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We suggest a definition for a type of chimera state that appears in networks of indistinguishable

phase oscillators. Defining a “weak chimera” as a type of invariant set showing partial frequency

synchronization, we show that this means they cannot appear in phase oscillator networks that are

either globally coupled or too small. We exhibit various networks of four, six, and ten

indistinguishable oscillators, where weak chimeras exist with various dynamics and stabilities. We

examine the role of Kuramoto-Sakaguchi coupling in giving degenerate (neutrally stable) families

of weak chimera states in these example networks. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4905197]

Coupled oscillator systems are a rich source of examples

of high dimensional dynamical behaviour as well as a

class of systems that can be used to understand a range of

emergent dynamical phenomena. One of these phenom-

ena, where there is apparent coexistence of coherent and

incoherent behaviour, has been called a chimera state.

This paper proposes a definition of a “weak chimera” for

finite networks of coupled indistinguishable phase oscilla-

tors. This definition is relatively easily checkable from

the dynamics and allows us to prove existence as well as

investigating stability and bifurcations of weak chimeras

in small networks. Although chimeras in many high

dimensional systems are not weak chimeras in the sense

we define here, we suggest that weak chimeras may be re-

sponsible for organizing the dynamics of more general

chimera states.

I. INTRODUCTION

Kuramoto’s model for globally coupled phase

oscillators

_hi ¼
d

dt
hi ¼ xi �

K

N

XN

j¼1

sin hi � hj

� �

with hi 2 ½0; 2pÞ, xi and K constant15 has been used for

many years as a prototype of an oscillator system, where suf-

ficiently strong K> 0 will result in synchrony. Dynamically

more complex solutions include partial synchrony or cluster-

ing. For phase oscillator networks that are not globally

coupled, some intriguing solutions were first noted by

Kuramoto and Battogtokh16 and named “chimera states” by

Abrams and Strogatz.1,2 In these states, the oscillators split

into two (or more) regions, one of which is coherent, while

the other is incoherent, in some sense.

A number of authors have studied chimera states in a

wide range of contexts, for example,18,19,22,24,29 and it seems

that rather than being exceptional they are, in some sense,

prevalent. Most work on chimeras has however not

attempted to make a rigorous definition of chimera state that

can easily be applied to small systems. For instance,2 state

that “For certain choices of parameters and initial conditions,

the array would split into two domains: one composed of

coherent, phase-locked oscillators, coexisting with another

composed of incoherent, drifting oscillators” but, in particu-

lar, the words “domain,” “incoherence,” and “drifting” need

careful interpretation before they can be applied to small

systems.

The paper is organized as follows: In Sec. II, we con-

sider some basic dynamical properties of networks of indis-

tinguishable phase oscillators and propose a definition of

weak chimera state for these systems. Section III gives a

basic result on the non-existence of weak chimera states for

globally coupled phase oscillator networks, and then looks at

minimal networks of four, six, and ten phase oscillators,

where a modular structure allows us to prove there are weak

chimera attractors. The detailed dynamics of these examples

are at least quasiperiodic but may, in principle, be much

more complex—for example, the ten oscillator example has

a weak chimera attractor that is an attracting heteroclinic net-

work. Section IV discusses an example of a non-modular

network (a ring of six oscillators with nearest and next-

nearest neighbour coupling), where one can find attracting

weak chimera states and investigate the bifurcations that

create them. Finally, Sec. V discusses some of the conse-

quences and limitations of these results. In particular, we

note that the special case of Kuramoto-Sakaguchi coupling

(often considered for phase oscillator chimera examples) has

families of weak chimeras with degenerate stability. We sug-

gest that this may be related to the fact that chimeras appear

to be transients in simulations of small networks.30

II. WEAK CHIMERAS IN NETWORKS OF
INDISTINGUISHABLE PHASE OSCILLATORS

Consider a system of N coupled phase oscillators

described as an ordinary differential equation (ODE) on the

torus ðh1;…; hNÞ 2 T
N ¼ ½0; 2pÞN

1054-1500/2015/25(1)/013106/9/$30.00 VC 2015 AIP Publishing LLC25, 013106-1

CHAOS 25, 013106 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:  141.20.53.3

