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Abstract: In weighted Orlicz-type spaces Sp, µ with a variable summation exponent, the direct and inverse approxima-
tion theorems are proved in terms of best approximations of functions and moduli of smoothness of fractional order. It is
shown that the constant obtained in the inverse approximation theorem is the best in a certain sense. Some applications
of the results are also proposed. In particular, the constructive characteristics of functional classes defined by such moduli
of smoothness are given. Equivalence between moduli of smoothness and certain Peetre K -functionals is shown in the
spaces Sp, µ .
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1. Introduction
Let Cr(T) (T := [0, 2π] , r ∈ N0 := {0, 1, . . .}) denote the space of 2π -periodic r -times continuously differen-
tiable functions with the usual max-norm ∥f∥ = maxx∈T |f(x)| . Let also En(f) = inf

τn
∥f − τn∥ be the best ap-

proximation of function f ∈ C(T) by trigonometric polynomials τn of degree n , n ∈ N0 . The classical theorem
of Jackson (1912) says that i) if f ∈ Cr(T) , then the following inequality holds: En(f) ≤ Krn

−rω(f (r), n−1) ,
n = 1, 2, . . . , where ω(f, t) := sup

|h|≤t
∥f(·+h)−f(·)∥ is the modulus of continuity of f . This assertion is a direct

approximation theorem, which asserts that smoothness of the function f implies a quick decrease to zero of its
error of approximation by trigonometric polynomials.

On the other hand, the following inverse theorem of Bernstein (1912) with the opposite implication is
well-known: ii) if for some 0< α < 1 , En(f)≤ Krn

−r−α , n = 1, 2, . . . , then ω(f (r), t) = O(tα) , t → 0+ .
In ideal cases, these two theorems correspond to each other. For example, it follows from i) and ii) that the
relation En(f) = O(n−α) , 0 < α < 1 , is equivalent to the condition ω(f, t) = O(tα) , t → 0+ . Such theorems
have been of great interest to researchers and constitute the classics of modern approximation theory (see, for
example the monographs [1, 5, 10, 11, 29, 30]).
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In recent decades, the topics related to the direct and inverse approximation theorems have been actively
investigated in the Orlicz spaces and in the Lebesgue spaces with a variable exponent. In particular, for the
Lebesgue functional spaces with variable exponent, similar results are contained in the papers of Guven and
Israfilov [12], Akgün [2], Akgün and Kokilashvili [3], Chaichenko [7], Jafarov [15, 16] and others. Continuous
analogues of the problems considered are also studied in the following papers: [13, 14, 19, 21]. The latest results
related to the Lebesgue spaces with variable exponent, and their applications are described in the monograph
[9]. We also note the papers by Nekvinda [17, 18] devoted to the investigations of the discrete weighted Lebesgue
spaces with a variable exponent.

In 2000, Stepanets [25] considered the spaces Sp of 2π -periodic Lebesgue summable functions f (f ∈ L)
with the finite norm

∥f∥
Sp := ∥{f̂(k)}k∈Z∥lp(Z) =

(∑
k∈Z

|f̂(k)|p
)1/p

,

where f̂(k) := [f ]̂(k) = (2π)−1
∫ 2π

0
f(t)e−iktdt , k ∈ Z , are the Fourier coefficients of the function f ,

and investigated some approximation characteristics of these spaces, including in the context of direct and
inverse theorems. Stepanets and Serdyuk [26] introduced the notion of k th modulus of smoothness in Sp and
established the direct and inverse theorems on approximation in terms of these moduli of smoothness and the
best approximations of functions. This topic was also investigated actively in [20, 27, 28, 30, 31] and others.

In [23] and [22], some results for the spaces Sp were extended to the Orlicz spaces lM and to the spaces
lp with a variable summation exponent. In particular, in these spaces, the authors found the exact values of
the best approximations and Kolmogorov’s widths of certain sets of images of the diagonal operators. In this
paper, we combine the above mentioned studies and prove the direct and inverse approximation theorems in
the weighted spaces Sp, µ of the Orlicz-type with a variable summation exponent. Furthermore, we also find
an explicit constant in the inverse approximation theorem and show that this constant is the best in a certain
sense.

2. Preliminaries
Let p = {pk}∞k=−∞ be a sequence of positive numbers such that

1 ≤ pk ≤ K, k = 0,±1,±2, . . . , (2.1)

where K is a positive number, and µ = {µk}∞k=−∞ be a sequence of nonnegative numbers. Let Sp, µ be the
space of all functions f ∈ L such that the following quantity (which is also called the Luxemburg norm of f )
is finite:

∥f∥p, µ := ∥{f̂(k)}k∈Z∥lp, µ(Z)
= inf

{
a > 0 :

∑
k∈Z

µk|f̂(k)/a|pk ≤ 1

}
. (2.2)

By definition, we say that the functions f ∈ L and g ∈ L are assumed to be equivalent in Sp, µ , when
∥f − g∥p, µ = 0.

If the sequence p = {pk}∞k=−∞ satisfies condition (2.1) and µ = {µk}∞k=−∞ is a sequence of nonnegative
numbers, then

Sp, µ =

{
f ∈ L :

∑
k∈Z

µk|f̂(k)|pk <∞
}
.
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The spaces Sp, µ defined in this way are the Banach spaces. In case when pk = p and µk = 1 , k ∈ Z ,
p ≥ 1 , they coincide with the above-defined spaces Sp .

