ‖lq(Z) ≤ 1. Then the spaces SM coincide with the spaces S p , p > 1, and by

Hölder inequality for any f ∈ S p , the following relation holds:

‖ f‖∗
M

= sup
λ∈Λ

∑
k∈Z

λk| f̂ (k)| ≤ sup
λ∈Λ

‖λ‖lp(Z) · ‖{ f̂ (k)}k∈Z‖lp(Z) ≤ ‖ f‖p .

Furthermore, if f 6≡ 0, then for the sequence λ ∗
k = | f̂ (k)|p/q

(
∑ j∈Z | f̂ (k)|

p
)−1/q

, k∈Z ,

we have ∑k∈Z λ ∗
k | f̂ (k)| = ‖ f‖p and ‖λ ∗‖lq(Z) = 1. Therefore, in this case ‖ f‖∗

M
=

‖ f‖p , p > 1.

6



In the case p = 1, the similar equality for norms

‖ f‖∗
M

= ‖ f‖
1

(17)

obviously can be obtained if we consider all Mk(u) = u , k ∈ Z , and the set Λ is a set

of all sequences of positive numbers λ = {λk}k∈Z such that ‖λ‖l∞(Z) = supk∈Z λk ≤ 1.

For fixed n ∈N , τ > 0 and for a given ϕ ∈ Φ , consider the quantity

Kn,ϕ(τ)p := sup
f∈S p

f 6≡const

En( f )p

ωϕ( f ,τ/n)p

= sup
f∈S p

f 6≡const

inf
tn−1∈Tn−1

‖ f − tn−1‖p

sup
|h|≤δ

‖∆
ϕ
h

f‖p

.

THEOREM 2. Assume that f ∈ S p , 1 ≤ p < ∞ . Then for any τ > 0 , n ∈ N and

ϕ ∈ Φ , the following inequality holds:

En( f )p ≤Cn,ϕ,p(τ)ωϕ

(
f ,

τ

n

)

p
, (18)

where

Cn,ϕ,p(τ) :=

(
inf

v∈V (τ)

v(τ)− v(0)

In,ϕ,p(τ,v)

)1/p

, (19)

and

In,ϕ,p(τ,v) := inf
k∈N:k≥n

τ∫

0

ϕ p
(ku

n

)
dv(u). (20)

In this case, there exists a function v∗ ∈V (τ) that realizes the greatest lower bound in

(20). Inequality (18) is unimprovable on the set of all functions f ∈ S p , f 6≡ const , in

the sense that the following equality is true:

Kn,ϕ(τ)p =Cn,ϕ,p(τ). (21)

Proof. Here, we basically use the arguments given in [5], [12], [13] and [29]. Let

f ∈ S p , n ∈ N and h ∈ R . By virtue of (9) and (1), we have

‖∆
ϕ
h f‖p

p
≥ ∑

|k|≥n

ϕ p(kh)| f̂ (k)|p

=
In,ϕ,p(τ,v)

v(τ)− v(0) ∑
|k|≥n

| f̂ (k)|p + ∑
|k|≥n

| f̂ (k)|p
(

ϕ p(kh)−
In,ϕ,p(τ,v)

v(τ)− v(0)

)
.

For any u ∈ [0,τ] , we get

‖∆
ϕ
u
n

f‖p
p
≥

In,ϕ,p(τ,v)

v(τ)− v(0) ∑
|k|≥n

| f̂ (k)|p + ∑
|k|≥n

| f̂ (k)|p
(

ϕ p
(ku

n

)
−

In,ϕ,p(τ,v)

v(τ)− v(0)

)
. (22)

The both sides of inequality (22) are nonnegative and, in view of the boundedness of the

function ϕ , the series on its right-hand side is majorized on the entire real axis by the

7



absolutely convergent series Cp(ϕ)∑|k|≥n | f̂ (k)|
p , where C(ϕ) := maxu∈R ϕ(u) . Then

integrating this inequality with respect to dv(u) from 0 to τ, we get

τ∫

0

‖∆
ϕ
u
n

f‖p
p
dv ≥ In,ϕ,p(τ,v) ∑

|k|≥n

| f̂ (k)|p

+ ∑
|k|≥n

| f̂ (k)|p
( τ∫

0

ϕ p
(ku

n

)
dv− In,ϕ,p(τ,v)

)
. (23)

By virtue of the definition of In,ϕ,p(τ,v) , we see that the second term on the right-hand

side of (3) is nonnegative. Therefore, for any function v ∈V (τ) , we have

τ∫

0

‖∆
ϕ
u
n

f‖p
p
dv ≥ In,ϕ,p(τ,v) ∑

|k|≥n

| f̂ (k)|p ≥ In,ϕ,p(τ,v)E
p
n ( f )p .

