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a b s t r a c t

A system of phase oscillators with identical natural frequencies and the star-like architecture of
connections is considered. Interaction functions are described by two terms of Fourier expansion.
Bifurcation analysis of small systems containing 3 or 4 oscillators has been performed. The results are
summarized in bifurcation diagrams that provide a full description of the boundaries between regions
with different dynamics and the types of bifurcations that lead to the changes in the topology of phase
space. The bifurcations include changes of fixed point stability and formation (destruction) of limit and
heteroclinic cycles. For the systemwith 4 oscillators chaotic behaviour has been investigated. The results
canbeuseful to control systemdynamics through an appropriate choice and variation of parameter values.
The generalization of the results to the systems with an arbitrary number of oscillators and application of
the results in computational neuroscience are discussed.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Many systems in physics, chemistry and biology can be mod-
elled by coupled phase oscillators of the Kuramoto type [1].
Such models have been found useful for describing dynamics
of Josephson-junction arrays, neutrino flavour oscillations, semi-
conductor laser arrays, coupled magnetic systems, and neural
networks. A review of the mathematical theory of phase oscilla-
tor networks and their applications can be found in the papers
[2,3].

In this paper we consider a special type of phase oscillator
networks, the so-called networks with a central element (they are
also known as star-coupled networks and can be considered as a
special case of networks with the hub structure when a particular
part of the network has extensive connections with other parts
[3]). In the networks with a central element global interaction
is realized through a central oscillator (CO) that has feedforward
and feedback connections with all the other oscillators that are
called peripheral oscillators (PO). Besides connections with the CO
peripheral oscillators may optionally have local connections with
their neighbours on a k-dimensional grid.

Networks with a central element appear as parts of more
complex networks in so different fields as communication systems,
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social networks, and mammalian brains. In the latter case they
are widely spread due to convergent organization of connections
in the hierarchy of brain structures [4,5]. Such networks may
play an important role in modelling multisensory integration [6,7]
and attention [8,9]. According to Baddeley [10], the attention
system is controlled by a central executive, a large-scale network
in the frontal cortex. This hypothesis has found an experimental
support in a recent work of Gregoriou and co-authors [11]. It
has been shown that during visual attention the frontal eye
field (an area in the frontal cortex) is a source of increased
synchronization at the gamma frequency in the early regions of
the visual stream (extrastriate area V4). Therefore the study of
star-coupled networks can be helpful in clearing up the role of
synchronization in cognitive functions. Phase oscillator models
provide a convenient and mathematically tractable instrument for
this study.

Note that from a biological point of view the networks with
a central element are more realistic than those with all-to-all
coupling since they demand the number of connections to be of
the same order as the number N of elements in the network while
for the traditional Kuramoto system the number of connections
is N2. This also facilitates hardware implementation of.star-like
architectures.

Though the dynamics of networks with a central element (or
their equivalent representation in the form of phase differences,
see Eq. (3) below) has been studied in a number of papers [12–20],
the detailed bifurcation analysis of such systems is missing
with the only exception of networks consisting of Morris–Lecar
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neurons [21]. Here we present such analysis for phase oscillator
networks with two and three POs. We restrict the study to
the case of oscillators with identical natural frequencies and
interaction functions representing two harmonics of the Fourier
expansion of a periodic odd function. It will be shown that
such interaction functions provide a large variety of stable,
oscillatory and chaotic attractors that would be impossible for
the sinusoidal interaction function traditionally used in many
Kuramoto-like systems. In particular, combining synchronizing
and desynchronizing connections it is possible to obtain the
competition between the POs for the synchronization with the CO
which is important for attention modelling. Also in this case co-
existence of different attractors is typical for the network which
may be important for modelling perception of ambiguous figures
[22].

The results obtained for small systems of phase oscillators
can be generalized to the systems with an arbitrary number of
oscillators. In this case the complete analysis of bifurcations is
hardly possible, but we were able to find the boundaries for some
regions with interesting dynamics and to describe several types of
local bifurcations such as pitchfork bifurcations, Andronov–Hopf
bifurcations, heteroclinic bifurcations of several types, etc. We also
present some conditions necessary for chaotic behaviour and its
co-existence with attractors of other types.

