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Abstract

We study the bifurcation and dynamical behaviour of the system of N globally coupled identical phase oscillators introduced by Hansel, Mato
and Meunier, in the cases N = 3 and N = 4. This model has been found to exhibit robust ‘slow switching’ oscillations that are caused by the
presence of robust heteroclinic attractors. This paper presents a bifurcation analysis of the system in an attempt to better understand the creation
of such attractors. We consider bifurcations that occur in a system of identical oscillators on varying the parameters in the coupling function.
These bifurcations preserve the permutation symmetry of the system. We then investigate the implications of these bifurcations for the sensitivity
to detuning (i.e. the size of the smallest perturbations that give rise to loss of frequency locking).

For N = 3 we find three types of heteroclinic bifurcation that are codimension-one with symmetry. On varying two parameters in the
coupling function we find three curves giving (a) an S3-transcritical homoclinic bifurcation, (b) a saddle–node/heteroclinic bifurcation and
(c) a Z3-heteroclinic bifurcation. We also identify several global bifurcations with symmetry that organize the bifurcation diagram; these are
codimension-two with symmetry.

For N = 4 oscillators we determine many (but not all) codimension-one bifurcations with symmetry, including those that lead to a robust
heteroclinic cycle. A robust heteroclinic cycle is stable in an open region of parameter space and unstable in another open region. Furthermore,
we verify that there is a subregion where the heteroclinic cycle is the only attractor of the system, while for other parts of the phase plane it can
coexist with stable limit cycles. We finish with a discussion of bifurcations that appear for this coupling function and general N , as well as for
more general coupling functions.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Phase oscillator systems of the form

θ̇i = ωi +
1
N

N∑
j=1

g(θi − θ j ) (1)

arise quite naturally as descriptions of weakly coupled limit
cycle oscillators, where ωi represents the natural frequency
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of oscillator i and the coupling function g represents the
interaction between oscillators. Such systems of globally
coupled oscillators are of great interest not only because of their
applications in physics and biology [28,26,9], but also because
they provide examples of how systems with simple dynamics
can interact to give highly nontrivial collective dynamics [24].
Since the work of Winfree and Kuramoto [29,19] there has
been much progress in understanding general features of, for
example, the onset of various types of synchronization in
globally coupled phase oscillator systems.

A particular model is that of Kuramoto [19], where g(x) =

−K sin(x) and K is the coupling strength. In this paper
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1 Note that this only applies for the case of no detuning.
we consider a generalization of the Kuramoto model [20,
23,24] by Hansel, Mato, Meunier [13,14,17,18] that uses a
more general coupling, with the result that some bifurcation
degeneracies of the Kuramoto model are removed. The latter
model was originally derived as an approximation of coupled
neural oscillators [13] and is notable in that it can produce
nontrivial clustering dynamics even if the oscillators are
identical. This clustering can appear as ‘slow switching’ for the
identical oscillators system where, in the presence of noise or
imperfections, the dynamics shows an approximately periodic
oscillation between cluster states. The phenomenon of slow
switching and its observation in an electrochemical reaction for
a coupled electrode array is detailed in [16].

This paper aims to understand the generic bifurcations in
this model for N = 3 and 4, and particularly those that give
rise to ‘slow switching’ attractors that are attracting heteroclinic
cycles. We consider some general results for larger N in the
discussion. We do not consider the case N = 2 because this
cannot give rise to heteroclinic cycles in our model. We find a
number of new mechanisms that give rise to the appearance of
heteroclinic cycles. Our results indicate that heteroclinic cycles
can only be found at codimension-one for N = 3 but can be
robust (exist in open regions in parameter space for identical
oscillator systems) for N = 4 and higher.

Most of this paper details the behaviour of a particular case
of the system (1) for identical oscillators in the absence of
detuning, i.e. such that ωi = ω independent of i . In such cases
the ‘slow switching’ can be explained as robust heteroclinic
attractors that, in the presence of noise, exhibit approximately
periodic oscillations between dynamically unstable (saddle)
states with a period that becomes unbounded as the noise
is reduced to zero. This slow switching has been observed
in certain types of neural dynamics [1,7,15] and hence the
mechanisms studied here may be of particular interest in such
models.

A second motivation for this paper is to better understand
cases where there is extreme sensitivity of the attractors for
system (1) to detuning [5], i.e. how ωi arbitrarily close to
constant can give attractors that break frequency locking, even
for strong coupling.

1.1. A model for globally coupled phase oscillators

We consider the system of i = 1, . . . , N coupled phase
oscillators

θ̇i = ωi +
K

N

N∑
j=1

g(θi − θ j ), where

g(x) = gα,r (x) = − sin(x − α) + r sin(2x),

(2)

where θi ∈ [0, 2π) are phase variables, ωi are natural
frequencies, K > 0 is a coupling parameter and g(x) is a
specific coupling function [3,9]. We consider the dynamics and
bifurcations of this system for identical oscillators

ωi = ω, for i = 1, . . . , N (3)

on varying the parameters r ∈ R and α ∈ [0, 2π) in the
coupling function gα,r (x). We note that without generality we
can assume that r ≥ 0 because of the time-reversing symmetry
gα,r (x) = −gα+π,−r (x).

This particular choice of g(x) was introduced in [13] and
hence we refer to (2) as the Hansel–Mato–Meunier model [13,
17,18]. In the case r = 0 (i.e. g(x) = − sin(x − α)) this is
the Kuramoto–Sakaguchi model [21,27], for which the only
bifurcations are at α = ±π/2, and these bifurcations are
degenerate. Systems (2) and (3) possess symmetries given by
all permutations SN of the oscillators, and this implies that
there are a number of orbits in phase space that are fixed by
symmetry [3]; one of these is the in-phase solution

{(θ, . . . , θ) : θ ∈ T}

and another, the set of antiphase solutions

M (N )
=

{
(θ1, . . . , θN ) :

N∑
j=1

eiθ j = 0

}
. (4)

The set M (N ) is a union of manifolds of dimension N − 2 for
N ≥ 3; see Appendix. For any α it consists of fixed points of
the phase differences in the case r = 0 and contains a union of
invariant manifolds for more general r .

1.2. Reduction to phase differences

To exploit the phase-shift symmetry of this system one can
describe the system dynamics in terms of the dynamics of the
phase differences

φi = θ1 − θi+1, i = 1, . . . , N − 1,

thus reducing this N -dimensional system to the (N − 1)-
dimensional system

φ̇i = ∆i + r
K

N

[
sin(2φi ) +

N−1∑
j=1

(sin(2φ j )+ sin(2(φ j −φi )))

]

−
K

N

[
sin(φi + α) +

N−1∑
j=1

sin(φ j − α)

+

N−1∑
j=1, j 6=i

sin(φi − φ j + α)

]
, (5)

where ∆i = ω1 − ωi+1, i = 1, . . . , N − 1 are the set of
detunings of the oscillators. Thus (2) with N = 2 can be
reduced to a scalar equation as described in [5].