Hence,

E p
n ( f )p ≤

1

In,ϕ,p(τ,v)

τ∫

0

‖∆
ϕ
u
n

f‖p
p
dv ≤

1

In,ϕ,p(τ,v)

τ∫

0

ω
p
ϕ

(
f ,

u

n

)

p
dv. (24)

whence taking into account nondecreasing of the function ωϕ , we immediately obtain

relation (18) and the estimate

Kn,ϕ(τ)p ≤Cn,ϕ,p(τ). (25)

Let us show that relation (25) is the equality. By virtue of Lemma 2, we have

Kn,ϕ(τ)p = sup
f∈S p

f 6≡const

∑|k|≥n | f̂ (k)|
p

sup|h|≤τ ∑|k|≥n ϕ p(kh/n)| f̂ (k)|p
. (26)

and in (26), it is sufficient to consider supremum over all functions f ∈ S p such that

∑|k|≥n | f̂ (k)|
p ≤ 1. Therefore, taking into account the parity of the function ϕ , we get

K
−p
n,ϕ (τ)p ≤ Jn,ϕ,p(τ) := inf

w∈Wn,ϕ,p

‖w‖
C[0,τ]

, (27)

where the set

Wn,ϕ,p :=
{

ω(u) =
∞

∑
j=n

ρ jϕ
p( ju/n) : ρ j ≥ 0,

∞

∑
j=n

ρ j = 1
}
. (28)

For what follows, we need a duality relation in the space C[a,b], (see, e.g., [21, Ch. 1.4]).
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PROPOSITION A. [21, Ch. 1.4] If F is a convex set in the space C[a,b], then for

any function x ∈C[a,b] ,

inf
u∈F

‖x− u‖
C[a,b]

= sup
b

V
a
(g)≤1

( b∫

a

x(t)dg(t)− sup
u∈F

b∫

a

u(t)dg(t)
)
. (29)

For x ∈ C[a,b] \F , where F is the closure of a set F , there exists a function g∗ with

variation equal to 1 on [a,b] that realizes the least upper bound in (29).

It is easy to show that the set Wn,ϕ,p is a convex subset of the space C[0,τ] . There-

fore, setting a = 0, b = τ, x(t) ≡ 0, u(t) = w(t) ∈ Wn,ϕ,p, F =Wn,ϕ,p, from relation

(29) we get

Jn,ϕ,p(τ) = inf
w∈Wn,ϕ,p

‖0−w‖
C[0,τ]

= sup
τ

V
0
(g)≤1

(
0− sup

w∈Wn,ϕ,p

τ∫

0

w(t)dg(t)
)
= sup

τ
V
0
(g)≤1

inf
w∈Wn,ϕ,p

τ∫

0

w(t)dg(t). (30)

Furthermore, according to the Proposition A, there exists a function g∗(t), that realizes

the least upper bound in (3) and such that
τ

V
0
(g∗) = 1. Since every function w ∈Wn,ϕ,p

is nonnegative, it suffices to take the supremum on the right-hand side of (3) over the

set of nondecreasing functions v(t) for which v(τ)− v(0)≤ 1. For such functions, by

virtue of (13) and (28), the following equality is true:

inf
w∈Wn,ϕ,p

τ∫

0

w(t)dv(t) = In,ϕ,p(τ,v). (31)

Hence, there exists a function v∗ ∈V (τ) such that v∗(τ)− v∗(0) = 1 and

In,ϕ,p(τ,v∗) = sup

v∈V (τ):
τ

V
0
(v)≤1

In,ϕ,p(τ,v) = Jn,ϕ,p(τ). (32)

From relations (27) and (32), we get the necessary estimate:

K
p
n,ϕ (τ)p ≥

1

Jn,ϕ,p(τ)
=

1

In,ϕ,p(τ,v∗)
=

v∗(τ)− v∗(0)

In,ϕ,p(τ,v∗)
=C

p
n,ϕ,p(τ).