On: Tue, 07 Apr 2015 13:38:51

http://dx.doi.org/10.1063/1.4905197
http://dx.doi.org/10.1063/1.4905197
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4905197&domain=pdf&date_stamp=2015-01-08


_hi ¼ xi þ
XN

j¼1

Kijgðhi � hjÞ; (1)

where Kij is the strength of coupling, xi is the natural fre-

quency of the ith oscillator, and g(/) is a smooth 2p-periodic

coupling function. The phase oscillators are identical if

xi¼x, and if we are interested in phase differences, we can

set x¼ 0 without loss of generality. We consider Hansel-

Mato-Meunier coupling5,12 with parameters a and r

gð/Þ ¼ �sinð/� aÞ þ r sinð2/Þ; (2)

which reduces to Kuramoto-Sakaguchi coupling26 for r¼ 0.

We say, the oscillators are indistinguishable, if the oscil-

lators are identical and interchangeable in the sense that they

have the same number and strength of inputs [Ref. 7, Def.

3.2]. Let SN denote the permutation group acting on the N os-

cillator phases. Equivalent ways of expressing this are

(a) Only one equation is needed to specify the system, up

to permutation of indices.

(b) There are N permutations ri 2 SN with riðiÞ ¼ i for

i¼ 1,…,N such that the matrix Kij satisfies

Kij ¼ kriðjÞ

for some vector ki and for all i 6¼ j; namely, the matrix

is a permutation of a vector of coupling strengths.

(c) The system is invariant under a permutation symmetry

group that acts transitively on the set of N oscillators.

Figures 1 and 4 illustrate some examples of small networks,

where the oscillators are indistinguishable. We say, oscilla-

tors i and j on a trajectory of the system (1) are frequency
synchronized, if

Xij :¼ lim
T!1

1

T
hi Tð Þ � hj Tð Þ
� �

¼ 0;

where we choose continuous representatives for hiðtÞ; hjðtÞ
(N.B. is not necessary for the oscillators to have well-defined

frequencies for the system to be frequency synchronized13).

We say, A � T
N

is a weak chimera state for a coupled

phase oscillator system, if it is a connected chain-recurrent10

flow-invariant set such that on each trajectory within A there

are i, j, and k such that Xij 6¼ 0 and Xik ¼ 0.

We do not place any restriction on the dynamical behav-

iour or stability of A: if it is of saddle type or has neutral sta-

bility, the behaviour would only be visible as a transient for

typical initial conditions.30 If A is the x-limit of some initial

condition; then, A is connected and chain-recurrent.10 Hence

we include these as necessary conditions for the dynamics of

A to be visible in the long-term behaviour of a single

trajectory.

Due to the drift of the incoherent region, the chimera

states of1,2,16 for large N are, in fact, not weak chimeras.

However, as we discuss in Sec. V, unstable weak chimeras

may play an important role in organizing such chimeras in

coupled phase oscillator networks, just as unstable periodic

orbits play an important role in organizing chaotic dynamics.

There is an element of surprise in the definition of weak

chimera: one might expect systems of indistinguishable

phase oscillators to always have frequency synchrony, but

we will see that this is not the case for many networks.

However, for some types of network, there are obstructions

to the existence of weak chimera states. For other networks,

we find parameters with attracting weak chimera states

where the following hold:

(a) there are at least four oscillators,

(b) at least two different coupling strengths are present in

the network, and

(c) there are, at least, two Fourier components in the cou-

pling function (i.e., if coupling function is (2), then

r 6¼ 0).

Note that (b) necessarily implies (a) for indistinguish-

able phase oscillators. Examples in the literature suggest that

(c) is not necessary for existence of weak chimera states but

we believe it may be for weak chimera states to be bistable

with full synchrony.