We mostly consider the case where ωi are all equal (3); this
condition implies the invariance of the sets

Pi j = {(θ1 . . . , θn) : θi = θ j }

for any i 6= j = {1, . . . , N }.1 Without loss of generality we can
set K = N by scaling time.
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1.3. Sensitivity to detuning

In real applications the assumption (3) will be broken by
imperfections in the system and so it is interesting to ask how
far one can perturb (or detune) the ωi before the oscillators
lose frequency synchronization. We say that two oscillators θi
and θ j have bounded phase difference if |θ j − θi | is bounded
uniformly for t > 0. Note that if θi and θ j have bounded
phase difference then they will be frequency synchronized. For
the standard Kuramoto model (r = α = 0) the sensitivity
increases with decreasing coupling strength K . In contrast, for
(2) extremely small detuning may result in loss of frequency
synchronization even if the coupling is significant [5]. Note that
when (3) is not satisfied, it possible that highly complicated
dynamics may appear [24,22,25]. More precisely we define as
in [5] the sensitivity to detuning to be

Ω = sup{δ : |∆| < δ implies all attractors of (1) have bounded

phase differences.}.

We say that a system has extreme sensitivity if Ω = 0.
Extreme sensitivity generally appears at points of heteroclinic
bifurcation and implies that arbitrarily small detuning destroys
frequency locking between oscillators. Work in [5] indicates
that this can appear robustly for N ≥ 5 coupled oscillators
due to the appearance of robust heteroclinic attractors that,
when lifted to the torus, form a single connected component.
In this paper we work on clarifying the appearance of extreme
sensitivity for N = 3 and N = 4 for a particular system of
coupled phase oscillators.
Topological sensitivity. We introduce a concept intimately
related to sensitivity, namely topological sensitivity to detuning.
Suppose that the set of all attractors of (1) is A∆ for a given
detuning ∆k = ωk − ωn, k = 1, . . . , n − 1, so that A0 signifies
the attractors for the system with (3). We define

Ω top
= sup{δ : Bδ(A0) only has components that are

contractible to the diagonal},

where Bδ(A0) is the δ-neighbourhood of A0 within TN . If a
set A0 ⊂ TN only has components that are contractible to the
diagonal2 (1, . . . , 1) ⊂ TN then it follows that all trajectories
attracted to A0 must have bounded phase differences. We use
this to characterise extreme sensitivity.

Lemma 1. If all attractors A0 are asymptotically stable and
Ω = 0 then Ω top

= 0.

Proof. We prove by contradiction; namely we show that if all
attractors are asymptotically stable and Ω top > 0 then Ω > 0.
Note that if all attractors are asymptotically stable then they are
upper semicontinuous in the following sense: given any η > 0
there is a δ > 0 such that if |∆| < δ then Bη(A0) ⊃ A∆; see
for example [2]. Now suppose that η = Ω top > 0; there is a
δ > 0 such that for all |∆| < δ we have

Bη/2(A0) ⊃ A∆.
2 Another way to say this is that all pseudo-orbits inA0 have bounded phase
differences.
Because A0 is closed and only contains components con-
tractible to the diagonal the same must hold for Bη/2(A0) with
η small enough. Hence by choosing an appropriate δ > 0, all
components of the perturbed attractors A∆ with |∆| < δ will
remain contractible to the diagonal. Hence Ω ≥ δ > 0. �

Note that the assumption that the attractors are asymptoti-
cally stable includes many types of heteroclinic attractors. A
converse to Lemma 1 requires more stringent conditions that
we have not investigated in detail. However, we can quantify
a direct link between heteroclinic cycles and the appearance of
extreme sensitivity given by the following result:

Lemma 2. If A0 contains an asymptotically stable heteroclinic
attractor that is not contractible to the diagonal then Ω top

= 0.

Proof. Note that if A0 contains components that are not
contractible to the diagonal then so does Bδ(A0) for all δ > 0.
Hence Ω top

= 0. �

2. Three globally coupled identical oscillators

In the case N = 3 we write the system (2) reduced to phase
differences (5) with identical oscillators (3) as

φ̇1 = − sin(φ1 − α) − sin(φ2 − α) − sin(φ1 + α)

− sin(φ1 − φ2 + α) + r(2 sin(2φ1) + sin(2φ2)

+ sin(2(φ1 − φ2))),

φ̇2 = − sin(φ2 − α) − sin(φ1 − α) − sin(φ2 + α)

− sin(φ2 − φ1 + α) + r(2 sin(2φ2)

+ sin(2φ1) + sin(2(φ2 − φ1))).

(6)

Observe that there are three invariant lines φ1 = 0, φ2 = 0
and φ1 = φ2 that separate the torus T2 into two triangular
regions: Φ1 = {(φ1, φ2) : φ1 ∈ [0, 2π ], 0 ≤ φ2 ≤ φ1} and
Φ2 = {(φ1, φ2) : φ1 ∈ [0, 2π ], φ1 ≤ φ2 ≤ 2π} (see the phase
portraits in Figs. 1 and 2).

The phase differences for N = 3 can be visualized as in [3]
by plotting a complex phase difference

ξ = θ1 + e2iπ/3θ2 + e4iπ/3θ3

in which case permutations of the oscillators correspond to
rotations and reflections in the phase space that preserve an
equilateral triangle (for example, Fig. 3 or [5], Figure 2).
Accordingly, for system (6) we can transform the triangles Φ1,
Φ2 into equilateral triangles by plotting in the ξ -plane. In the
ξ -plane a symmetry of the system (6) corresponds to a
symmetry of an equilateral triangle.

The in-phase solution (origin) and the manifold of antiphase
solutions M (3) are particularly significant in organizing the
bifurcation behaviour of (6). Note that the latter consists of a
point in each invariant triangle

(φ1, φ2) ∈ M (3)
= {(4π/3, 2π/3), (2π/3, 4π/3)}

(we will name each of these Z3 symmetry points antiphase solu-
tions). It can be shown that the origin and the antiphase solution
have opposite stability and change them simultaneously when
α crosses α0 = arccos(2r) (first the origin is an attractor and
the antiphase solution is a repeller, then vice versa).
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Fig. 1. The parameter plane for the system (2) for N = 3. The phase portraits surrounding the parameter plane are shown for (φ1, φ2) ∈ [0, 2π)2. The white
circles indicate sources and sinks, while the black disks indicate saddles. The codimension-one bifurcations illustrated are: ID: Pitchfork bifurcation on invariant
lines; BEGH: Transcritical bifurcation at 0; BEGH: Hopf bifurcation of antiphase solution; HFAED: Saddle–node bifurcation on invariant lines; BE: S3-transcritical
homoclinic bifurcation; ED: Saddle–node homoclinic bifurcation; BD: Saddle–node of limit cycles; HCD: Z3-heteroclinic bifurcation; DJ: Pitchfork bifurcation;
DK: Saddle–node bifurcation; DL: Saddle–node bifurcation. There are codimension-two bifurcations at A: cusp point; E : Interaction of S3-transcritical homoclinic
and saddle–node/heteroclinic; D: Interaction of saddle–node/heteroclinic and Z3-heteroclinic; H : Degenerate Hopf bifurcation of antiphase solution.
2.1. Bifurcations for N = 3 in the (α, r)-plane

The bifurcations of (6) are summarised in Fig. 1 and
described for a selection of slices for fixed r in the section
below. This analysis uses numerical path-following and
simulation via the package XPPAUT/AUTO [10,11].