✷

From Theorem 2, in particular, follows that the constant Cn,ϕ (τ) = Cn,ϕ,1(τ) is

exact in the Jackson-type inequality (11) in the case when SM = S 1 . In this case,

estimate (25) in the proof obviously follows directly from estimate (11) and relation

(17). For p > 1, estimate (25) is more accurate than the estimate that can be obtained

using similar arguments from Theorem 1.
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In the Lebesgue space L2(T) , such result was proved for ordinary moduli of

smoothness ωα( f ,δ )p with α = 1 by Babenko [5]. In the spaces S p , for moduli

ωα( f ,δ )p , this theorem was proved by Stepanets and Serdyuk [29]. In the spaces

S p(Td) of functions of several variables, for moduli ωα( f ,δ )p , such result was ob-

tained in [2]. For generalized moduli of smoothness, the similar result was proved by

Vasil’ev [36] in L2(T) . We also mention the paper of Vakarchuk [35] which, in particu-

lar, contains a survey of the main results on Jackson-Type inequalities with generalized

moduli of smoothness in the spaces L2(T) .

4. Inverse approximation theorem.

THEOREM 3. Let f ∈ SM , the function ϕ ∈ Φ is nondecreasing on an interval

[0,τ] and ϕ(τ) = max{ϕ(t) : t ∈ R} . Then for any n ∈ N , the following inequality

holds:

ωϕ

(
f ,

τ

n

)
≤

n

∑
ν=1

(
ϕ
(τν

n

)
−ϕ

(τ(ν − 1)

n

))
Eν( f ). (33)

Proof. Let us use the proof scheme from [29], modifying it taking into account the

peculiarities of the spaces SM and the definition of the modulus of smoothness ωϕ .

Let f ∈ SM . For any ε > 0 there exist a number N0 = N0(ε) ∈ N , N0 > n , such

that for any N > N0 , we have

EN( f ) = ‖ f − SN−1( f )‖ < ε/ϕ(τ).

Let us set f0 := SN0
( f ) . Then in view of (9), we see that

‖∆
ϕ
h f‖ ≤ ‖∆

ϕ
h f0‖+ ‖∆

ϕ
h ( f − f0)‖ ≤ ‖∆

ϕ
h f0‖+ϕ(τ)EN0+1( f )< ‖∆

ϕ
h f0‖+ ε. (34)

Further, let Sn−1 := Sn−1( f0) be the Fourier sum of f0 . Then by virtue of (8), for

|h| ≤ τ/n , we have

‖∆
ϕ
h f0‖= ‖∆

ϕ
h ( f0 − Sn−1)+∆

ϕ
h Sn−1‖ ≤

∥∥∥ϕ(τ)( f0 − Sn−1)+ ∑
|k|≤n−1

ϕ(kh)| f̂ (k)|eik·
∥∥∥

≤
∥∥∥ϕ(τ)

N0

∑
ν=n

Hν +
n−1

∑
ν=1

ϕ
(τν

n

)
Hν

∥∥∥, (35)

where Hν(x) := Hν( f ,x) = | f̂ (ν)|eiνx + | f̂ (−ν)|e−iνx , ν = 1,2, . . .
Now we use the following assertion which is proved directly.

LEMMA 3. Let {cν}
∞
ν=1 and {aν}

∞
ν=1 be arbitrary numerical sequences. Then

the following equality holds for all natural m, M and N m ≤ M < N :

M

∑
ν=m

aνcν = am

N

∑
ν=m

cν +
M

∑
ν=m+1

(aν − aν−1)
N

∑
i=ν

ci − aM

N

∑
ν=M+1

cν . (36)
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Setting aν = ϕ
(

τν
n

)
, cν = Hν(x), m = 1, M = n−1 and N = N0 in (36), we get

n−1

∑
ν=1

ϕ
(τν

n

)
Hν (x) =

N0

∑
ν=1

Hν (x)

+
n−1

∑
ν=2

(
ϕ
(τν

n

)
−ϕ

(τ(ν − 1)

n

)) N0

∑
i=ν

Hi(x)−ϕ
(τ(n− 1)

n

) N0

∑
ν=n

Hν(x).

Therefore, ∥∥∥∥ϕ(τ)
N0

∑
ν=n

Hν +
n−1

∑
ν=1

ϕ
(τν

n

)
Hν

∥∥∥∥

≤

∥∥∥∥ϕ(τ)
N0

∑
ν=n

Hν +
n−1

∑
ν=1

(
ϕ
(τν

n

)
−ϕ

(τ(ν − 1)

n

)) N0

∑
i=ν

Hi −ϕ
(τ(n− 1)

n

) N0

∑
ν=n

Hν

∥∥∥∥

≤

∥∥∥∥
n

∑
ν=1

(
ϕ
(τν

n

)
−ϕ

(τ(ν − 1)

n

)) N0

∑
i=ν

Hi

∥∥∥∥

≤
n

∑
ν=1

(
ϕ
(τν

n

)
−ϕ

(τ(ν − 1)

n

))
Eν( f0). (37)

Combining relations (34), (35) and (4) and taking into account the definition of the

function f0 , we see that for |h| ≤ τ/n , the following inequality holds:

‖∆
ϕ
h f‖ ≤

n

∑
ν=1

(
ϕ
(τν

n

)
−ϕ

(τ(ν − 1)

n

))
Eν( f )+ ε

which, in view of arbitrariness of ε , gives us (33). ✷

As noted above, for ϕ(t) = 2α |sin(t/2)|α , α > 0, we have ωϕ( f ,δ ) = ωα( f ,δ ) .