III. INDISTINGUISHABLE PHASE OSCILLATORS AND
WEAK CHIMERA STATES

For global (equal and all-to-all) coupling, we write

Kij¼K and the system has full permutation symmetry SN.7

As a consequence, there is an invariant subspace correspond-

ing to hi ¼ hj (modulo 2p) for any i 6¼ j. The presence of

ðN � 1Þ! of these codimension one invariant subspaces

FIG. 1. Example networks of (a) four, (b) six, and (c) ten indistinguishable oscillators that permit robust weak chimera states. The solid line indicates bidirec-

tional coupling with strength 1, while the dashed line indicates bidirectional coupling with strength � (for clarity in (c), only oscillator one is shown with its

full set of connections). Each the networks has a modular structure, i.e., they decouple into a number of smaller networks for �¼ 0.
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implies that there will be a permutation of the oscillators k(j)
such that

hkð1Þ � hkð2Þ � � � � � hkðNÞ � hkð1Þ þ 2p (3)

is satisfied along the trajectory. This can be used to show a

result (already effectively stated in Ref. 2):

Theorem 1 [Ref. 7, Lemma 5.3]. For global coupling of
N identical phase oscillators with Kij¼K and any g(/), all
trajectories of (1) are frequency synchronized. Hence no
weak chimera states are possible in such a system.

This result does not generalise to more general oscilla-

tors with global coupling as higher dimensional systems

do not necessarily satisfy (3). Indeed, chimera states can be

found27,28 in globally coupled networks with two-

dimensional oscillators.

In the remainder of this section, we show that weak cou-

pling between two subnetworks (or modules) can give rise to

weak chimera states; in particular, for the networks shown in

Figure 1.

A. Four oscillator example: Stable weak chimera with
in-phase and anti-phase groups

Consider the system (1) and (2) for N¼ 4 with coupling

as in Figure 1(a) and coupling strengths Kij 2 f1; �g. This

means that (1) can be written as

_h1 ¼ xþ ðgðh1 � h3Þ þ gð0ÞÞ þ �ðgðh1 � h2Þ þ gðh1 � h4ÞÞ;
_h2 ¼ xþ ðgðh2 � h4Þ þ gð0ÞÞ þ �ðgðh2 � h3Þ þ gðh2 � h1ÞÞ;
_h3 ¼ xþ ðgðh3 � h1Þ þ gð0ÞÞ þ �ðgðh3 � h2Þ þ gðh3 � h4ÞÞ;
_h4 ¼ xþ ðgðh4 � h2Þ þ gð0ÞÞ þ �ðgðh4 � h1Þ þ gðh4 � h3ÞÞ:

(4)

Theorem 2. There is an open set of (r, a) such that the
four-oscillator system (4) and (2) has an attracting weak chi-
mera state for �¼ 0 that persists for all � with j�j sufficiently
small.

Proof: We write /1¼h1�h3;/2¼h2�h4;/3¼h1�h2,

and gij¼gðhi�hjÞ so that (4) becomes

_/1 ¼ g13 � g31 þ �ðg12 þ g14 � g32 � g34Þ;
_/2 ¼ g24 � g42 þ �ðg21 þ g23 � g41 � g43Þ;
_/3 ¼ g13 � g24 þ �ðg12 þ g14 � g21 � g23Þ:

If we write gð/Þ ¼ ðpð/Þ þ qð/ÞÞ=2, where p is even and q
is odd, then we have

_/1 ¼ qð/1Þ þ �ðgð/3Þ þ gð/3 þ /2Þ � gð�/1 þ /3Þ
� gð/2 þ /3 � /1ÞÞ;

_/2 ¼ qð/2Þ þ �ðgð�/3Þ þ gð/1 � /3Þ � gð�/2 � /3Þ
� gð/1 � /2 � /3ÞÞ;

_/3 ¼ gð/1Þ � gð/2Þ þ �ðgð/3Þ þ gð/3 þ /2Þ
� gð�/3Þ � gð/1 � /3ÞÞ: (5)