Let Tn , n = 0, 1, . . . , be the set of trigonometric polynomials τn(x) :=
∑

|k|≤n cke
ikx of the order n ,

where ck are arbitrary complex numbers. Denote by

En(f)p, µ := inf
τn−1∈Tn−1

∥f − τn−1∥p, µ = inf
ck∈C

∥∥∥f −
∑

|k|≤n−1

cke
ik·
∥∥∥
p, µ

the best approximation of f ∈ Sp, µ by the trigonometric polynomials τn−1 ∈ Tn−1 in the space Sp, µ .
For a fixed a > 0 and arbitrary numbers ck ∈ C ,

∑
|k|≤n−1

µk

(
|f̂(k)− ck|/a

)pk
+

∑
|k|≥n

µk

(
|f̂(k)|/a

)pk
≥

∑
|k|≥n

µk

(
|f̂(k)|/a

)pk
Therefore, for any function f ∈ Sp, µ we have

En(f)p, µ = ∥f − Sn−1(f)∥p, µ = inf

{
a > 0 :

∑
|k|≥n

µk

(
|f̂(k)|/a

)pk
≤ 1

}
, (2.3)

where Sn−1(f, x) =
∑

|k|≤n−1 f̂(k)e
ikx is the Fourier sum of the function f .

3. Differences and moduli of smoothness of fractional order
Similarly to [6], we define the (right) difference of f ∈ L of the fractional order α > 0 with respect to the
increment h ∈ R by

∆α
hf(x) :=

∞∑
j=0

(−1)j
(
α

j

)
f(x− jh), (3.1)

where
(
α
j

)
= α(α−1)·...·(α−j+1)

j! , j ∈ N ,
(
α
0

)
:= 1 , and assemble some basic properties of the fractional differences.

Lemma 3.1 Assume that f ∈ Sp, µ , α, β > 0 , x, h ∈ R . Then

(i) ∥∆α
hf∥p, µ ≤ K(α)∥f∥p, µ , where K(α) :=

∑∞
j=0

∣∣∣(αj)∣∣∣ ≤ 2{α} , {α} := inf{k ∈ N : k ≥ α} .

(ii) [∆α
hf ]̂(k) = (1− e−ikh)αf̂(k) , k ∈ Z .

(iii) (∆α
h(∆

β
hf))(x) = ∆α+β

h f(x) (a. e.).

(iv) ∥∆α+β
h f∥p, µ ≤ 2{β}∥∆α

hf∥p, µ .

(v) lim
h→0

∥∆α
hf∥p, µ = 0 .

The proof of Lemma 3.1 and other auxiliary statements of the paper will be given in Section 8.
Based on (3.1), the modulus of smoothness of f ∈ Sp, µ of the index α > 0 is defined by

ωα(f, δ)p, µ := sup
|h|≤δ

∥∆α
hf∥p, µ .
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Using the standard arguments, it can be shown that the functions ωα(f, δ)p, µ possess all the basic properties
of ordinary moduli of smoothness. Before formulating them, we give the definition of the ψ -derivative of a
function.

Let ψ = {ψk}∞k=−∞ be an arbitrary sequence of complex numbers, ψk ̸= 0 , k ∈ Z . If for a given function

f ∈ L with the Fourier series of the form S[f ](x) =
∑
k∈Z f̂(k)e

ikx, the series
∑
k∈Z\{0} f̂(k)e

ikx/ψk is the

Fourier series of a certain function g ∈ L , then g is called (see, for example, [27, Ch. 9]) ψ -derivative of the
function f and is denoted as g := fψ . It is clear that the Fourier coefficients of functions f and fψ are related
by equality

f̂(k) = ψkf̂
ψ(k), k ∈ Z \ {0}. (3.2)

In the case ψk = |k|−r , r > 0 , k ∈ Z \ {0} , we use the notation fψ =: f (r) .

Lemma 3.2 Assume that f, g ∈ Sp, µ , α ≥ β > 0 and δ, δ1, δ2 > 0 . Then
(i) ωα(f, δ)p, µ is a nonnegative increasing continuous function on (0,∞) such that lim

δ→0+
ωα(f, δ)p, µ = 0 .

(ii) ωα(f, δ)p, µ ≤ 2{α−β}ωβ(f, δ)p, µ .
(iii) ωα(f + g, δ)p, µ ≤ ωα(f, δ)p, µ + ωα(g, δ)p, µ .
(iv) ω1(f, δ1 + δ2)p, µ ≤ ω1(f, δ1)p, µ + ω1(f, δ2)p, µ .

(v) ωα(f, δ)p, µ ≤ 2{α}∥f∥p, µ .

(vi) if there exists f (β) ∈ Sp, µ , then ωα(f, δ)p, µ ≤ δβωα−β(f
(β), δ)p, µ .

(vii) ωα(f, pδ)p, µ ≤ pαωα(f, δ)p, µ (α ∈ N, p ∈ N).

(viii) ωα(f, η)p, µ ≤ δ−α(δ + η)αωα(f, δ)p, µ (α ∈ N) .

4. Direct approximation theorem.

Proposition 4.1 Let ψ = {ψk}∞k=−∞ be an arbitrary sequence of complex numbers such that ψk ̸= 0 and

lim
|k|→∞

|ψk| = 0 . If for a function f ∈ Sp, µ there exists a derivative f (ψ) ∈ Sp, µ , then the following inequality

holds:
En(f)p, µ ≤ εnEn(f

ψ)p, µ , where εn = max
|k|≥n

|ψk|.

Proof According to (2.3) and (3.2), we have

En(f)p, µ = inf

{
a > 0 :

∑
|k|≥n

µk

(
|ψkf̂ψ(k)|/a

)pk
≤ 1

}

≤ inf

{
a > 0 :

∑
|k|≥n

µk

(
εn|f̂ψ(k)|/a

)pk
≤ 1

}
≤ εnEn(f

ψ)p, µ .