In this case, the number τ = π . If α ≥ 1, then using the inequality xα − yα ≤
αxα−1(x− y), x > 0,y > 0 (see, for example, [17, Ch. 1]), and the usual trigonometric

formulas, for ν = 1,2, . . . ,n, we get

ϕ
(τν

n

)
−ϕ

(τ(ν − 1)

n

)
= 2α

(∣∣∣sin
(πν

n

)∣∣∣
α
−
∣∣∣sin

(π(ν − 1)

n

)∣∣∣
α)

≤

≤ 2α α|sin
(πν

n

)∣∣∣
α−1∣∣∣sin

(πν

n

)
− sin

(π(ν − 1)

n

)∣∣∣≤ α
(2π

n

)α
να−1.

If 0 < α < 1, then the similar estimate can be obtained using the inequality xα −
yα ≤ αyα−1(x− y) , which holds for any x > 0,y > 0, [17, Ch. 1]. Hence, we get the

following statement:

COROLLARY 3. Let f ∈ SM and α > 0 . Then for any n ∈ N , the following

inequality holds:

ωα

(
f ,

π

n

)
≤ α

(2π

n

)α n

∑
ν=1

να−1Eν( f ). (38)
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Note that in the above-mentioned spaces SM and Sp,µ , the similar estimates

were obtained for moduli of smoothness and best approximations determined with re-

spect to the corresponding Luxemburg norms in [1] and [11]. In S p , such estimates

were obtained in [30] and [29]. For the Lebesgue spaces Lp , inequalities of the type

(38) were proved by M. Timan (see, for example, [32, Ch. 2], [31, Ch. 6]).

COROLLARY 4. Assume that the sequence of the best approximations En( f ) of a

function f ∈ SM satisfies the following relation for some β > 0 :

En( f ) = O(n−β ).

Then, for any α > 0 , one has

ωα( f , t) =





O(tβ ) for β < α,
O(tα | ln t|) for β = α,

O(tα) for β > α.

5. Constructive characteristics of the classes of functions defined by the α th

moduli of smoothness

In this section we give the constructive characteristics of the classes SMHω
α of

functions for which the α th moduli of smoothness ωα( f ,δ ) do not exceed some ma-

jorant.

Let ω be a function defined on interval [0,1] . For a fixed α > 0, we set

SMHω
α =

{
f ∈ SM : ωα( f ,δ ) = O(ω(δ )), δ → 0+

}
. (39)

Further, we consider the functions ω(δ ) , δ ∈ [0,1] , satisfying the following conditions

1)–4): 1) ω(δ ) is continuous on [0,1] ; 2) ω(δ ) ↑ ; 3) ω(δ ) 6= 0 for any δ ∈ (0,1] ;
4) ω(δ )→ 0 as δ → 0+ ; and the well-known condition (Bα) , α > 0 (see, e.g. [6]):

(Bα ) :
n

∑
v=1

vα−1ω(v−1) = O(nα ω(n−1)), n → ∞.

THEOREM 4. Assume that α > 0 and the function ω satisfies conditions 1)– 4)
and (Bα ) . Then, in order a function f ∈ SM to belong to the class SMHω

α , it is

necessary and sufficient that

En( f ) = O(ω(n−1)). (40)

Proof. Let f ∈ SMHω
α , by virtue of Corollary 2, we have

En( f )≤ 2Cn,α(1)ωα( f ;n−1), (41)

Therefore, relation (39) yields (40). On the other hand, if relation (40) holds, then by

virtue of (38), taking into account the condition (Bα ) , we obtain

ωα( f ,n−1)≤ α
(2π

n

)α n

∑
ν=1

να−1Eν( f ) ≤
C

nα

n

∑
ν=1

να−1ω(v−1) = O(ω(n−1)). (42)

12



Thus, the function f belongs to the set SMHω
α . ✷

The function h(t) = tr , r ≤ α , satisfies the condition (Bα) . Hence, denoting

by SMHr
α the class SMHω

α for ω(t) = tr , 0 < r ≤ α, we establish the following

statement:

COROLLARY 5. Let α > 0 , 0 < r ≤ α. In order a function f ∈ SM to belong to

SMHr
α , it is necessary and sufficient that

En( f ) = O(n−r).
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[18] D. JACKSON, Über die Genauigkeit der Annäherung stetiger Funktionen durch ganze rationale Funk-

tionen gegebenen Grades und trigonometrische Summen gegebener Ordnung, Göttingen, 1911, Thesis.