We only plot the bifurcation diagram α ∈ [0, π] and r ≥

0, because the other cases can be inferred from the time-
reversal symmetry (x, α, r) 7→ (−x, −α, r) and the symmetry
(x, α, r) 7→ (x + π, α + π, r). The curve

BH =

{
(α, r) : r =

1
2

cos α, α ∈

[
0,

π

2

]}
is the line of transcritical (in three directions) bifurcation at the
origin (S3-transcritical bifurcation) and simultaneously it is the
line of inverse supercritical Hopf bifurcation of the antiphase
solutions. A transcritical bifurcation occurs when, on increasing
α, three symmetry-related saddle points (on the invariant lines
φ1 = 0, φ2 = 0 and φ2 = φ1) pass through the origin.
S3-transcritical homoclinic bifurcation for r ∈ (0, rE ). We
describe the bifurcations illustrated in Fig. 1 (Table 1) by fixing
different values of the parameter r and change the parameter α

for these r . For r = 0 (the Kuramoto–Sakaguchi system [21])
we have bifurcations at the point α0 = π/2. There is a
degenerate Hopf bifurcation at the antiphase solution, and a
transcritical bifurcation at the origin that gives existence of a
heteroclinic cycle between different images of 0 in the lift of
T2. This heteroclinic cycle on the plane R2 splits into three
homoclinic cycles when we consider the same on the torus T2.

Increasing the parameter r from zero to rE gives a
nondegenerate Hopf bifurcation (giving rise to an unstable
limit cycle) and an S3-transcritical homoclinic bifurcation as
described in [4] giving rise to stable limit cycles both on the
line BED.

Lines HA and AD on the parameter plane are lines of a
saddle–node bifurcation on invariant lines. We have birth (resp.
disappearance) of a pair of fixed points on each of the invariant
line on increasing parameter α through HA (resp. AD).
Saddle–node/heteroclinic bifurcation for r ∈ (rE , rD). For
r > rE two additional fixed points lie on each of the invariant
lines after α has already crossed the line E H of transcritical



458 P. Ashwin et al. / Physica D 237 (2008) 454–466
Fig. 2. Phase portraits in φi ∈ [0, 2π) at the codimension-two bifurcation
points D, E and H for N = 3; details are only shown in the upper left
triangle for clarity; these are also present in the lower right triangle by the
action of symmetry. The white circles indicate sources and sinks, the shaded
circles indicate nonhyperbolic points while the black disks indicate saddles.
(a) shows D; there is a cycle between saddle–nodes such that the connecting
orbits (shown shaded) foliate triangles in phase space. (b) shows E ; there are
connections from the degenerately stable in-phase solution (corners) to and
from saddle–node points. (c) shows H ; there is a degenerate Hopf bifurcation
at the antiphase solutions. The arrows indicate direction of flow.

Table 1
The codimension-one bifurcations for N = 3 illustrated in Fig. 1

ID Pitchfork bifurcation on invariant lines
BEGH Transcritical bifurcation at 0
BEGH Hopf bifurcation of antiphase solution
HFAED Saddle–node bifurcation on invariant lines
BE S3-transcritical homoclinic bifurcation
ED Saddle–node homoclinic bifurcation
BD Saddle–node of limit cycles
HCD Z3-heteroclinic bifurcation
DJ Pitchfork bifurcation
DK Saddle–node bifurcation
DL Saddle–node bifurcation

bifurcations. A heteroclinic bifurcation does not occur with the
transcritical E H , but occurs later at the saddle–node bifurcation
ED. The cycle links three pairs of saddles and and three
saddle–node points lying on respective invariant lines (see
also [5] for more details of this bifurcation).
If we change parameters (α, r) from E to D along the line
ED, then the saddle point moves from 2π to 5π/3 and the
saddle–node point will slide from π/2 to 2π/3 on φ1 = 0 line
(and symmetrically on other invariant lines). The stable limit
cycle generated by the saddle–node/heteroclinic bifurcation has
a roughly hexagonal shape, in contrast to such cycle generated
by S3-transcritical homoclinic bifurcation that has a roughly
triangular shape. The intersection point E of S3-transcritical
homoclinic and saddle–node/heteroclinic bifurcation lines has
coordinates αE = arctan(3) = 1.2490458, rE =

√
10/20 =

0.15811388 and is illustrated in Fig. 2. The mechanism of a
saddle–node/heteroclinic bifurcation and its asymptotics were
described in [5]. Note that the appearance of heteroclinic
cycles at symmetric saddle–node and symmetric transcritical
bifurcations is a general property of the system (5) for arbitrary
N ≥ 3.
Pitchfork bifurcation for r ∈ (rI , rD). For r > rI = 1/6
there is a pitchfork bifurcation on the line ID that continues up
to the codimension-two bifurcation D with coordinates αD =

5π/6 − arccos(
√

21/14) = 1.3806707 and rD = 1/
√

7 =

0.37796447. This supercritical pitchfork bifurcation is where
saddles within the invariant lines bifurcate transversely to create
pairs of saddles near the invariant lines. At α = 0 and on
increasing r through rI this creates a source at the mid-point
of each invariant line surrounded by a pair of saddles that
move towards the antiphase solutions. These saddles reach the
antiphase solutions at the codimension-two bifurcation H . The
pitchfork bifurcation that occurs on the line FD means that the
source on the invariant line is replaced by a saddle. This saddle
disappears at a saddle–node bifurcation on the invariant line on
the line DL. The codimension-one heteroclinic cycle on the line
ED generates a stable limit cycle on increasing α.
Heteroclinic bifurcation to a stable limit cycles for r ∈