2

Note that if εn = max
|k|≥n

|ψk| = |ψk0 | , where k0 is an integer, |k0| ≥ n , then for an arbitrary polynomial

τ̃k0(x) := c eik0x , c ̸= 0 , obviously, the equality holds:

En(τ̃k0)p, µ = εnEn(τ̃
ψ
k0
)p, µ .
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Theorem 4.2 Assume that p = {pk}∞k=−∞ and µ = {µk}∞k=−∞ are sequences of nonnegative numbers such
that 1 < pk ≤ K , k ∈ Z , and the function f ∈ Sp, µ . Then for any numbers α > 0 and n ∈ N , the following
inequality holds:

En(f)p, µ ≤ C(α)ωα(f ;n
−1)p, µ .

where C = C(α) is a constant that does not depend on f and n.

Let us use the proof scheme from [24], where the similar estimates were obtained in the spaces Cr(T) . In
order to adapt this scheme in accordance with the properties of the spaces Sp, µ , before proving, we formulate
the auxiliary Lemma 4.3. This assertion establishes the equivalence of the Luxembourg norm (2.2) and the
Orlicz norm, where the latter is defined as follows.

For given sequences p = {pk}∞k=−∞ and µ = {µk}∞k=−∞ of nonnegative numbers such that 1 < pk ≤ K ,
k ∈ Z , consider the sequence q = {qk}k∈Z defined by the equalities 1/pk + 1/qk = 1 , k ∈ Z , and the set
Λ = Λ(p, µ) of all numerical sequences λ = {λk}k∈Z such that

∑
k∈Z µk|λk|qk≤1 . For any function f ∈ Sp, µ ,

define its Orlicz norm by the equality

∥f∥∗p, µ := sup
{∑
k∈Z

µkλk|f̂(k)| : λ ∈ Λ
}
. (4.1)

Lemma 4.3 Assume that p = {pk}∞k=−∞ and µ = {µk}∞k=−∞ are sequences of nonnegative numbers such that
1 < pk ≤ K , k ∈ Z . Then for any function f ∈ Sp, µ ,

∥f∥p, µ ≤ ∥f∥∗p, µ ≤ 2 ∥f∥p, µ . (4.2)

Proof of Theorem 4.2. Let {Kn(t)}∞n=1 be a sequence of kernels (where Kn(t) is a trigonometric
polynomial of order not greater than n), satisfying for all n = 1, 2, . . . the conditions:

π∫
−π

Kn(t) dt = 1, (4.3)

π∫
−π

|t|r|Kn(t)| dt ≤ C(r)(n+ 1)−r, r = 0, 1, 2, . . . (4.4)

In the role of such kernels, in particular, we can take the well-known Jackson kernels of sufficiently great order,
that is,

Kn(t) = bp

( sin pt/2
sin t/2

)2k0
,

where k0 is an integer that does not depend on n, 2k0 ≥ r + 2, the positive integer p is determined from the
inequality n/(2k0) < p ≤ n/(2k0) + 1, and the constant bp is chosen due to the normalization condition (4.3).

It was shown in [24] that for any sequence of kernels {Kn(t)} satisfying conditions (4.3)–(4.4), the
following estimate holds:

π∫
−π

(|t|+ n−1)r |Kn(t)| dt ≤ C(r)n−r, (r, n = 1, 2, . . .). (4.5)
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Let us first consider the case of α ∈ N . Set

σn−1(x) = (−1)α+1

π∫
−π

Kn−1(t)

α∑
j=1

(−1)j
(
α

j

)
f(x− jt) dt.

It is clear that σn−1(x) is a trigonometric polynomial which order does not exceed n . Further, in view of (4.3),
we have

f(x)− σn−1(x) = (−1)α
π∫

−π

Kn−1(t)

α∑
j=0

(−1)j
(
α

j

)
f(x− jt) dt = (−1)α

π∫
−π

Kn−1(t)∆
α
t f(x) dt.

Hence, taking into account relations (4.1)–(4.2) and the definition of the set Λ , we obtain

En(f)p, µ ≤ ∥f − σn−1∥p, µ ≤ ∥f − σn−1∥∗p, µ =
∥∥∥(−1)α

π∫
−π

Kn−1(t)∆
α
t f dt

∥∥∥∗
p, µ

= sup
{∑
k∈Z

µkλk

∣∣∣ 1

2π

π∫
−π

( π∫
−π

Kn−1(t)∆
α
t f(x) dt

)
e−ikx dx

∣∣∣ : λ ∈ Λ
}
.

Applying now the Fubini theorem and again using estimate (4.2), we find

En(f)p, µ ≤
π∫

−π

|Kn−1(t)| sup
{∑
k∈Z

µkλk

∣∣∣ 1

2π

π∫
−π

∆α
t f(x)e

−ikxdx
∣∣∣ : λ ∈ Λ

}
dt ≤ 2

π∫
−π

|Kn−1(t)| ∥∆α
t f(x)∥∗p, µdt

≤ 2

π∫
−π

|Kn−1(t)| ∥∆α
t f(x)∥p, µdt ≤ 2

π∫
−π

|Kn−1(t)|ωα(f ; |t|)p, µ dt. (4.6)

To estimate the integral on the right-hand side of relation (4.6), we use the property (viii) of Lemma 3.2. Setting
η = |t| , δ = n−1 , we see that ωα(f ; |t|)p, µ ≤ nα(|t|+ n−1)αωα(f ;n

−1)p, µ . Using this inequality and (4.5), we
get

π∫
−π

|Kn−1(t)|ωα(f ; |t|)p, µdt ≤ nαωα(f ;n
−1)p, µ

π∫
−π

(|t|+ n−1)α |Kn−1(t)|dt ≤ C(α)ωα(f ;n
−1)p, µ .