The boundaries between the regions with different types
of dynamics are described in two ways. Some boundaries are
described by formulae. These boundarieswere derived analytically
using standard bifurcation analysis technique [23,24]. For local
bifurcations, we worked with eigenvalues of linearized systems.
For heteroclinic bifurcations on the phase plane, we used the
equality for the saddle quantity of involved saddles, checking
also that the eigenvalues for each saddle have opposite signs.
Since our analytical methods are routine with a large amount
of technical calculations, we did not include these details in
the text. Those boundaries that are not described by formulae
were computed numerically by using the software package for
bifurcation analysis CONTENT (ftp://ftp.cwi.nl/pub/CONTENT). The
results of the analysis are shown in the form of bifurcation
diagrams with identification of the type of bifurcation that occurs
while crossing the boundary between regions in parameter space.
The dynamics of the systems are illustrated by numerous examples
of phase portraits. The results obtained can be used to control
system behaviour by an appropriate selection and variation of
system parameters.

2. Model description

We consider a system of one central (CO) and N peripheral (PO)
phase oscillators indexed by the numbers i = 0, . . . ,N . The state
of each oscillator is characterized by the phase θi (0 ≤ θi < 2π ).
The dynamical equations are assumed to be of the form

θ̇0 = ω0 +

N
j=1

fj(θj − θ0),

θ̇i = ωi + g(θ0 − θi), i = 1, . . . ,N,

(1)

where (θ0, θ1, . . . , θN) ∈ TN+1 are phase variables on a (N + 1)-
dimensional torus,ωi are the natural frequencies of the oscillators,
the interaction functions fi(x) and g(x) are odd 2π-periodic,
continuous, and satisfy the conditions

g(π) = 0, fi(π) = 0, i = 1, . . . ,N. (2)

We can reduce (1) to the system in phase differences

ϕ̇i = ∆i −

N
j=1

fj(ϕj)− g(ϕi), i = 1, . . . ,N, (3)

where

ϕi = θi − θ0, ∆i = ωi − ω0, i = 1, . . . ,N.

In this paper we consider the case of equal natural frequencies:

ωi = ω0 = ω, or ∆i = 0, i = 1, . . . ,N. (4)

The systems of type (3) were also investigated in [12,17,19,20].
Our bifurcation analysis will be presented for interaction

functions of the form

fi(x) = ai(sin(x)+ r sin(2x)),
g(x) = b(sin(x)+ p sin(2x)),

(5)

where ai, b, r , p are parameters. Such functions contain up to two
harmonics of the Fourier expansion of an odd periodic function.
Under conditions (4) and (5) Eq. (3) take the form

ϕ̇i = −

N
j=1

aj(sin(ϕj)+ r sin(2ϕj))− b(sin(ϕi)+ p sin(2ϕi)),

i = 1, . . . ,N. (6)

Belowwe present the bifurcations analysis of system (6) under the
variation of parameters ai, b, r , p. Stationary points of (6) will be of
special interest to us since they represent phase-locked modes of
system (1). In particular, if the ith coordinate of a stationary point of
(6) is 0, thismeans that synchronization between the CO and ith PO
takes place. The study of (6) gives a number of important dynamical
modes including heteroclinic cycles, chaos, and competition of POs
for the synchronization with the CO.

2.1. Invariant manifolds

(1) System (3) hasm-dimensional invariant manifolds

Mm = {(ϕ1, . . . , ϕN) : ϕk1 = ϕk2 = · · · = ϕkN−m+1},

m = 1, . . . ,N − 1, (7)

with possible permutations of indexes of variables ϕi.
The system has n = n(N,m) = Cm−1

N m-dimensional invariant
sets. The line

M1 = {(ϕ1, . . . , ϕN) : ϕ1 = · · · = ϕN}

is a line of DN symmetry, where DN is the dihedral group of an
N-sided regular polygon.