Now consider the case �¼ 0 and /¼/i with i¼ 1, 2: these

satisfy _/ ¼ qð/Þ, where

qð/Þ ¼ gð/Þ � gð�/Þ ¼ �2 sin / cos aþ 2r sinð2/Þ
¼ 2 sin /ð�cos aþ 2r cos /Þ;

which for (r, a) in the region of bistability of in-phase and

antiphase solutions (respectively, / ¼ 0 and /¼ p) with

qð/Þ ¼ 0. Note that q0ð0Þ ¼ �2 cos aþ 4r and q0ðpÞ
¼ 2 cos aþ 4r, so there is bistability when q0ð0Þ < 0 and

q0ðpÞ < 0. This is the case if �cos aþ 2r < 0 and cos a
þ2r < 0, i.e., when r < �ðcos aÞ=2 and r < ðcos aÞ=2. This

can be satisfied in the region of (r, a) where

r < minf cos a;�cos ag=2 ¼ �j cos aj=2: (6)

Consider an initial condition ð/1;/2;/3Þ ¼ ð0; p; nÞ. For

�¼ 0, this initial condition lies on the periodic orbit ð/1ðtÞ;
/2ðtÞ;/3ðtÞÞ ¼ ð0; p;Xtþ nÞ, where X :¼ gð0Þ � gðpÞ
¼ 2 sin a independent of r. This periodic orbit is a compact

recurrent invariant set that is not frequency synchronized as

long as a 6¼ kp; k 2 Z.

This periodic orbit is stable with Floquet exponents

given by 0, q0ð0Þ2p=X, and q0ðpÞ2p=X. Finally, hyperbolicity

of the linearly stable periodicity implies unique continuation

of this stable periodic orbit under small perturbations of pa-

rameters—in particular, for any (r, a) satisfying (6) and

a 6¼ kp, there is an �0ðr; aÞ such that there is persistence of

this weak chimera state for all �, where j�j < �0ðr; aÞ. QED

We do not give upper bounds on �0ðr; aÞ except to note

that �0 & 0 on any path, where r þ j cos aj=2% 0. From

Theorem 1, the weak chimera state must disappear for �¼ 1,

hence �0ðr; aÞ < 1. This weak chimera is degenerate at r¼ 0

as there is no bistability of in-phase and antiphase synchrony

in this case. The curve r ¼ � 1
2

cos a corresponds to a subcrit-

ical pitchfork bifurcation in the invariant plane /1¼ 0 of the

stable cycle with coordinate /2 ¼ p and two saddle periodic

orbits with coordinates /2 ¼ 6arccosðcos a=ð2rÞÞ for �¼ 0.

The curve r ¼ 1
2

cos a corresponds to a subcritical pitchfork

bifurcation in the invariant plane /2 ¼ p of the same stable

cycle with /1¼ 0 and two saddle cycles with

/1 ¼ 6arccosðcos a=ð2rÞÞ.
The system, Figure 1(a), can be generalized by specify-

ing coupling �1 from hi to hiþ1 and with coupling �2 from hi

to hi�1 (Z4 symmetry). Theorem 2 can be generalised in this

case as follows: for �1 ¼ �2 ¼ �, the plane /1¼ 0 is invariant

and there is a weak chimera with /1¼ 0. For �1 6¼ �2, the

plane /1¼ 0 is no longer invariant but can still be shown to

contain a weak chimera.

B. A six oscillator example: Stable weak chimera with
in-phase and splay-phase groups

Consider the system with N¼ 6 in Figure 1(b), where

_hiþ3j ¼ xþ
X3

k¼1

½gðhiþ3j � hkþ3jÞ þ �gðhiþ3j � hkþ3jþ3Þ� (7)

with i ¼ 1;…; 3, j¼ 0, 1 and all subscripts are taken modulo

6. For (2) with r ¼ �0:15; a ¼ �1:7, and � ¼ 0:1, there are

chimera states where three of the oscillators are in-phase and

the other three are close to a splay-phase (rotating wave, Z3)

periodic orbit; see Figure 2.
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One can see this as follows: for �¼ 0, the systems split

into two groups of N¼ 3 oscillators with all-to-all coupling

and bistability of in-phase and splay-phase (anti-phase/rotat-

ing wave) solutions [Ref. 5, Fig. 1]. These solutions have

distinct frequencies, so for 0 < �� 1 the system has attract-

ing weak chimeras that are robust to small changes in the

parameters.