Thus, in the case of α ∈ N , the theorem is proved.
If α > 0 , α ̸∈ N, then we denote by β an arbitrary positive integer satisfying the condition β−1 < α < β .

Due to property (ii) of Lemma 3.2, we obtain

En(f)p, µ ≤ C(β) ωβ(f ;n
−1)p, µ ≤ C(β) ωα(f ;n

−1)p, µ .

2
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5. Inverse approximation theorem.
Before proving the inverse approximation theorem, let us formulate the known Bernstein inequality in which
the norm of the derivative of a trigonometric polynomial is estimated in terms of the norm of this polynomial
(see e.g., [29, Ch. 4]), [30, Ch. 4]).

Proposition 5.1 Let ψ = {ψk}∞k=−∞ be an arbitrary sequence of complex numbers, ψk ̸= 0 . Then for any
τn ∈ Tn , n ∈ N , the following inequality holds:

∥τψn ∥p, µ ≤ 1

ϵn
∥τn∥p, µ , ϵn := min

0<|k|≤n
|ψk|,

Proof Let τn(x) =
∑

|k|≤n cke
i(k,x) , ck ∈ C . By the definition of the ψ -derivative and equalities (3.2), we get

∥τψn ∥p, µ = inf
{
a > 0 :

∑
0<|k|≤n

µk

(
|ck|/|aψk|

)pk
≤ 1

}

≤ max
0<|k|≤n

|ψk|−1 inf
{
a > 0 :

∑
0<|k|≤n

µk

(
|ck|/a

)pk
≤ 1

}
=

1

ϵn
∥τn∥p, µ .

2

Note that if min
0<|k|≤n

|ψk| = |ψk0 | , then for arbitrary polynomials of the form τ̃k0(x) := c eik0x , c ̸= 0 , we

have

∥τ̃ψk0∥p, µ = inf
{
a > 0 : µk0

(
|ck0 |/|aψk0 |

)pk
≤ 1

}
=

1

|ψk0 |
inf

{
a > 0 : µk0

(
|ck0 |/a

)pk
≤ 1

}
=

1

ϵn
∥τk0∥p, µ .

Corollary 5.2 Let ψ = {ψk}∞k=−∞ be an arbitrary sequence of complex numbers such that |ψ−k| = |ψk| ≥
|ψk+1| > 0 . Then for any τn ∈ Tn , n ∈ N ,

∥τψn ∥p, µ ≤ 1

|ψn|
∥τn∥p, µ .

In particular, if ψk = |k|−r , r > 0 , k ∈ Z \ {0} , then

∥τψn ∥p, µ = ∥τ (r)n ∥p, µ ≤ nr∥τn∥p, µ .

Theorem 5.3 If f ∈ Sp, µ , then for any α > 0 and n ∈ N , the following inequality is true:

ωα

(
f,
π

n

)
p, µ

≤
(π
n

)α n∑
ν=1

(να − (ν − 1)α)Eν(f)p, µ . (5.1)

Proof Let us use the proof scheme from [26], modifying it taking into account the peculiarities of the spaces
Sp, µ . Let f ∈ Sp, µ , n ∈ N and fjh(x) := f(x− jh) , where j = 0, 1, . . . and h ∈ R . Then for any k ∈ Z , we

have f̂jh(k)= f̂(k)e−ikjh ,

[∆α
hf ]̂(k) = [ ∞∑

j=0

(−1)j
(
α

j

)
fjh

]̂(k) = f̂(k)

∞∑
j=0

(−1)j
(
α

j

)
e−ikjh = (1− e−ikh)αf̂(k). (5.2)
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and

|[∆α
hf ]̂(k)| = |1− e−ikh|α|f̂(k)| = 2α

∣∣∣ sin kh
2

∣∣∣α|f̂(k)|. (5.3)

Since f ∈ Sp, µ , then for any ε > 0 there exist a number N0 = N0(ε) ∈ N , N0 > n , such that for any
N > N0 , we have EN (f)p, µ = ∥f − SN−1(f)∥p, µ < 2−αε. Let us set f0 := SN0(f) . Then in view of (5.3), we
see that

∥∆α
hf∥p, µ ≤ ∥∆α

hf0∥p, µ + ∥∆α
h(f − f0)∥p, µ ≤ ∥∆α

hf0∥p, µ + 2αEN0+1(f)p, µ < ∥∆α
hf0∥p, µ + ε. (5.4)

Further, let Sn−1 := Sn−1(f0) be the Fourier sum of f0 . Then by virtue of (5.3), for |h| ≤ π/n , we have

∥∆α
hf0∥p, µ = ∥∆α

h(f0 − Sn−1) + ∆α
hSn−1∥p, µ ≤

∥∥∥2α(f0 − Sn−1) +
∑

|k|≤n−1

|kh|α|f̂(k)|eik·
∥∥∥
p, µ

≤
∥∥∥2α(f0 − Sn−1) +

(π
n

)α ∑
|k|≤n−1

|k|α|f̂(k)|eik·
∥∥∥
p, µ

=
∥∥∥2α N0∑

ν=n

Hν +
(π
n

)α n−1∑
ν=1

ναHν

∥∥∥
p, µ
, (5.5)

where Hν(x) := Hν(f, x) = |f̂(ν)|eiνx + |f̂(−ν)|e−iνx , ν = 1, 2, . . .

Now we use the following assertion which is proved directly.