In the sameway, the systemcanhave l groups of oscillatorswith
dj, j = 1, . . . , l, oscillators in each group, (d1 + · · · + dl = d =

N − m + l)with identical values of phases. Then the dimension of
each invariant manifold on the group is m = N − d + l and one of
the manifolds can be represented (up to permutations) as

Mm = Mm(d1, . . . , dl) = {(ϕ1, . . . , ϕN) : ϕ1 = · · · = ϕd1 ,

ϕd1+1 = · · · = ϕd1+d2 , . . . , ϕdl−1+1 = · · · = ϕdl−1+dl}, (8)

There are n invariant manifoldsMm, where

n = n(N, d1, . . . , dl) = Cd1
N · Cd2

N−d1
· · · · · Cdl

N−
l−1

j=1 dj
,

l
j=1

dj ≤ N.

Fig. 1(a) shows a distribution of 11 oscillators on the circle that
corresponds to the invariant manifold M4(3, 4, 2, 1) on the torus
T11 for the original system or on the torus T10 for the reduced
system.
(2) Consider a symmetric case:

fi(x) = fj(x) = f (x), i, j = 1, . . .N.
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Fig. 1. (Colour online) Examples of oscillators distributed on a circle that
correspond to: (a) invariant manifold M4(3, 4, 2, 1) for 10 peripheral oscillators;
(b) invariant manifold Q2 for 13 peripheral oscillators with symmetries in phase
distribution; (c) in-phase and anti-phase synchronization of 6 peripheral oscillators
with a CO.

The oddness of the functions f (x) and g(x) implies the conditions:
f (ϕi)+ f (ϕj) = 0, g(ϕi)+ g(ϕj) = 0, when ϕi + ϕj = 0

∀i ≠ j = 1, . . . ,N.
Using these properties and condition (2), one canprove that system
(3) has m-dimensional invariant manifolds
Qm = {(ϕ1, . . . , ϕN) : ϕ1 + ϕ2 = 0, . . . , ϕ2m−1 + ϕ2m = 0,

ϕ2m+1, . . . , ϕN ∈ {0, π}}, (9)
(up to permutations of any indices of the variables ϕi, i =

1, . . . ,N), where m = 1, . . . , [N/2], ([x] denotes integer part of
x). There are n = n(N,m) invariant manifolds Qm in TN , where
n = n(N,m) = 2N−2mC2m

N (2m − 1)!.
Each 1-dimensional invariant line Q1 is an axis of Z2 symmetry
of system (3). Fig. 1(b) shows a distribution of 14 oscillators that
corresponds to the invariant manifold Q2.
(3) Intersections of 2-dimensional manifolds M2 with 1-dimen-
sional manifolds Q1 give 0-dimensional invariant manifolds that
represent equilibria Φk with k coordinates equal to 0 and N − k
coordinates equal to π . Fig. 1(c) shows the distribution of the
oscillators that corresponds to the point Φ2 in T6. Two of these
points ΦN

= O = (0, . . . , 0), Φ0
= Π = (π, . . . , π) belong to

the invariant line M1. Also we have n = 2N
− 2 other fixed points

Φk. Note that the intersections of invariant manifolds Mm and Ql
of higher dimensions m ≥ 2 and l > 1 create invariant manifolds
Qd (d < l). We can also consider all fixed points of the system as
0-dimensional invariantmanifoldsQ0 that can be defined by (9) for
m = 0.

2.2. Dynamics on invariant manifolds

Due to the invariant manifolds Mm, system (3) has hierarchical
structure. This means that any m-dimensional system (3) has the
same dynamics as the dynamics in some invariant manifold (8) of
N-dimensional system (3) with new odd functionsfi that satisfy
property (2) (m < N). For instance, consider an invariant manifold
Mm such that kj = j, j = 1, . . . ,N − m + 1. Then the dynamics
inside this manifold satisfy Eq. (3) with new variablesϕ1 = ϕ1, ϕ2 = ϕN−m+2, . . . ,ϕm = ϕN

and new interaction functions

f1(ϕ1) =

N−m+1
j=1

fj(ϕ1),

f2(ϕ2) = fN−m+2(ϕN−m+2), . . . ,fm(ϕm) = fN(ϕN).