(rB, rD). There is a heteroclinic cycle consisting of the three
invariant lines with symmetry S2×S1 for (α, r) on the curve BE.
Also, there is a heteroclinic cycle composed of six connections,
some of which lie within invariant lines, for (α, r) on the curve
ED. When crossing line BED with increasing α, a stable limit
cycle is born. Therefore in the region BED we infer coexistence
of a big stable and small unstable limit cycle. These disappear
at a saddle–node bifurcation of limit cycles when (α, r) crosses
BD; see [5] for more details.
Z3-heteroclinic bifurcation for r ∈ (rC , rH = 0.5). The third
type of symmetric heteroclinic bifurcation that takes place in
this system is a Z3-heteroclinic bifurcation on the lines C H
and C D. This bifurcation occurs twice, on varying α, for each
r ∈ (rC , rD) and once for r ∈ (rD, 0.5). The bifurcation
Fig. 3. Schematic diagram showing the details of the Z3-heteroclinic bifurcation that occurs on the line C D in parameter space for N = 3 oscillators. Note that this
occurs in the interior of the invariant triangle in a neighbourhood of the antiphase state indicated by the triangle; see the text for details.
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occurs when there is a heteroclinic connection between pairs
of three saddles related by Z3 symmetry, as shown in Fig. 3.
Fixing r0 ∈ (rC , 0.5) and changing α from α = α0 =

arccos(2r0) we observe such a bifurcation where there are three
connections meeting at three saddles, destroying a stable limit
cycle at the bifurcation point. On increasing the parameter α for
r ∈ (rC , rD) the Z3-heteroclinic bifurcation happens in reverse
order. Following this bifurcation we obtain an unstable limit
cycle.

At the Z3-heteroclinic bifurcation (on HCD line) one can
verify that all separatrices of saddles are straight lines given
by φ2 = (φ1 − β)/2, φ2 = 2φ1 + β − 2π and φ2 =

−φ1 + β + 2π , where β goes from 0 to 2π/3 as α goes from 0
to αD . The saddle coordinates are therefore (β + 4π/3, 2π/3),
(4π/3, β + 2π/3), (−β + 2π/3, −β + 4π/3) and similarly for
other three saddles.
Interaction of saddle–node/heteroclinic and pitchfork at D.
Seven different bifurcation lines meet at the codimension-
two point D shown in Fig. 2. Two types of the heteroclinic
bifurcation (saddle–node and Z3) take place simultaneously in
such a way that they create regions in phase plane (φ1, φ2)

filled by trajectories of heteroclinic cycles. A large hexagonal
heteroclinic cycle (generated by saddle–node bifurcation) has
three points in common with the small triangular heteroclinic
cycle (generated by the Z3-heteroclinic bifurcation). This
results in three triangles filled with trajectories that are
connections giving a set of degenerate heteroclinic cycles.
Bifurcations for r ∈ (rD, rH = 0.5). Lines DJ, DK and DL
are lines of pitchfork, saddle–node and saddle–node bifurcation
respectively [21]. Let us consider the region HCDJ for r > rD
and increase the parameter α. There is one sink and one source
on each invariant line when (α, r) ∈ HCDJ and two saddles
lie off the invariant lines close to these points (created by the
pitchfork when r < rD). First (when α reaches DJ) we have
a pitchfork transverse to an invariant line that generates two
new sinks and leaves a saddle on the invariant line. Then we
have saddle–node bifurcations of these sinks as α crosses DK.
The next saddle–node bifurcation of the source and saddle on
the invariant line (when α crosses DL) gives a simple phase
portrait with two sinks at the centres, the source at the origin and
three saddles on the invariant lines. Note that the saddle–node
points of the last bifurcation are repelling transverse to the
invariant line. For this reason they are not included within any
heteroclinic cycle.
Bifurcations for r > rH = 0.5. For r > rH = 0.5 we find no
heteroclinic cycles or limit cycles. On increasing r the phase
portrait becomes topologically equivalent to the situation in
region JDK but with double the periodicity.

2.2. Detuning and sensitivity for N = 3

If we allow ∆i 6= 0 within (5) then the bifurcation
picture will change fundamentally from what is described
above. However, the existence of topologically nontrivial
heteroclinic cycles for identical oscillators at (a) the S3-
transcritical homoclinic bifurcation BE and (b) the saddle–node
homoclinic bifurcation ED implies that Ω top
= 0 on the line

BED. This suggests (see Lemma 2) that

Ω = 0 on the line B E D.

This extends the bifurcation analysis for fixed r in [5] to
the two-parameter plane and explains the loss of frequency
locking observed experimentally in [4] near loss of stability of
the in-phase solution in a system of three coupled electronic
oscillators.

3. Four globally coupled oscillators

3.1. The structure of phase space for N = 4

We now consider system (5) for N = 4 posed for the phase
difference variables (φ1, φ2, φ3) on T3 and again with ∆i ≡ 0.
As already mentioned, all planes φi = 0, i = 1, 2, 3, are
invariant and all lines φi = 0, φ j = 0, i, j = 1, . . . , 3,
φ1 = φ2 = φ3 are invariant as well. In terms of symmetry
groups, these lines have S3 × S1 isotropy [3,9]. Also the planes
φi = φ j , i = 1, 2, 3, are invariant. Thus the diagonals of the
cube faces φi = φ j , φk = 0, i 6= j 6= k, i, j, k = 1, 2, 3, are
invariant. These lines have isotropy S2 × S2.

If we take the cube [0, 2π)3 modulo its main diagonal we
can divide it into six equal volume tetrahedra with the help of
the above described invariant planes. Each tetrahedron is an
invariant region corresponding to points on T4 that lift to the
set

{(θ1, θ2, θ3, θ4) : θσ(1) ≤ θσ(2) ≤ θσ(3) ≤ θσ(4) ≤ θσ(1) + 2π}

for some permutation σ ∈ S4. For the particular case where σ

is the identity this invariant set is called the canonical invariant
region [3]. These tetrahedra have faces with S2 isotropy. Of
the edges, four have S3 × S1 isotropy and two have S2 × S2
isotropy. The manifold of antiphase solutions M (4) consists
of six direct lines that connect the centres of the cube faces.
Each of these lines belongs to one of the tetrahedra and has Z2
isotropy. The centre of manifold M (4) is an antiphase solution
with Z4 isotropy and a point of intersection of lines with
S2 × S2 and Z2 isotropy has (S2)

2
×s Z2 isotropy where ×s

indicates a semidirect product. Hence we split the torus of phase
differences into six solid tetrahedra of the form shown in Fig. 4.

Let us imagine that four points of the cube (0, 0, 0),
(2π, 0, 0), (2π, 2π, 0), (2π, 2π, 2π) are connected in the
sequentially closed curve γ1 and this curve has some direction.
In the same way we can define similar curves γi , i = 2, . . . , 6
for other tetrahedra. From this point we consider only the
dynamics within one tetrahedron as the dynamics on all others
is given by symmetry.