Lemma 5.4 Let {cν}∞ν=1 and {aν}∞ν=1 be arbitrary numerical sequences. Then the following equality holds for
all natural m , M and N m ≤M < N :

M∑
ν=m

aνcν = am

N∑
ν=m

cν +

M∑
ν=m+1

(aν − aν−1)

N∑
i=ν

ci − aM

N∑
ν=M+1

cν . (5.6)

Setting aν = να, cν = Hν(x), m = 1 , M = n− 1 and N = N0 in (5.6), we get

n−1∑
ν=1

ναHν(x) =

N0∑
ν=1

Hν(x) +

n−1∑
ν=2

(να − (ν − 1)α)

N0∑
i=ν

Hi(x)− (n− 1)α
N0∑
ν=n

Hν(x).

Therefore,

∥∥∥2α N0∑
ν=n

Hν +
(π
n

)α n−1∑
ν=1

ναHν

∥∥∥
p, µ

≤
(π
n

)α∥∥∥nα N0∑
ν=n

Hν +

n−1∑
ν=1

(να − (ν − 1)α)

N0∑
i=ν

Hi − (n− 1)α
N0∑
ν=n

Hν

∥∥∥
p, µ

≤
(π
n

)α∥∥∥ n∑
ν=1

(να − (ν − 1)α)

N0∑
i=ν

Hi

∥∥∥
p, µ

≤
(π
n

)α n∑
ν=1

(να − (ν − 1)α)Eν(f0)p, µ . (5.7)

Combining relations (5.4), (5.5), and (5.7) and taking into account the definition of the function f0 , we see that
for |h| ≤ π/n , the following inequality holds:

∥∆α
hf∥p, µ ≤

(π
n

)α n∑
ν=1

(να − (ν − 1)α)Eν(f)p, µ + ε
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which, in view of arbitrariness of ε , gives us (5.1). 2

In the spaces Sp , similar results were obtained in [28] and [26]. In the Orlicz-type spaces SM of functions
f ∈ L with the finite norm

∥f∥
M

:= ∥{f̂(k)}k∈Z∥lM (Z) = inf
{
a > 0 :

∑
k∈Z

M(|f̂(k)|/a) ≤ 1
}
,

where M is an Orlicz function, direct and inverse theorems were proved in [8]. Unlike the results of [8], here
we get the constant πα in inequality (5.1) which is exact in the following sense: for any positive number ε > 0 ,
there exists a function f∗ ∈ Sp, µ such that for all n greater that a certain number n0 , we have

ωα

(
f∗,

π

n

)
p, µ

>
πα − ε

nα

n∑
ν=1

(να − (ν − 1)α)Eν(f
∗)p, µ . (5.8)

Indeed, consider the function f∗(x) = eik0x , where k0 is an arbitrary positive integer. Then Eν(f
∗)p, µ = 1 for

ν = 1, 2, . . . , k0 , Eν(f∗)p, µ = 0 for ν > k0 and

ωα

(
f∗,

π

n

)
p, µ

≥ ∥∆α
π
n
f∗∥p, µ ≥ 2α

∣∣∣ sin k0π
2n

∣∣∣α.
Since sin t/t tends to 1 as t → 0 , then for all n greater that a certain number n0 , the inequality
2α| sin k0π/(2n)|α > (πα − ε)kα0 /n

α holds, which yields (5.8).
Since να − (ν − 1)α ≤ ανα−1, it follows from inequality (5.1) that

ωα

(
f,
π

n

)
p, µ

≤ παα

nα

n∑
ν=1

να−1Eν(f)p, µ . (5.9)

This, in particular, yields the following statement:

Corollary 5.5 Assume that the sequence of the best approximations En(f)p, µ of a function f ∈ Sp, µ satisfies
the following relation for some β > 0 :

En(f)p, µ = O(n−β).

Then, for any α > 0 , one has

ωα(f, t)p, µ =

 O(tβ) for β < α,
O(tα| ln t|) for β = α,

O(tα) for β > α.

For the spaces Lp of 2π -periodic functions integrable to the pth power with the usual norm, inequalities
of the type (5.9) were proved by M. Timan (see for example [29, Ch. 6], [30, Ch. 2]).

6. Constructive characteristics of the classes of functions defined by the αth moduli of smoothness
In the following two sections some applications of the obtained results are considered. In particular, in this
section we give the constructive characteristics of the classes Sp, µHωα

of functions for which the αth moduli
of smoothness do not exceed some majorant.
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Let ω be a function defined in interval [0, 1] . For a fixed α > 0 , we set

Sp, µH
ω
α =

{
f ∈ Sp, µ : ωα(f ; δ)p, µ = O(ω(δ)), δ → 0 +

}
. (6.1)

Further, we consider the functions ω(t) , t ∈ [0, 1] , satisfying the following conditions 1)–4): 1) ω(t) is continuous
on [0, 1] ; 2) ω(t) ↑ ; 3) ω(t) ̸= 0 for any t ∈ (0, 1] ; 4) ω(t) → 0 as t → 0 ; as well-known condition (Bα) ,

α > 0 (see, e.g. [4]):
n∑
v=1

vα−1ω(t−1) = O
[
nαω(n−1)

]
.

Theorem 6.1 Assume that p = {pk}∞k=−∞ and µ = {µk}∞k=−∞ are sequences of nonnegative numbers such
that 1 < pk ≤ K , k ∈ Z , α > 0 and ω is a function, satisfying conditions 1)– 4) and (Bα) . Then a function
f ∈ Sp, µ belongs to the class Sp, µH

ω
α if and only if

En(f)p, µ = O
[
ω(n−1)

]
. (6.2)

Proof Let f ∈ Sp, µH
ω
α , by virtue of Theorem 4.2, we have

En(f)p, µ ≤ C(α)ωα(f, n
−1)p, µ .