In a more complicated case, when we consider system (3) with
a number of clusters that correspond to invariant manifolds (8),
a system inside an invariant manifold Mm corresponds to the
m-dimensional system with new variables that are a part of
renumbered old variables and with new interaction functions

f1(ϕ1) =

d1
j=1

fj(ϕ1),

f2(ϕ2) =

d1+d2
j=d1+1

fj(ϕd1+1), . . . ,fl(ϕl) =

dl−1+dl
j=dl−1+1

fj(ϕdl−1+1),

fl+1(ϕl+1) = f(ϕd+1), . . . ,fm(ϕm) = fN(ϕN).

Thus new functionsfi, i = 1, . . . ,m, in the right side of Eq. (3)
are also odd and satisfy the conditions fi(0) = fi(π) = 0. As
we show later, invariant manifolds (8) can have different types
of stability in transversal directions depending on variable values
inside invariant manifolds and the values of parameters.

Note that Kuramoto-typemodels of globally coupled oscillators
with different coupling functions but with identical natural
frequencies do not have such hierarchical structure as our system.

2.3. Symmetries

System (1) has the permutation symmetry SN of peripheral
oscillator phases θi, i = 1, . . . ,N . Thus system (3) has SN symmetry
of the variables ϕi, i = 1, . . . ,N . As it was mentioned earlier, the
system has DN -symmetry relative to the axisM1 and Z2-symmetry
relative to the axes Q1. It also has S1 phase shift symmetry:

(θ0, θ1, . . . , θN) −→ (θ0 + ε, θ1 + ε, . . . , θN + ε)

for any ε ∈ [0, 2π).
In the case of equal parameters ai = a, i = 1, . . . ,N , system (6)

has time-reversed symmetry that can be characterized as actions
γ1, γ2, γ3 generated by

γ1 : (ϕ1, . . . , ϕN , a, b, p, r, t)
−→ (−ϕ1, . . . ,−ϕN , a, b, p, r,−t)

γ2 : (ϕ1, . . . , ϕN , a, b, p, r, t)
−→ (ϕ1, . . . , ϕN , − a, − b, p, r,−t)

γ3 : (ϕ1, . . . , ϕN , a, b, p, r, t)
−→ (ϕ1 + π, . . . , ϕN + π, a, b, − p, − r,−t).

These properties provide the possibility tomake conclusions about
the dynamics of the system considering only positive (negative)
values of parameters.

3. Systems with three oscillators

In this section we consider three coupled oscillators: a central
oscillator (CO) and two peripheral oscillators (PO). In this case
system (3) in phase differences can be written as

ϕ̇1 = −a1(sin(ϕ1)+ r sin(2ϕ1))− a2(sin(ϕ2)+ r sin(2ϕ2))

− b(sin(ϕ1)+ p sin(2ϕ1)),

ϕ̇2 = −a1(sin(ϕ1)+ r sin(2ϕ1))− a2(sin(ϕ2)+ r sin(2ϕ2))

− b(sin(ϕ2)+ p sin(2ϕ2)),

(10)

where ϕ1 = θ1 − θ0, ϕ2 = θ2 − θ0. First we study a symmetrical
case of equal coupling strengths of connections from both POs to
the CO a1 = a2 = a. Since the case b = 0 is degenerate (only
one-way connections from POs to the CO), we assume that b ≠ 0.
Moreover, without loss of generality we set b = −1 by scaling the
time. Under these conditions we perform the bifurcation analysis
of the system in three-dimensional space of parameters (a, p, r).
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Fig. 2. (Colour online) Phase portraits for ϕ1, ϕ2 ∈ [0, 2π), when parameters belong to codimension-2 bifurcation lines (A), (B), (C) in parameter space (a, p, r), and to
codimension-3 point (D). Degenerate saddles (with one zero eigenvalue) are shown by dashed green lines.

Fig. 3. (Colour online) Bifurcation diagrams on the (a, r) plane for p = 0 (left) and on the (a, p) plane for r = 0 (right). PF and PF∗ denote pitchfork bifurcations along
invariant lines M1 and Q1 correspondingly at the points O, Π , Φ , Φ∗ . A is a degenerate Andronov–Hopf bifurcation and simultaneously the bifurcation that changes the
stability of limit cycles. B is a degenerate bifurcation of saddles atΦ ,Φ∗ and bifurcation of appearance (disappearance) of limit cycles.