3.2. Bifurcation structure for N = 4.

A diagram showing the main bifurcation structure for N =

4 is given in Fig. 5 with the codimension-one bifurcations
listed in Table 2. Firstly we consider the case r = 0 (the
Kuramoto–Sakaguchi system [23]). For α = 0 we have
one attractor that is the origin and one repeller that is the
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Table 2
A list of the codimension-one bifurcations for N = 4 including those illustrated in Fig. 5

BEGH Transcritical-pitchfork bifurcation at 0
BQ Inverse pitchfork bifurcation of saddles with (S2)2xs Z2 symmetry
BV Pitchfork/heteroclinic bifurcation of solutions with symmetry S2 × S2 (transverse to S2 × S2 direction)
BM Hopf bifurcation of antiphase solutions (Z4) and change of stability of robust heteroclinic cycles
HAED Saddle–node bifurcation to solutions with symmetry S3 × S1
IFGD Transcritical bifurcation of solutions with symmetry S3 × S1 at the source Ui
DK Saddle connection bifurcation (not heteroclinic) in subspace with symmetry S2
DJ Transcritical bifurcation of solutions with symmetry S3 × S1 at the sink Wi
DTL Saddle–node bifurcation inside tetrahedra on S2-plane
BTR Pitchfork bifurcation of limit cycles within tetrahedron
IFGD′ A saddle–node bifurcation line lies to the right of the line IFGD and very close to it
DJ′ A saddle–node bifurcation line lies between DK and DJ (the bifurcation occurs on Wi Vi in phase space)
DL′, DL′′ Two saddle–node bifurcation lines are between DJ and DL, the second of these bifurcations happens within the S3 × S1 invariant line.
Fig. 4. Diagram showing the phase space in terms of one invariant tetrahedron
for the case of identical phase oscillators with N = 4. This shows the
relationship between the subspaces with differing symmetries. The point at the
centre is the antiphase solution with Z4 symmetry; the points on the faces of
the invariant tetrahedron have S2 symmetry.

manifold of fixed points M (4). Also there are saddles with all
coordinates 0 or π . For increasing parameter α all saddles begin
to move along the invariant lines in the (or reverse) direction
of γi . When α = π/2, the transcritical bifurcation (along
S3 × S1 invariant lines) at the origin and the Hopf bifurcation
on the M (4) take place. At this moment each tetrahedron is
filled with closed trajectories and all invariant planes are filled
with parts of heteroclinic cycles. Each connection γ (φ) =

W u(P1(φ))
⋂

W s(P2(2π − φ)) links the two degenerate
saddles P1(φ), P2(2π − φ), φ ∈ [0, π], where φ parametrizes
these lines (we have three pairs of P1, P2 since there are three
S2 × S2 lines on the torus T3). We obtain continuous sets of
heteroclinic cycles because the whole S2×S2 invariant lines are
filled with saddle points as in Fig. 6. The origin and manifold
M (4) change their stability at the moment of this bifurcation and
heteroclinic cycles disappear except at α = π/2.

3.3. Heteroclinic cycles for N = 4.

For r ∈ (0, 0.5), Fig. 5 shows that there are two curves
α1(r) < α2(r) such that heteroclinic cycles exist when
α ∈ (α1(r), α2(r)). Despite the various types of bifurcation
Fig. 5. Bifurcation diagram for N = 4 oscillators in the (α, r). See text and
Table 2 for a description of the bifurcation lines; there are robust heteroclinic
cycles between two cluster states in the region outlined by BEDTLV that
are attractors to the left of the line BM. There is a complicated sequence of
bifurcations near the point D that is not shown in detail in this diagram.

Fig. 6. Continua of heteroclinic cycles for N = 4 for (α, r) = (π/2, 0) (point
B in Fig. 5). For this degenerate situation there is a manifold of fixed points on
the S2 × S2 invariant subspace.

creating them, all heteroclinic cycles in this case have common
properties:



P. Ashwin et al. / Physica D 237 (2008) 454–466 461
1. All heteroclinic cycles consist of a union of Γ1 and Γ2,
subsets of two different S2 invariant planes connected by
S2 × S2 invariant line. Each of these two lines Γ1 and Γ2
consists of several parts:

Γi =

N⋃
j=1

Γi j , i = 1, 2, j = 1, . . . , m,

where m can change from 1 to 5 depending on the
heteroclinic cycle type.

2. Γ1 and Γ2 connect two saddles P1, P2, so that W u(P1) =

Γ11, W s(P2) = Γ1N , W u(P2) = Γ21, W s(P1) = Γ2N and
other two pairs of stable manifold of these saddles belong to
invariant S2 × S2 line.

For any fixed r ∈ (0, 0.5) and increasing α saddles P1 and
P2 appear as a result of the subcritical pitchfork bifurcation that
occurs at the origin when α− = arccos(2r0) and disappear as
a result of an subcritical pitchfork bifurcation at the middle of
S2 × S2 invariant lines (a point with (S2)

2
×s Z2 symmetry)

when α+ = π − arccos(2r0). The lines indicating these
pitchfork bifurcations (α, r) are BH and BQ respectively. The
saddles P1 and P2 on invariant S2 × S2 line are φ(P1) =

arccos( cos α
2r ), φ(P2) = 2π − arccos( cos α

2r ) respectively. The
system (5) has the same eigenvalues at points P1 and P2 which
are expressed by the formulae:

λ1(α, r) = −
2
r

(
4r2

− cos2 α
)

,

λ2,3(α, r) = −
1
r

(
cos α(2r − cos α) ∓ sin α

√
4r2 − cos2 α

)
.

We note that the existence of saddle points P1 and P2
is a necessary but not sufficient condition of heteroclinic
cycles existence, i.e. (α1, α2) ⊂ (α−, α+), and there are
two reasons for this. The first reason is that the invariant
manifolds of saddles Pi , i = 1, 2, changes the stability such
that dim W u(Pi ) = 1, dim W s(Pi ) = 2 before the bifurcation
at α = α2 and dim W u(Pi ) = 2, dim W s(Pi ) = 1 after this
bifurcation. The second reason is that the chain of invariant
manifolds Γi j , j = 1, . . . , m, (parts of the heteroclinic cycle
that belong to the invariant planes) can be broken on the S3 × S1
invariant lines or close to them by bifurcations of various types.