Therefore, relation (6.1) yields (6.2). On the other hand, if relation (6.2) holds, then by virtue of (5.9), taking
into account the condition (Bα) , we obtain

ωα(f, n
−1)p, µ ≤ C(α)

nα

n∑
ν=1

να−1Eν(f)p, µ ≤ C1

nα

n∑
ν=1

να−1ω(ν−1) = O
[
ω(n−1)

]
.

Thus, the function f belongs to the set Sp, µH
ω
α . 2

The function φ(t) = tr , r ≤ α , satisfies the condition (Bα) . Hence, denoting by Sp, µH
r
α the class

Sp, µH
ω
α for ω(t) = tr , 0 < r ≤ α, we establish the following statement:

Corollary 6.2 Assume that p = {pk}∞k=−∞ and µ = {µk}∞k=−∞ are sequences of nonnegative numbers such
that 1 < pk ≤ K , k ∈ Z , and α > 0 , 0 < r ≤ α. Then a function f ∈ Sp, µ belongs to the class Sp, µH

r
α if and

only if
En(f)p, µ = O(n−r).

7. The equivalence between αth moduli of smoothness and K -functionals.
K -functionals were introduced by Lions and Peetre in 1961, and defined in their usual form by Peetre in 1963.
Unlike the moduli of continuity expressing the smooth properties of functions, K -functionals express some of
their approximative properties. In this section, we prove the equivalence of our moduli of smoothness and certain
Peetre K -functionals. This connection is important for studying the properties of the modulus of smoothness
and the K -functional, and also for their further application to the problems of approximation theory.

In the space Sp, µ , the Petree K -functional of a function f (see e.g., [10, Ch. 6]), generated by its
derivative of order α > 0 , is the following quantity:

Kα(δ, f)p, µ := inf
{
∥f − h∥p, µ + δα∥h(α)∥p, µ : h(α) ∈ Sp, µ

}
, δ > 0.
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Theorem 7.1 Assume that p = {pk}∞k=−∞ and µ = {µk}∞k=−∞ are sequences of nonnegative numbers such
that 1 < pk ≤ K , k ∈ Z . Then for each f ∈ Sp, µ and α > 0 , there exist constants C1(α) , C2(α) > 0 , such
that for δ > 0

C1(α)ωα(f, δ)p, µ ≤ Kα(δ, f)p, µ ≤ C2(α)ωα(f, δ)p, µ . (7.1)

Before proving Theorem 7.1, let us formulate the following auxiliary Lemma 7.2, which is used to prove
the right-hand side of (7.1).

Lemma 7.2 Assume that α > 0 , n ∈ N and 0 < h < 2π/n . Then for any τn ∈ Tn

( sinnh/2
n/2

)α
∥τ (α)n ∥p, µ ≤ ∥∆α

hτn∥p, µ ≤ hα∥τ (α)n ∥p, µ . (7.2)

Proof of Theorem 7.1. Consider an arbitrary function h ∈ Sp, µ such that h(α) ∈ Sp, µ . Then we have
by Lemma 3.2 (iii), (v), and (vi)

ωα(f, δ)p, µ ≤ ωα(f − h, δ)p, µ + ωα(h, δ)p, µ ≤ 2{α}∥f − h∥p, µ + δα∥h(α)∥p, µ .

Taking the infimum over all h ∈ Sp, µ such that h(α) ∈ Sp, µ , we get the left-hand side of (7.1).

Now let δ ∈ (0, 2π) and n ∈ N such that π/n < δ < 2π/n . Let also Sn := Sn(f) be the Fourier sum of
f . Using Lemma 7.2 with h = π/n and property (i) of Lemma 3.1, we obtain

∥S(α)
n ∥p, µ≤(n/2)α∥∆α

π/nSn∥p, µ ≤ (π/δ)α
(
∥∆α

π/n(Sn − f)∥p, µ + ∥∆α
π/nf∥p, µ

)

≤ (π/δ)α
(
2{α}∥f − Sn∥p, µ + ∥∆α

π/nf∥p, µ
)
. (7.3)

By virtue of (2.3) and Theorem 4.2, we have

∥f − Sn∥p, µ = En(f)p, µ ≤ C(α)ωα(f ; δ)p, µ . (7.4)

Combining (7.3), (7.4), and the definition of modulus of smoothness, we obtain the relation

∥S(α)
n ∥p, µ ≤ C2(α)δ

−αωα(f ; δ)p, µ ,

where C2(α) := πα(2{α}C(α) + 1) , which yields the right-hand side of (7.1):

Kα(δ, f)p, µ ≤ ∥f − Sn∥p, µ + δα∥S(α)
n ∥p, µ ≤ C2(α)ωα(f, δ)p, µ .

2

8. Proof of auxiliary statements

Proof of Lemma 3.1. By virtue of (5.2), we have

∥∆α
hf∥p, µ = inf

{
a > 0 :

∑
k∈Z

µk

∣∣∣f̂(k) ∞∑
j=0

(−1)j
(
α

j

)
e−ikjh/a

∣∣∣pk ≤ 1

}
.
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where for any a > 0 , the following inequalities hold:

∑
k∈Z

µk

∣∣∣f̂(k) ∞∑
j=0

(−1)j
(
α

j

)
e−ikjh/a

∣∣∣pk ≤
∑
k∈Z

µk

( ∞∑
j=0

∣∣∣(α
j

)∣∣∣|f̂(k)|/a)pk ≤
∑
k∈Z

µk

(
2{α}|f̂(k)|/a

)pk
,

and hence property (i) is true. Property (ii) follows from (5.2) and property (iii) is its consequence. Part (iv)
follows from (i)–(iii).

To prove (v) we first show that the following relation holds:

lim
|h|→0

∥∆α
hτn∥p, µ = 0 (8.1)

where τn is a polynomial of the form τn(x)=
∑

|k|≤n cke
ikx , n ∈ N , ck ∈ C .