Phase space of (10) (the torus T2) is split into two invariant
subspaces by invariant lines

M1 = {(ϕ1, ϕ2) : ϕ1 = ϕ2}

and

Q1 = {(ϕ1, ϕ2) : ϕ1 = −ϕ2}.

Also the system has four fixed points O = (0, 0), Π = (π, π),
Φ = (π, 0), and Φ∗

= (0, π) for any parameter values. Generally
speaking, these four points are not the only fixed points of the
system, but they can be the only fixed points for some parameter
values. The points O and Π can be permuted by the substitution
corresponding to the time-reversed symmetry action γ3. The same
is true for the pairΦ ,Φ∗. Therefore each of these pairs can be either
two saddles (both robust or degenerate) or a source and a sink. If O
andΠ are robust saddles and if there are no other fixed points on
the invariant lines, we obtain a heteroclinic cycle. This cycle can be
stable, unstable or neutral depending on the parameters and it can
have any of two rotation directions.

It is possible to prove analytically that the system has
codimension-1 bifurcation surfaces that are described by the
following conditions:

PF∗(O) = {(a, p, r) : p = −1/2};
PF∗(Π) = {(a, p, r) : p = 1/2};
HC = {(a, p, r) : p = r};
AH(Φ) = {(a, p, r) : p = ar};
PF(O) = {(a, p, r) : p = 2ar + a − 1/2};
PF(Π) = {(a, p, r) : p = 2ar − a + 1/2};
PF(Φ) = {(a, p, r) : 8arp − 4p2 − 2a + 1 = 0}.

(11)

Note that these three planes, three hyperbolic paraboloids and
PF(Φ) are not the only codimension-1 bifurcation surfaces of the
system, but other bifurcation surfaces have more complicated

forms. We introduce five lines that play the most important role
in system behaviour:

A = {(a, p, r) : a ≥ 1/2, p = r = 0},
B = {(a, p, r) : a = 1/2, p = 0},
C = {(a, p, r) : a = 1/2, p = r},
E = {(a, p, r) : p = r = 1/2},
F = {(a, p, r) : p = r = −1/2}.

(12)

They are codimension-2 bifurcation lines. Intersections of these
lines give codimension-3 points. Let D = A∩B∩C . Phase portraits
corresponding to the cases A, B, C , D are shown in Fig. 2.

Almost all of these surfaces represent local bifurcations at
equilibria. This allows us to compute the eigenvalues of these
points and to find the surfaces (presented above)where these fixed
points change their stability. The bifurcation surface HC of the
heteroclinic bifurcationwas found using the equality for the saddle
quantity ρ = 1 of involved saddles sj, where ρ = ρ(s1, . . . , sk) =k

j=1(λ−(sj)/λ+(sj)) and the eigenvalues satisfy the inequalities
λ−(sj) < 0, λ+(sj) > 0, j = 1, . . . , k.

3.1. Description of bifurcations and bifurcation diagrams

In this subsection we describe the dynamics of the system for
the cases corresponding to different topologies of phase space
(Fig. 4).Wepresent four bifurcation diagrams in three-dimensional
parametric space (a, p, r) on the planes: p = 0 (Fig. 3 (left)),
r = 0 (Fig. 3 (right)), p = r (Fig. 7 (left)) and r = 1/4 (Fig. 7
(right)). Bifurcation lines of the same bifurcations are presented by
the same symbols on each bifurcation diagram (Fig. 3, Fig. 7). The
equations of many bifurcation lines are presented in (12) or can
be found by a reductions of (11). The dynamics of the system for
different parametric regions are marked by different letters. The
same letter is used to mark a particular type of dynamics in all
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Fig. 4. (Colour online) Phase portraits for ϕ1, ϕ2 ∈ [0, 2π). The cases a, b, c, . . . , p of bifurcation diagrams of Figs. 3, 7, 9 are represented for different values of parameters
a, p, r , and for fixed b = −1. Some plots of this figure correspond to different bifurcation diagrams. Notation of points: red — source, blue — sink, green — saddle, magenta
— saddle–node. Stable limit cycles are shown by blue, unstable by red.

bifurcation diagrams and this letter correspond to the appropriate
phase portrait in Fig. 4. The dynamics of the system in the region
marked by a letter with a star (for example, b∗) is the same as the
dynamics in the region marked by this letter without a star (for
example, b) but after applying the time-reversed symmetry action
γ3.