C. A ten oscillator example: Stable weak chimera with
in-phase and heteroclinic cycle groups

Consider the network Figure 1(c) consisting of two

groups of all-to-all coupled five oscillators and weak cou-

pling between the groups, i.e.

_hiþ5j ¼ xþ
X5

k¼1

½gðhiþ5j � hkþ5jÞ þ �gðhiþ5j � hkþ5jþ5Þ�; (8)

where i ¼ 1;…; 5, j¼ 0, 1 and all subscripts are taken

modulo 10. We choose

gð/Þ ¼ �sinð/� aÞ þ r sinð2/� bÞ (9)

with r¼ 0.2, a¼ 4.67398, b¼ 4.51239, x¼ 0.1, and � ¼ 0:1
such that there is a weak chimera, where one group is

in-phase, while the other approaches a stable heteroclinic

attractor; see Figure 3. For �¼ 0, where the two networks

decouple, each is multistable with two attractors; in-phase

synchrony and a heteroclinic network between 30 saddle per-

iodic orbits are attractors. In the absence of noise, there will

be switching between the saddle periodic orbits that progres-

sively slow down; see Ref. 6 for a more detailed description

of the heteroclinic network attractor.

D. Weak chimera states and modular networks

One can generalize the previous examples to networks of

indistinguishable phase oscillators with modular structure.

More precisely, suppose we have a system of n¼mk oscilla-

tors, h 2 T
m�k

, with m> 1 and k> 1 are integers, governed by

_hij ¼ xþ
Xk

q¼1

Kij;iqgðhij � hiqÞ þ �Kij;pq

Xm

p¼1;p6¼i

gðhij � hpqÞ
" #

;

(10)

where i ¼ 1;…;m; j ¼ 1;…; k; Kij;pq 2 f0; 1g and g is a

smooth period coupling function (there will be constraints on

Kij;pq for the oscillators to be indistinguishable). In such a

case, we say, the system splits into m modules of k oscilla-

tors. The network decouples in the case �¼ 0 into m
uncoupled but identical modules (networks) of k phase oscil-

lators. Each module is governed by the following equations

for h 2 T
k
, for some Ljq 2 f0; 1g

_hj ¼ xþ
Xk

q¼1

Ljqgðhj � hqÞ: (11)

If the module is multistable, one can obtain sufficient condi-

tions for the existence weak chimera states for �> 0. Even for

FIG. 2. Example of a weak chimera

attractor in the six oscillator system (7)

and (2) as in Figure 1(b). The oscillators

i¼ 1, 2, 3 limit to an approximately

splay phase state, while the oscillators

i¼ 4, 5, 6 limit to in-phase. The left

panel shows convergence of ½hiðTÞ
�h6ðTÞ�=T towards well-defined fre-

quency differences Xi;6 such that X1;6 ¼
X2;6 ¼ X3;6 6¼ 0 and X4;6 ¼ X5;6 ¼ 0.

The right panel illustrates that the dy-

namics of the phase differences relative

to the 6th oscillator is quasiperiodic.

FIG. 3. Example of a weak chimera attractor in the system of ten oscillators (8) and (9) in Figure 1(c), where one group of five undergoes heteroclinic switch-

ing; see text for details. The oscillators i ¼ 1; 2; 3; 4; 5 approach heteroclinic cycle, while oscillators i ¼ 6; 7; 8; 9; 10 are in-phase at a different frequency. The

left panel shows convergence of ½hiðTÞ � h10ðTÞ�=T towards well-defined frequency differences Xi;10 such that Xi;10 6¼ 0 for i ¼ 1; 2; 3; 4; 5, while Xi;10 ¼ 0

for the remaining group. The right panel illustrates that the dynamics of the phase differences relative to the 10th oscillator is not simply periodic or quasiperi-

odic but switches between a number of saddle periodic orbits. As time progresses, the time spent near a periodic orbit gets progressively longer and longer.
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the case of modules with a hyperbolic periodic attractor, the

product attractor is not hyperbolic—it has m Lyapunov expo-

nents that are zero and, in general, we expect a very rich set

of possible dynamics (including chaos) for arbitrarily small

perturbations. This should give a technique to prove the exis-

tence of stable weak chimeras in networks such as Figure 4.