Since ∥τn∥p, µ = inf{a > 0 :
∑

|k|≤n µk(|ck|/a)pk ≤ 1} , then by virtue of (5.3), for a0 = |nh|α∥τn∥p, µ ,
we obtain∑

|k|≤n

µk

(
|[∆α

hτn]̂(k)|/a0)pk =
∑
|k|≤n

µk

(
|1− e−ikh|α|ck|/a0

)pk
=

∑
|k|≤n

µk

(
2α

∣∣∣ sin(kh/2)∣∣∣α|ck|/a0)pk

≤
∑
|k|≤n

µk

(
|kh|α|ck|/a0

)pk
≤

∑
|k|≤n

µk

(
|nh|α |ck|

a0

)pk
=

∑
|k|≤n

µk

(
|ck|/∥τn∥p, µ

)pk
≤ 1. (8.2)

Therefore, ∥∆α
hτn∥p, µ ≤ |nh|α∥τn∥p, µ . For an arbitrary ε > 0 , we set δ := δ(ε) =

(
ε/nα∥τn∥p, µ

)1/α

. Then

for all |h| < δ , we have ∥∆α
hτn∥p, µ < ε , i.e. relation (8.1) is indeed fulfilled.

Now let f be a function from SM and Sn = Sn(f) its Fourier sum. Then for any ε > 0 there exist a
number n0 = n0(ε) such that for any n > n0 , we have ∥f − Sn∥p, µ < ε/2{α}+1 . Furthermore, by virtue of
(8.1), there exist a number δ := δ(ε, n) such that ∥∆α

hSn∥p, µ < ε
2 when |h| < δ . Then using properties of

norm and (i), for n > n0 we get the following relation which yields (v):

∥∆α
hf∥p, µ ≤ ∥∆α

h(f − Sn)∥p, µ + ∥∆α
hSn∥p, µ≤ 2{α}∥f − Sn∥p, µ + ∥∆α

hSn∥p, µ< ε.

2

Proof of Lemma 3.2. Property (iii), nonnegativity and increasing of the function ωα(f, t)p, µ follow
from the definition of modulus of smoothness. In (i), the convergence to zero as δ → 0+ follows by (v) of
Lemma 3.1. Property (v) is the consequence of Lemma 3.1 (i). According to (i) and (iii) of Lemma 3.1,
for arbitrary 0 < α ≤ β , we have ∥∆α

hf∥p, µ = ∥∆α−β
h (∆β

hf)∥p, µ ≤ 2α−β∥∆β
hf∥p, µ , whence passing to the

exact upper bound over all |h| ≤ δ , we obtain (ii). Property (iv) is proved by the usual arguments. In
particular, this property yields the continuity of the function ω1(f, δ)p, µ , since for arbitrary δ1 > δ2 > 0 ,
ω1(f, δ1)p, µ − ω1(f, δ2)p, µ ≤ ω1(δ1 − δ2)p, µ → 0 as δ1 − δ2 → 0.

Let us prove the continuity of the function ωα(f, δ)p, µ for arbitrary α > 0 . Let 0 < δ1 < δ2 and
h = h1 + h2, where 0 < h1 ≤ δ1 , 0 < h2 ≤ δ2 − δ1. Since

∆α
hf(δ) = ∆α

h1
f(δ) +

∞∑
j=0

(
α

j

)
(−1)j∆1

jh2
f(δ + jh1)
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and∥∥∥ ∞∑
j=0

(
α

j

)
(−1)j∆1

jh2
fjh1

∥∥∥
p, µ

= inf

{
a > 0 :

∑
k∈Z

µk

∣∣∣[ ∞∑
j=0

(
α

j

)
(−1)j∆1

jh2
fjh1

]̂(k)/a∣∣∣pk ≤ 1

}

≤ inf

{
a > 0 :

∑
k∈Z

µk

(
2{α}α|[∆1

h2
f ]̂(k)|/a)pk ≤ 1

}
≤ 2{α}α∥∆1

h2
f∥p, µ ,

then ∥∆α
hf∥p, µ ≤ ∥∆α

h1
f∥p, µ + 2{α}α∥∆1

h2
f∥p, µ and

ωα(f, δ2)p, µ ≤ ωα(f, δ1)p, µ + 2{α}αω1(f, δ2 − δ1)p, µ .

Hence, we obtain the necessary relation:

ωα(f, δ2)p, µ − ωα(f, δ1)p, µ ≤ 2{α}αω1(f, δ2 − δ1)p, µ → 0, δ2 − δ1 → 0.

If there exists a derivative f (β) ∈ Sp, µ , 0 < β ≤ α , then by virtue of (5.2) and (3.2), for arbitrary
numbers k ∈ Z \ {0} and h ∈ [0, δ] , we have

|[∆α
hf ]̂(k)| = 2β | sin(kh/)2|β |1− e−ikh|α−β |f̂(k)| ≤ δβ |k|β |1− e−ikh|α−β |f̂(k)| ≤ δβ |[∆α−β

h f (β)]̂(k),
and therefore property (vi) holds.