System (10) has the following bifurcations:
(1) PF(O), a pitchfork bifurcation at the origin O = (0, 0) along the
invariant lineM1.
(2) PF(Π), a pitchfork bifurcation at the point Π = (π, π) along
the diagonal M1.
(3) PF∗(O), a pitchfork bifurcation at the origin along the diagonal
Q1.
(4) PF∗(Π), a pitchfork bifurcation at the point Π along the
diagonal Q1.
(5) PF(Φ), a simultaneous pitchfork bifurcation of the saddles
Φ = (0, π) and Φ∗

= (π, 0) along their unstable 1-dimensional
manifolds.
(6)HC , a homoclinic (heteroclinic) bifurcation of a limit cycle (from
inside of the canonical invariant region) and a square heteroclinic

cycle (that bounds this region). The limit cycle merges with the
heteroclinic cycle and then disappears. Note that the system has
two such invariant regions which are bounded by the invariant
linesM1,Q1 and pointsO,Π . The eigenvalues at these points satisfy
the equality λ−(O) · λ−(Π) = λ+(O) · λ+(Π), where λ− < 0,
λ+ > 0. The heteroclinic cycles change their stability after the
bifurcation.
(7) A, a degenerate Andronov–Hopf bifurcation at the pointsΦ ,Φ∗

and simultaneously the bifurcation of stability changing of a limit
cycle (the multiplier crosses +1). The points Φ , Φ∗ are centres at
the moment of bifurcation, they are surrounded by a continuous
set of concentric periodic trajectories up to the heteroclinic cycle.
The heteroclinic cycle consists of two saddle points O, Π and
fragments of the diagonalsM1,Q1. At themoment of bifurcation the
heteroclinic cycle changes its stability (Fig. 2(A) and Fig. 4(d), (e)).
Thus the line A (Fig. 3, Fig. 7) is a bifurcation line of the
‘‘stability shift’’, where the points Φ , Φ∗, two limit cycles, and the
heteroclinic cycle change their stability to the opposite ones.
(8) B, a global bifurcation on the whole line B = {(ϕ1, ϕ2) :

ϕ2 = ±π − ϕ1} of phase space (Fig. 5). Saddles Φ and Φ∗

transform into centres (the eigenvalues λ2 = −λ1 ∈ R of these
saddles meet at the origin and then diverge along the imaginary
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Fig. 5. (Colour online) Phase portraits for (ϕ1, ϕ2) ∈ [−π, π)× [0, 2π) before (a), at the moment (b), and after the bifurcation on the line A.