IV. WEAK CHIMERA STATES IN NON-MODULAR
NETWORKS

For the modular networks considered in Sec. III, the fac-

torization into multistable modules enables one to under-

stand weak chimeras as robust phenomena in such networks.

It is also suggestive of the idea that chimeras are associated

with “spatial chaos”—an exponential scaling of the number

of attractors as the number of modules goes to infinity.20

Nonetheless, many of the chimeras that have hitherto been

investigated in the literature do not have this modular struc-

ture. This section considers some six oscillator networks,

where there can be bifurcations to weak chimera states.

A. Stable and neutral weak chimeras in six oscillator
networks

Three non-global coupling structures of six indistin-

guishable oscillators are shown in Figure 5. For each of these

networks and coupling (2), there can be attracting weak chi-

mera states. For example, each of three systems has a stable

weak chimera for a ¼ 1:6; r ¼ �0:01.

Consider the network Figure 5(a) governed by

_hi ¼ xþ
X
jj�ij¼1;2

gðhi � hjÞ (12)

with coupling (2) and indices taken modulo 6.

Chimera states have been investigated in similar

systems, for example, by Maistrenko and co-workers; for

example, Refs. 22 and 20 and transient chimeras have been

found for coupling (2) with r¼ 0 (Kuramoto-Sakaguchi),

where the length of transient scales exponentially with the

size of the system.30

Table I summarises the invariant subspaces for (12), cf.

[Ref. 7, Table II]. In addition to symmetry-forced subspaces,

the coupling structure means that there are a number of addi-

tional invariant subspaces associated with certain quotient

networks; see Antoneli and Stewart.4 The three-cell quo-

tients are illustrated in Figure 6 (see also Ref. 3).

There is an open set of parameters near a ¼ 1:56;
r ¼ �0:1, where the system has stable weak chimeras that

become marginally stable for r ! 0. Figure 7 illustrates such

a solution that is in the invariant subspace A7 � A1

ðh1;…; h6Þ ¼ ð/1;/2;/1;/1 þ p;/2;/1 þ pÞ: (13)

Interestingly, the same dynamics can be found within A1 and

A2 as both have the quotient network III in Figure 6. Other

invariant subspaces, for example, the subspace A6

ðh1; h2; h3; h4; h5; h6Þ ¼ ð/1;/1 þ p;/2;/1;/1 þ p;/2 þ pÞ

has weak chimera solutions that are stable for r¼ 0 and

p=2 < a < p.

B. Weak chimeras and bifurcations for the
six-oscillator system

We give a detailed (but not comprehensive) analysis of

the dynamics of (12), in particular, within A1. Re-writing the

system (12) in the subspace A1 (13) gives

FIG. 5. (a) Six oscillators with nearest and next-nearest neighbour coupling.

(b) Six oscillators with nearest neighbour coupling only. (c) Six oscillator

system with three inputs to each oscillator; each of these networks has six

indistinguishable oscillators and supports weak chimera states (see text for

details).

FIG. 4. More examples of indistin-

guishable oscillator networks with

modular structure: each of these

decouples into more than one identical

networks on setting the coupling on

the dashed lines to zero.
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_/1 ¼ xþ 2gð/1 � /2Þ þ 2gð/1 � /3Þ;
_/2 ¼ xþ 2gð/2 � /1Þ þ gð/2 � /3Þ þ gð0Þ;
_/3 ¼ xþ 2gð/3 � /1Þ þ gð/3 � /2Þ þ gð0Þ;

(14)

which corresponds to the three-oscillator quotient system III

from Figure 6. Defining n ¼ /1 � /3; g ¼ /2 � /3, and

n� g ¼ /1 � /2, the system (14) can be written in terms of

phase differences

_n ¼ 2gðn� gÞ þ 2gðnÞ � 2gð�nÞ � gð�gÞ � gð0Þ;
_g ¼ 2gðg� nÞ þ gðgÞ � 2gð�nÞ � gð�gÞ:

(15)

For coupling (2) and a ¼ p=2, r¼ 0 this simplifies to

_n ¼ �2 cosðg� nÞ þ cos gþ 1;

_g ¼ �2 cosðg� nÞ þ 2 cos n:
(16)

The vector field (16) has zero divergence—all equilibria are

centres or saddles and any periodic orbit is neutrally stable.