[19] S. Z. JAFAROV, The inverse theorem of approximation of the function in Smirnov-Orlicz classes, Math.

Inequal. Appl., 12, 4 (2012), 835–844.

[20] S. Z. JAFAROV, Approximation of conjugate functions by trigonometric polynomials in weighted Or-

licz spaces, J. Math. Inequal., 7, 2 (2013), 271–281.

[21] N. KORNEICHUK, Exact constants in approximation theory. Transl. from the Russian by K. Ivanov.

Reprint of the hardback edition 1991. Encyclopedia of Mathematics and its Applications, 38. Cam-

bridge: Cambridge University Press, 2009.

13



[22] A. I. KOZKO, A. V. ROZHDESTVENSKII, On Jackson’s inequality for a generalized modulus of con-

tinuity in L2 , Sb. Math., 195, 8 (2004), 10731115.

[23] J. LINDENSTRAUSS, L. TZAFRIRI, Classical Banach spaces I: Sequence Spaces, Berlin, 1977.

[24] J. MUSIELAK, Orlicz Spaces and Modular Spaces, Springer, Berlin, 1983.

[25] H. S. SHAPIRO, A Tauberian theorem related to approximation theory, Acta Math., 120 (1968), 279–

292.

[26] I.I. SHARAPUDINOV On direct and inverse theorems of approximation theory in variable Lebesgue

and Sobolev spaces, Azerbaijan Journal of Mathematics, 4, 1 (2014), 55–72.

[27] A. I. STEPANETS, Approximation characteristics of the spaces S
p

ϕ , Ukrainian Math. J., 53, 3 (2001),

446–475.

[28] A. I. STEPANETS, Methods of Approximation Theory, VSP, Leiden-Boston, 2005.

[29] A. I. STEPANETS, A. S. SERDYUK, Direct and inverse theorems in the theory of the approximation of

functions in the space S p , Ukrainian Math. J., 54, 1 (2002), 126–148.

[30] M. D. STERLIN, Exact constants in inverse theorems of approximation theory, Dokl. Akad. Nauk

SSSR, 202 (1972), 545–547 [in Russian].

[31] A. F. TIMAN, Theory of approximation of functions of a real variable, Fizmatgiz, Moscow, 1960 [in

Russian]; English translation by J. Berry, International Series of Monographs on Pure and Applied

Mathematics 34, Pergamon Press and MacMillan, Oxford, 1963.

[32] M. F. TIMAN, Approximation and properties of periodic functions, Nauk. dumka, Kiev, 2009 [in Rus-

sian].

[33] S. B. VAKARCHUK, Jackson-type inequalities and exact values of widths of classes of functions in the

spaces Sp , 1 ≤ p < ∞ , Ukrainian Math. J., 56, 5 (2004), 718–729.

[34] S. B. VAKARCHUK, A. N. SHCHITOV, On some extremal problems in the theory of approximation of

functions in the spaces Sp , 1 ≤ p < ∞ , Ukrainian Math. J., 58, 3 (2006), 340–356.

[35] S. B. VAKARCHUK, Jackson-type inequalities with generalized modulus of continuity and exact values

of the n-widths of the classes of (ψ ,β) -differential functions in L2 . I, Ukrainian Math. J., 68, 6 (2006),

823–848.

[36] S. N. VASIL’EV, The Jackson–Stechkin inequality in L2[−π,π] , Proc. Steklov Inst. Math., Suppl., 1,

(2001), S243–S253 .

[37] S. N. VASIL’EV, Jackson inequality in L2(T
N ) with generalized modulus of continuity, Proc. Steklov

Inst. Math., Suppl., 265, 1, (2009), S218–S226.

Fahreddin Abdullayev,

Faculty of Sciences,

Kyrgyz-Turkish Manas University,

56, Chyngyz Aitmatov avenue, Bishkek, Kyrgyz republic, 720044;

Faculty of Science and Letters,

Mersin University,
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