3.4. Bifurcation to heteroclinic cycles for N = 4

The first type of heteroclinic bifurcation occurs for r0 ∈

(0,
√

5/10) and is an S4-bifurcation of transcritical-pitchfork
type. We have a transcritical bifurcation at the origin that takes
place along four S3 × S1 invariant lines and simultaneously we
have a pitchfork bifurcation at this point along three S2 × S2
invariant lines. These two bifurcations occur when α = α− =

arccos(2r0), i.e. on the BH line in a two-parameter plane (the
same line BH of the transcritical bifurcation was for N = 3).
The transcritical bifurcation changes stability of the origin.
The pitchfork bifurcation generates pair saddle points P1, P2
mentioned above. Thus there are heteroclinic cycles γi , i =

1, . . . , 6, (in the 3-dimensional cube), each of them on the edges
of its tetrahedron, i.e. each of them consists of four invariant
S3 × S1 lines as in Fig. 7.
Fig. 7. Schematic diagram showing one of the heteroclinic cycles for N = 4
in the φi coordinates just to the right of the transcritical-pitchfork heteroclinic
bifurcation line (BE in Fig. 5). Note that there is a saddle-type periodic orbit
near the cycle.

Fig. 8. Schematic showing robust heteroclinic cycles inside area BEDTLV on
Fig. 5 for N = 4 that are attracting on the left and repelling on the right side
of BM. We investigate a range of bifurcations leading to the creation of such
cycles.

On the other hand, we have four homoclinic orbits on the
torus T3 that connect from and to the origin. In terms of Γ
we have Γi = Γi1

⋃
Γi2, i = 1, 2, and all Γi j are invariant

S3×S1 lines. On increasing α > α− the saddles P1 and P2 move
along S2 × S2 invariant lines and pull Γi into the tetrahedra.
After bifurcation Γi leaves the origin with two saddles in
S2 × S2 direction and loses the fixed point in the orthogonal
direction. Thus each Γi now consists only of one part and each
heteroclinic cycle consists of two parts; see Fig. 8. This means
that we obtain two heteroclinic cycles in each tetrahedron.

We have described the appearance of heteroclinic cycles
with the first type of bifurcation that happens for r ≤

√
5/10

and α1 on the line BH. For other values of r and increasing α

we have different bifurcation types that generate heteroclinic
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cycles. Regardless of the types of the bifurcation appearance
heteroclinic cycles exist on some interval α ∈ (α1, α2) and
are destroyed in the same way for any r ∈ (0, 0.5). Before
the disappearance of bifurcation any heteroclinic cycle consists
of two curves Γ11, Γ12 connecting P1 and P2 (Fig. 8). Saddle
points P1, P2 disappear with the pitchfork bifurcation on the
line

BQ =

{
(α, r) : r = −

1
2

cos α, α ∈ (π/2, π)

}
when α = α+ but heteroclinic cycles disappear earlier with
another pitchfork bifurcation on the line

BV =

{
(α, r) : r =

cos α

2 cos(2α)
, α ∈ (π/2, 2π/3)

}
when α = α2. This last supercritical pitchfork bifurcation
occurs in another transverse direction to the S2 × S2 invariant
line directions at points P2 and P1. Thus two new saddles
appear on the invariant plane where Γ1 = W u(P1) lies and
two others appear in the plane where Γ2 = W u(P2) lies.
Eigenvalues λ2(α, r) of points P1, P2 change their signs from
negative to positive on the curve BV . These points become
unstable in both transverse directions to the invariant line,
and the heteroclinic cycles split. This is another route for
appearance of heteroclinic cycles. We note that BQ and BV are
bifurcation lines within α ∈ (π/2, π) and r ∈ (0, 0.5). Thus
heteroclinic cycles exist at least for any α ∈ (π/2, α2), and
disappear (appear) at the pitchfork/heteroclinic bifurcation on
BV .

3.5. Stabilities for N = 4

The eigenvalues λ1(α, r) of saddles P1, P2 in the S2 × S2
direction are negative for any parameters (α, r) in the area BQH
of Fig. 5 (i.e. when α ∈ (α−, α+) and r ∈ [0, 0.5]). Hence
these saddles attract along the S2 × S2 invariant lines. The sum
of other pairs of eigenvalues σ(α, r) = λ2(α, r) + λ3(α, r) is
negative for α ∈ (α−, π/2) and is positive for α ∈ (π/2, α+).
Stabilities of heteroclinic cycles. From the above we can
conclude that heteroclinic cycles Γ1

⋃
Γ2 attract when they

exist and α < π/2 and they repel when α > π/2. The straight
line

B M = {(α, r) : α = π/2}

is the line of stability change (resonance) of heteroclinic
cycles, which for this system coincides with the line of Hopf
bifurcations of the antiphase solutions with Z4 symmetry.
A subcritical bifurcation from the heteroclinic cycles occurs
transverse to the S2 invariant planes when α intersects line BM.
The unstable heteroclinic cycle becomes stable and in doing
so generates two saddle limit cycles when α decreases giving
unstable limit cycles as illustrated in Fig. 7 for α slightly less
than π/2.
Stability of the antisynchronized set. We consider the
antisynchronized set M (4) in the interior of a tetrahedron (line
with Z2 symmetry, Fig. 4). The centre of M (4) (with Z4
symmetry) is attractor along the manifold for any α, r in the
region considered. It is a saddle-focus for α ∈ [0, π/2) and
a sink for α ∈ (π/2, π). The centre of invariant manifold
M (4) changes its stability as a result of the supercritical Hopf
bifurcation on BM.

Summarising, if α is slightly less than π/2 we have two
stable heteroclinic cycles on the tetrahedron faces, a stable
limit cycle inside the tetrahedron and two saddle limit cycles
that separate them. On decreasing α to cross line BTR we
obtain a subcritical pitchfork bifurcation of the stable limit
cycle and two saddle limit cycles. For smaller α the saddle limit
cycle is the only limit cycle inside the tetrahedron. In the case
r ∈ [0,

√
5/10] this saddle limit cycle appears together with

heteroclinic cycles in a transcritical-pitchfork bifurcation. At
this bifurcation an attracting heteroclinic cycle (that consists of
four parts) is created that bifurcates into two stable heteroclinic
cycles and a saddle limit cycle, on increasing α through BH.
We note that then the heteroclinic cycles coexist with just
the saddle limit cycle, these heteroclinic cycles are the only
attractors in our system. As in the case N = 3, the line
of transcritical homoclinic bifurcations to the origin connects
to a line of saddle–node bifurcations. They meet at E where
(αE , rE ) = (arctan(3),

√
10/20) in Fig. 5.