There is a “band” of neutrally stable weak chimera solutions

that wind around n and “islands” of neutrally stable periodic

solutions that are not weak chimeras; see, for example,

Figure 8(d). Figure 9 shows the branches of equilibrium and

periodic solutions on varying a for r¼ 0. One can verify that

there are stable weak chimera states within A1 for ja� p=2j
and small but non-zero r; these are connected via a homo-

clinic bifurcation to the branches in Figure 9. Many of these

are also stable transverse to A1 though we do not compute

these in detail.

Bifurcations for the system (15) and (2) were computed

using XPPAUT9 and dstool8 and include the following (Note

that in order to path-follow weak chimeras, the trajectories

are not closed curves in phase coordinates—instead one

must embed into a higher dimensional system where they do

close.). Lower case letters refer to Figure 8, while capital let-

ters refer to Figure 9. There is an Andronov-Hopf bifurcation

for the contractible (non-chimera) cycle for 0< a<p/2 on

increasing r (for example, for a¼ 1.5, r¼ 0.011707) and B,

O. There is a homoclinic bifurcation of a non-chimera cycle

at N, M; transition from (b) to (c) and (e) to (f). There is a

saddle-connection for the weak chimera-cycle A, C, E, K and

(g), (k). There is a saddle-node bifurcation of two weak

chimera-cycles at L and a pitchfork bifurcation of three weak

chimera cycles at B, with transition from (i) to (j). There is a

saddle-node for the equilibria at I, H and (l). There is a pitch-

fork of equilibria at (b) with a	 2.91, which is degenerate

for at J, D r¼ 0, a¼ 0, and a¼p.

For r¼ 0, there is a line of degenerate bifurcations D, B,

O that are resolved into generic saddle node bifurcations I, H
on taking r 6¼ 0. For r¼ 0, the only branch of stable weak

chimeras BC is for a>p/2, while there can be multistability

in the region BL between in-phase, weak chimera, and “non-

chimera” periodic orbits for r 6¼ 0.

Finally, we note that the network Figure 5(b) has attract-

ing periodic weak chimera solutions in the invariant

FIG. 6. Three-cell quotient networks

of the network Figure 5(a). The solid

arrows denote an input to one cell from

another, while the dashed arrows indi-

cate an input that includes a phase shift

of the phase by p. Note that quotients

I, II have symmetry D3, while III, IV

have symmetry Z2.

FIG. 7. A stable weak chimera state in the ring of six phase oscillators (12)

and (2) showing time series hiðtÞ for a ¼ 1:56; r ¼ �0:1. Observe that the

frequency of the second and fifth oscillators clearly differs from the fre-

quency of the others. This attractor coexists with in-phase synchrony.

TABLE I. Invariant subspaces for the six oscillator system Figure 5(a) for

f :¼ p=3 and a, b, c, d, e, f are arbitrary phases. The three-oscillator reduced

systems are shown in Figure 6. The subspaces Ai are not invariant due to

symmetries; rather they are “exotic balanced polydiagonals” in the terminol-

ogy of Ref. 4 that are invariant due to the form of coupling in the system.

Subspace Typical point Dim Reduced system

R (h1,…, h6)