If α and p are positive integers, then using the representation

∆α
phf(x) =

p−1∑
k1=0

. . .

p−1∑
kα=0

∆α
hf(x− (k1 + k2 + . . .+ kα)h),

and the relation

∣∣∣[∆α
hf(x− (k1 + k2 + . . .+ kα)h)]̂(k)∣∣∣ = ∣∣∣ 1

2π

π∫
−π

α∑
j=0

(−1)j
(
α

j

)
fjh(x− (k1 + k2 + . . .+ kα)h)e

−ikx dx
∣∣∣

≤
∣∣∣ 1

2π

π∫
−π

α∑
j=0

(−1)j
(
α

j

)
fjh(x)e

−ikx dx
∣∣∣ = ∣∣∣[∆α

hf(x)]̂(k)∣∣∣,
we see that ∥∆α

phf(x)∥p, µ ≤ pα∥∆α
hf(x)∥p, µ :

inf
{
a > 0 :

∑
k∈Z

µk

(∣∣∣ p−1∑
k1=0

. . .

p−1∑
kα=0

[∆α
hf(x− (k1 + . . .+ kα)h)]̂(k)∣∣∣/a)pk ≤ 1

}

≤ inf
{
a > 0 :

∑
k∈Z

µk

(
pα

∣∣∣[∆α
hf(x)]̂(k)∣∣∣/a)pk ≤ 1

}
.

To prove (viii) it is sufficient to consider the case δ < η (for δ ≥ η , property (viii) is obvious). Choosing the
number p such that η/δ ≤ p < η/δ + 1 , by virtue (i) and (vii), we obtain

ωα(f ; η)p, µ ≤ ωα(f ; pδ)p, µ ≤ pαωα(f ; δ)p, µ ≤ (η/δ + 1)αωα(f, δ)p, µ . 2
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Proof of Lemma 4.3. The right-hand side of (4.2) is obtained from the Young inequality

ab ≤ ap

p
+
bq

q
,

1

p
+

1

q
= 1, a ≥ 0, b ≥ 0,

as follows (here in the proof, we exclude the trivial case when f ≡ const)

∥f∥∗p, µ/∥f∥p, µ =
∥∥∥f/∥f∥p, µ∥∥∥∗

p, µ
= sup

{∑
k∈Z

µk|λkf̂(k)|/∥f∥p, µ : λ ∈ Λ
}

≤ sup
{∑
k∈Z

µk

( |f̂(k)/∥f∥p, µ |pk
pk

+
|λk|qk
qk

)
: λ ∈ Λ

}
≤ sup

{∑
k∈Z

µk

(∣∣∣f̂(k)/∥f∥p, µ ∣∣∣pk + |λk|qk
)
: λ ∈ Λ

}
≤ 2.

To prove the left-hand side of (4.2), let us show that for any function f ∈ Sp, µ , from the inequality ∥f∥∗p, µ ≤ 1 ,

it follows that
∑
k∈Z µk|f̂(k)|pk ≤ 1 . Indeed, assume that

∑
k∈Z µk|f̂(k)|pk > 1 . Then take any ρ > 1 such

that
∑
k∈Z µk|f̂(k)/ρ|pk = 1 and consider the sequence λ̃ = {λ̃k}k∈Z such that λ̃k = (|f̂(k)|/ρ)pk−1 , k ∈ Z .

We have ∑
k∈Z

µk|λ̃k|qk =
∑
k∈Z

µk

∣∣∣f̂(k)/ρ∣∣∣(pk−1)qk
=

∑
k∈Z

µk

∣∣∣f̂(k)/ρ∣∣∣pk = 1

that is, λ̃ ∈ Λ(p, µ) . However, by the definition (4.1) of the Orlicz norm, we get

∥f∥∗p, µ ≥
∑
k∈Z

µkλ̃k|f̂(k)| = ρ
∑
k∈Z

µk

∣∣∣f̂(k)/ρ∣∣∣pk = ρ > 1,

which is a contradiction. Hence, for any function f ∈ Sp, µ , the inequality ∥f∥∗p, µ ≤ 1 yields the inequality∑
k∈Z µk|f̂(k)|pk ≤ 1 .

Since
∥∥∥f/∥f∥∗p, µ∥∥∥∗

p, µ
= 1, then

∑
k∈Z

µk

∣∣∣f̂(k)/∥f∥∗p, µ ∣∣∣pk ≤ 1; therefore, ∥f∥p, µ ≤ ∥f∥∗p, µ . 2

Proof of Lemma 7.2. Since for any polynomial τn(x)=
∑

|k|≤n cke
ikx , we have ∥τ (α)n ∥p, µ = inf{a > 0 :∑

|k|≤n µk(|k|α|ck|/a)pk ≤ 1} , then similarly to (8.2), we get

∑
|k|≤n

µk

(
|[∆α

hτn]̂(k)|
a1

)pk
≤

∑
|k|≤n

µk

(
|kh|α|ck|

a1

)pk
≤

∑
|k|≤n

µk

(
|k|α|ck|

∥τ (α)n ∥p, µ

)pk
≤ 1,

when a1 := |h|α∥τ (α)n ∥p, µ . Therefore, ∥∆α
hτn∥p, µ ≤ |h|α∥τ (α)n ∥p, µ .

In (7.2), the first inequality is trivial in the cases where h = 0 or |h| = 2π/n . So, let 0 < |h| < 2π/n .
Since the function t/ sin t increase on (0, π) and

∥∆α
hτn∥p, µ = inf

{
a > 0 :

∑
|k|≤n

µk

(
2α

∣∣∣ sin kh
2

∣∣∣α|ck|/a)pk ≤ 1
}
,
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then for a2 :=
∣∣∣ n/2
sin(nh/2)

∣∣∣α∥∆α
hτn∥p, µ , we get

∑
|k|≤n

µk(|k|α|ck|/a2)pk =
∑
|k|≤n

µk

(∣∣∣ kh/2

sin(kh/2)

∣∣∣α∣∣∣ sin(kh/2)
h/2

∣∣∣α|ck|/a2)pk
≤

∑
|k|≤n

µk

(
2α

∣∣∣ sin kh
2

∣∣∣α|ck|/∥∆α
hτn∥p, µ

)pk
≤ 1.

Thus, the first inequality in (7.2) also holds. 2
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