The saddle–node/heteroclinic bifurcation. For N = 4 the
saddle–node bifurcation that happens on invariant lines (HA
in the (α, r)-plane) can break up the heteroclinic cycle. For
r > rE this scenario is not possible since the unstable manifold
W u(P1) limits to a sink. The same is with W s(P2) and the
closest source. The saddle connection bifurcation that happens
on the invariant S3 × S1 lines and invariant planes close to
these lines causes the appearance of a heteroclinic cycle. The
simplest scenario of this bifurcation is for r ∈ (rE , rD) as in
Fig. 9. In this case each of Γi , i = 1, 2, consists of 5 parts.
If we consider the tetrahedron as a whole we can see that two
heteroclinic cycles of the tetrahedron have four common parts
(R11 R12, R13 R14, R21 R22, R23 R24). It can be shown that there
exist four quasi-triangular 2-dimensional areas (like R24 P1 R11)
filled with trajectories going in the same direction as in Fig. 10.
Thus we have 2-dimensional sets of heteroclinic cycles inside
each tetrahedron that consist of a union of 4 triangular regions
and 4 connecting lines. One of heteroclinic cycles of this set
has 12 parts: P1 R11 R12 P ′

1 R13 R14 P2 R21 R22 P ′

2 R23 R24. With
increasing α we obtain the usual heteroclinic cycles for N = 4
that change their stability when α = π/2 and disappear when
α crosses BV .

Fig. 11 schematically shows the phase portrait on the
invariant planes when parameters belong to the area HGDK.
We now demonstrate that the scenario of heteroclinic cycle
appearance must be more complicated than just saddle–node
bifurcation of two points on invariant S3 × S1 lines. Line ID
of Fig. 5 represents transcritical and saddle–node bifurcations
involving a source that lies in the S3 × S1 invariant line and
six saddles which belong to invariant planes. The two lines
of bifurcations lie very close to each other. The bifurcation
sequence happens on invariant planes and is schematically
represented by Fig. 12(a)–(e). Point I has coordinates α = 0
and r = 1/4. There are twelve saddles around each source for
any r > 1/4 and α = 0. Pitchfork bifurcations of nine saddles
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Fig. 9. Bifurcation to heteroclinic cycles for N = 4 on the line ED in
Fig. 5. There are 2-dimensional sets of connections between the saddle–nodes
R11 → R13 and R13 → R14.

Fig. 10. Details of the interior connections that exist in the case shown in Fig. 9
for N = 4.

Fig. 11. Global connections for parameters belonging to HGDK in Fig. 5 and
N = 4.
Fig. 12. The sequence of bifurcations on increasing α for the connections
shown in Fig. 11 and r ∈ (0.302, 0.404). The situation in (f) corresponds to
crossing the line DL in Fig. 5.

Fig. 13. The sequence of bifurcations on increasing α for the connections
shown in Fig. 11 and r > 0.4045. The situation in (f) corresponds to crossing
the line DL in Fig. 5.

on increasing α reduce these twelve saddles to six saddles
that lie on invariant planes. Line ID crosses the saddle–node
bifurcation line HA at G and the transcritical bifurcation line
BH at F . Therefore we have three main possibilities to obtain a
heteroclinic cycle for r > rG = 0.303 approximately.

1. On increasing α, unstable point Ui participates in
some bifurcations with point Vi and becomes a saddle
point. This saddle connects with stable point Wi at a
saddle–node/heteroclinic bifurcation, as shown in Fig. 12.
This sequence of bifurcations occurs for r ∈ (0.302, 0.404)

approximately.
2. On increasing α, the stable point Wi bifurcates to three

stable points inside the tetrahedron on three invariant planes
and transforms into the saddle before it disappears in a
saddle–node bifurcation with point Ui . The stable points
created participate in a saddle–node bifurcation with points
Vi on increasing α as shown in Fig. 13(a). Line DJ on
the bifurcation diagram represents the first saddle–node
bifurcation Fig. 13(b). We note that the latter saddle–node
bifurcation occurs inside the tetrahedron in the invariant
plane, not on the invariant S3 × S1 lines. We note that the
saddle connection bifurcation K D, giving reorganization
of separatrices V1W2 and U V2 takes place before this
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Fig. 14. Global connections for parameters belonging to KDJ and for N = 4.

bifurcation occurs. After the saddle connection bifurcation
we have the phase portrait shown in Fig. 14. We note
also that the sequence of bifurcations (shown in Fig. 13)
is different with the (g)–(h) bifurcation happening before
(e)–(f) with increasing α and values of r close to 0.5.

3. When parameter r is in a small interval near r = 0.404
the sequence of bifurcations is rather more complicated.
In the previous two cases, one of nodes Ui or Wi became
saddle (unstable or stable in transversal to invariant lines
direction respectively) after some bifurcations and then
this saddle interacts with other nodes, disappearing in
saddle–node bifurcation. In this case there is a direct
interaction of these nodes as shown in Fig. 15 as the
parameter α changes on a very small interval. Further we
find the heteroclinic bifurcation illustrated in Fig. 16. The
sequence of bifurcations shown in Fig. 15 ends with (e)
shown in Fig. 16(a) just before the heteroclinic bifurcation.
At bifurcation, a heteroclinic cycle consists of four parts
which do not have common points with S3 × S1 invariant
lines Fig. 16(b). After bifurcation, saddle points Ri1 coexist
with the heteroclinic cycle for small increase in α and
then disappear at a saddle–node bifurcation. Heteroclinic
bifurcations also occur for small r ∈ (0.404, 0.04045)

as a continuation of the bifurcation sequence shown in
Fig. 15(a)–(d) with further saddle–node bifurcations on the
invariant line. Thus each heteroclinic cycle consists of four
parts which do not have common points with S3 × S1
invariant lines. After bifurcation saddle points Ri1 coexist
with the heteroclinic cycle for small increase in α and
then disappear in the saddle–node with the saddle–node
bifurcation.

3.6. Summary of heteroclinic bifurcations for N = 4

We find five distinct types of codimension-one bifurcation
to robust heteroclinic cycles in the (α, r)-plane; the curves
correspond to their labelling in Fig. 5.
Fig. 15. The sequence of bifurcations on increasing α for the connections
shown in Fig. 11 and r close to 0.404. The situation in (b) corresponds to
crossing the line DL in Fig. 5.

Fig. 16. Schematic diagram showing situation (a) before (b) at and (c) after the
heteroclinic bifurcation near the point T in Fig. 5 for N = 4. Note that after the
bifurcation there are heteroclinic cycles composed of two connecting orbits.

1. TCPFH. Transcritical-pitchfork heteroclinic at the origin on
the line BE

2. SNH. Saddle–node at invariant S3 × S1 lines on the line ED
3. SNIH. Saddle–node at invariant S2-planes (inside tetrahe-

dra) on the line DL
4. SCIH. Saddle connection bifurcation at invariant S2-planes

in a small neighbourhood of the point D
5. PFH. Pitchfork bifurcation at invariant S2 × S2 lines on the

line BV .