D6 (a, a, a, a, a, a) 1

D�
6 (a, a þ p, a, a þ p, a, a þ p) 1

Z1
6 (a, a þ f, a þ 2f, a þ 3f, a þ 4f, a þ 5f) 1

Z2
6 (a, a þ 2f, a þ 4f, a, a þ 2f, a þ 4f) 1

D3 (a, b, a, b, a, b) 2

Z3 (a, b, a þ 2f, b þ 2f, a þ 4f, b þ 4f) 2

D2 (a, b, a, a, b, a) 2

D�
2 (a, b, a, a þ p, b þ p, a þ p) 2

Z1
2 (a, b, c, a, b, c) 3 I

Z2
2 (a, b, c, a þ p, b þ p, c þ p) 3 II

A0 (a, b, c, a, d, e) 5

A1 (a, b, c, a, c, b) 3 III

A2 (a, b, b, a, c, c) 3 III

A3 (a, b, c, a þ p, c þ p, b þ p) 3 IV

A4 (a, b, b þ p, a þ p, c þ p, c) 3 IV

A5 (a, a þ p, b, a, a þ p, b) 2

A6 (a, a þ p, b, a, a þ p, b þ p) 2

A7 (a, a þ p, b, a þ p, a, b) 2
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subspace A4, while the network Figure 5(c) has periodic

weak chimera states belong to the invariant subspace (a, b, c,

c þ p, b þ p, a þ p). The latter system also appears to have

weak chimera states for the special case of

Kuramoto–Sakaguchi coupling (r¼ 0).

V. DISCUSSION

This paper proposes a definition of weak chimera state

for indistinguishable networks of identical phase oscillator

networks, based on nontrivial clustering of frequencies. Our

definition makes only minimal restrictions on the dynamics

and stability of a weak chimera; we find examples of quasi-

periodic and heteroclinic chimeras, but there is nothing to

stop weak chimeras being chaotic in systems for higher N.

Our definition is restrictive in that we only consider phase

oscillators coupled through indistinguishable coupling, though

this can be generalised, e.g., to coupled chaotic oscillators

with an observable whose average is different for different

oscillators in an attractor of the network. It should be straight-

forward to extend the notion of indistinguishable oscillator

network to coupled cell networks with one cell type.11

We do not attempt here to characterize the behaviour of

weak chimeras in the limit N !1. The Antonsen-Ott

ansatz23 has been very successfully used to understand chi-

mera states (for example, in Refs. 17, 18, 21, and 25), though

the coupling we consider (2) only allows this ansatz to be

applied in cases, where there is the clear degeneracy r¼ 0.

As chimeras are associated with coexistence of “coherent”

and “incoherent” clusters, a good definition of chimera will

require a discussion of scaling properties of these cluster

sizes, which we have not done here. These scaling of proper-

ties will need to be verified in families of networks rather

than for individual networks.

Chimeras in larger systems are often observed to exhibit

slow and random drift of the incoherent clusters, for exam-

ple, see Ref. 30. This means that a stable chimera may

have identical frequencies when computed over long enough

timescales, unless the regions of different behaviours are

“pinned” to fixed domains. We suggest that weak chimeras,

while not stable in such a situation, will serve to organize the

behaviour within the attractor.

Finally, our study suggests a reason why chimeras

appear to be transients30 for Kuramoto-Sakaguchi coupling

FIG. 8. Phase portraits for the reduced system (15) and (2) in the n; g 2 ½0; 2pÞ plane. Red—attractor, blue—repellor, green—saddle, magenta—neutral, homo/

heteroclinic cycle. The parameter values are as follows: (a) r¼ 0, a¼ 0.5, (b) r¼ 0, a¼ 1.3, (c) r¼ 0, a¼ 1.5, (d) r¼ 0, a¼p/2, (e) r¼ 0, a¼ 1.64, (f) r¼ 0,

a¼ 1.84, (g) r¼ 0, a¼ 2.16205, (h) r¼ 0, a¼ 2.22, (i) r ¼ �0:01; a ¼ 1:561, (j) r¼�0.01, a¼ 1.558, (k) r ¼ �0:01; a ¼ 1:5517, and (l) r¼�0.01,

a¼ 1.97794. The periodic orbits that wind around the n direction of the torus are weak chimera states, while the contractible periodic orbits are not weak chi-

meras; see text for more details.
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in small systems of phase oscillators. Many of the weak chi-

meras for the four oscillator system (4) and (2) and the six

oscillator system (12) and (2) have degenerate stability for

r¼ 0. This means that transients near weak chimeras may

have very long lifetimes. However, generic reductions of

phase oscillator systems will have r 6¼ 0 (Ref. 14) and non-

degenerate stability.
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