Robust heteroclinic cycles exist within the region BEDTLV in
the parameter plane in Fig. 5. These heteroclinic cycles are
stable for α < π/2 and unstable when α > π/2 with a
resonance bifurcation at α = π/2. For most of the region
of parameters BEDTLM when heteroclinic cycles are the only
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attractors of the system (5), although near the line TL there
are also attracting solutions with symmetry S2. Note that
there exist 2-dimensional sets of connecting orbits within these
heteroclinic cycles when parameters (α, r) = (π/2, 0) or when
we have (α, r) on the SNH line ED in Fig. 5. In particular
the bifurcations TCPFH and SNH give networks that, by
Lemma 2 give extreme sensitivity; the other bifurcations to
robust heteroclinic cycles give cycles that are contractible to
the diagonal meaning that we do not have extreme sensitivity in
these cases.

4. Discussion

The paper presents a detailed bifurcation analysis of the
system (2) for N = 3 and N = 4 oscillators on varying
the coupling parameters α, r and assuming no detuning. We
have identified what we believe to be all cases of bifurcation
to dynamics that may give, in addition to detuning, extreme
sensitivity. In all cases, these are associated with the creation
of heteroclinic or homoclinic networks.

These bifurcation scenarios are surprisingly rich, given
the small number of degrees of freedom and this richness
is a consequence of the symmetries SN of the system. The
symmetries give rise to codimension-one bifurcations with
two or more dimensional centre manifolds and/or nontrivial
constraints on the normal forms (see for example [12,
21]), however the topology of the torus means that local
bifurcations often have global consequences. There exist values
of parameters (α, r) such that system (5) has two or more
dimensional sets of heteroclinic cycles. For N = 3 this is point
D in the parameter plane, while for N = 4 it includes the line
of the saddle–node/heteroclinic bifurcation on invariant lines
BE as well.

Nonetheless, the bifurcations described are for the most part
generic in the context of the symmetries present and hence are
both robust and independent of the exact choice of coupling
function. Consideration of more general coupling functions can
certainly give rise to dynamics that is not visible in (2); for
example [6] consider a similar system of identical oscillators
with an extra parameter β, g(x) = sin(x + α) + r sin(2x + β),
and find that other nontrivial types of clustering appear for
larger N compared to the case β = 0. They also find chaotic
attractors in the case N = 5 that we do not find for N ≤ 4. We
remark that the bifurcations detailed here should be observable
(up to presence of perturbations) for more general coupling
functions; see e.g. [16].

4.1. Results for higher numbers of oscillators

The bifurcations of (5) for general N are highly complicated,
but we can characterise some properties that we now
summarise. From [3] we have the following conclusions: The
in-phase solution (origin) is an equilibrium state for all r and α.
It is a sink for α ∈ (− arccos(2r), arccos(2r)), a degenerate
saddle when α = ± arccos(2r), and a source for other α.
The system has an invariant manifold (4) for any (r, α). This
manifold contains a point with ZN symmetry that is always
an equilibrium state. The system (5) has invariant subspaces
of all dimensions between 1 and N − 2 given by all possible
clusterings of oscillators. At r =

1
2 cos α the origin for (5) has a

transcritical homoclinic bifurcation as long as r ∈ (0, r̃), where

r̃ =
N − 2

2
√

2N 2 − 4N + 4
.

This bifurcation is a transcritical-pitchfork/heteroclinic for even
values of N . The heteroclinic connections consist of the N
invariant lines of the form SN−1 × S1. System (5) has a
saddle–node/heteroclinic bifurcation for r ∈ [r̃ , r ] for some
r < 0.5. At the moment of intersection of saddle–node
and transcritical bifurcation lines in the parameter plane,
saddle–node points occur within each of the invariant SN−1×S1
lines.

We note that robust heteroclinic cycles giving robust extreme
sensitivity to detuning also appear and appear to be generic in
cases where N ≥ 5; see [5,8,6]. The structure of these networks
of heteroclinic cycles can be highly nontrivial and is associated
with a wide variety of bifurcations that we do not characterise
here.
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Appendix. Structure of the set M(N)

Recall that

M (N )
=

{
(θ1, . . . , θN ) :

N∑
j=1

eiθ j = 0

}
. (7)

We claim that the set M (N ) has dimension N − 2 for N ≥ 3.
To see this, take a typical point in the set and note that without
loss of generality we can assume that θi ∈ [0, 2π) are sorted
into increasing order. Consider each eiθi as a unit vector in the
plane; if we write

Ak =

k∑
j=1

eiθ j

then the points Ak represent vertices of a convex polygon
with unit-length edges; i.e. such that |Ak+1 − Ak | = 1, k =

1, . . . N − 1 and AN = 0. Note that the complex constraint
AN = 0 restricts two degrees of freedom in the choice of the
N angles θi and hence there are N − 2 degrees of freedom
remaining in the choice of θi .

For N = 3 the polygons represented in this way are precisely
the equilateral triangles with unit side-length and one corner at
the origin. For N = 4 the polygons are rhombi with unit side-
length and one corner at the origin.



466 P. Ashwin et al. / Physica D 237 (2008) 454–466
References

[1] V. Afraimovich, M.I. Rabinovich, P. Varona, Internat. J. Bifur. Chaos 14
(2004) 1195–1208.

[2] E. Akin, The General Topology of Dynamical Systems, in: AMS Graduate
Studies in Mathematics, vol. 1, 1993.

[3] P. Ashwin, J.W. Swift, J. Nonlinear Sci. 2 (1992) 69–108.
[4] P. Ashwin, G.P. King, J.W. Swift, Nonlinearity 4 (1990) 585–603.
[5] P. Ashwin, O. Burylko, Y. Maistrenko, O. Popovych, Phys. Rev. Lett. 96

(2006) 05410.
[6] P. Ashwin, G. Orosz, J. Wordsworth, S.B. Townley, SIAM J. Appl. Dyn.

Syst. (2007) (in press).
[7] P. Ashwin, M. Timme, Nature 436 (2005) 36–37.
[8] P. Ashwin, J. Borresen, Phys. Rev. E 70 (2004) 026203.
[9] E. Brown, P. Holmes, J. Moehlis, Globally coupled oscillator networks,

in: E. Kaplan, J. Marsden, K. Sreenivasan (Eds.), Perspectives and
Problems in Nonlinear Science: A Celebratory Volume in Honor of Larry
Sirovich, Springer, New York, 2003, pp. 183–215.

[10] E.J. Doedel, R.C. Poffenroth, A.R. Champneys, T.F. Fairgrieve,
Yu.A. Kuznetsov, B.E. Oldeman, B. Sandstede, X. Wang, AUTO 2000:
Continuation and bifurcation software for ordinary differential equations
(with HomCont), User’s guide, Concordia University, 2006.

[11] G.B. Ermentrout, A Guide to XPPAUT for Researchers and Students,
SIAM Publications, 2002.

[12] M. Golubitsky, I. Stewart, The Symmetry Perspective, Birkäuser, 2003.
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