axis). Sources at the points (π/2, π/2), (3π/2, 3π/2) change their
stability in the transversal to the diagonal direction. The whole
line B consists of degenerate saddles (with at least one zero
eigenvalue) at the moment of the bifurcation (Fig. 5(b)). There are
stable and unstable (in the transversal direction) points on the line
B. B is also a homoclinic bifurcation which implies the appearance
of an unstable limit cycle (Fig. 5(c)).
(9) C , a bifurcation that provides a transition from the case of
Fig. 4(a) to the cases of Fig. 4(i) and Fig. 4(j). This bifurcation is
represented by the line a = 1/2 in Fig. 7 (left). As mentioned
above, the line C is a codimension-2 bifurcation line in (a, p, r)
parameter space. Two lines of degenerate saddles occur at the
moment of bifurcation. One of these lines is the diagonal M1 and
the shape of the other line depends on the parameter r (Fig. 2(C)).
The bifurcation changes trajectory directions along the invariant
lineM1.
(10) D, codimension-3 bifurcation point in phase space (a, p, r).
The lines B andM1 consist of degenerate saddles which divide the
torus into two parts (Fig. 2(D)). These bifurcation lines separate
the regions on the bifurcation diagram (Fig. 3 (left)). The same
symbols in the diagrams of Fig. 3 represent the regions with the
same (topologically equivalent) dynamics. Phase portraits for the
regions are shown in Fig. 4.
(11) NS, neutral saddle bifurcations happen simultaneously at the
points O and Π . For each saddle, both eigenvalues are equal to
zero at the moment of bifurcation. The bifurcation changes the
direction of 1-dimensional invariant manifolds of the saddles.
These bifurcations occur simultaneously with AH(Φ) one the line
a = 1 when p = r (Fig. 7 (left)).
(12) BT , Bogdanov–Takens bifurcation lines in parametric space
(a, p, r) are intersections of AH(Φ) and PF(Φ) bifurcation surfaces.
(13) Andronov–Hopf bifurcation connecting twoBogdanov–Takens
bifurcations (the brown line connecting two BT points in Fig. 7
(right)). Andronov–Hopf bifurcations happen simultaneously in
four symmetrical points (each two of these points appear after a
pitchfork bifurcation at the points Φ and Φ∗ when the parame-
ter a is decreasing). Two small stable limit cycles appear inside an
unstable limit cycle and close to the saddle pointΦ . The same hap-
pens around another saddleΦ∗.
(14) A symmetric figure-eight shape homoclinic bifurcation of two
stable limit cycles that were mentioned in the previous case. A
stable limit cycle appears as a result of the described bifurcation.
The surface of this bifurcation almost coincides with the surface of
the previous bifurcation.
(15) A saddle–node (fold) bifurcation of stable and unstable limit
cycles. This bifurcation happens immediately (with parameter
changing) after the figure-eight shape homoclinic bifurcation with
stable and unstable cycles. Their bifurcation surfaces are also very
close to each other. The lines of the last two bifurcations are not
shown in the figures.
(16) Homoclinic (saddle-connection) bifurcation of unstable man-
ifolds of the saddles Φ , Φ∗ and stable manifolds of the saddles

with coordinates (π/2, π/2) and (3π/2, 3π/2). The connection
lines (1-dimension invariant manifolds of the saddles) are ϕ2 =

±π − ϕ1. The bifurcation line is a = 1/2, p ∈ [0, 1/4] in Fig. 7
(right).
(17) H/PF∗(M1), two symmetric pitchfork bifurcations of symmet-
ric saddles S(ϕ1, ϕ1) and S∗(−ϕ1,−ϕ1) (that belong to M1) in the
transversal M1 direction create heteroclinic connections (Fig. 3
(right), Fig. 7 (right), Fig. 6). Four points disappear with decreas-
ing |p| and two new limit cycles appear in each invariant region
of the torus from heteroclinic cycles. A degenerate saddle that ap-
pears at themoment of bifurcation has four saddle regions and one
unstable (stable) region.

A large number of codimension-1 bifurcation surfaces in para-
metric space (a, p, r) create also a lot of bifurcation codimension-2
lines and codimension-3 points. Part of them arementioned above.
As an example, Fig. 7 (right) shows some codimension-2 bifur-
cation points (intersections of codimension-two bifurcation lines
with the parametric plane (a, p/4, p)) with coordinates (0,−1/2),
(0, 1/2), (1/2, 0), (1/2, 1/4), (2,−1/2), (2/3, 1/2), (1, 1/4), the
Bogdanov–Takens point BT (with coordinates approximately equal
to (0.535898, 0.133975)), and two points of intersection of the line
PF∗(M1)with the lines PF∗(O) and PF∗(Π). Note that all bifurcation
lines in Fig. 7 (left) are also codimension-2 bifurcation lines in the
whole parametric space (a, p, r). Additional symmetry in the case
p = r gives additional symmetric pitchfork constructions. For ex-
ample, the lines E and F present four symmetrical pitchfork bifur-
cations at the pointsΠ , 0 and a pair of PF bifurcations at the points
Φ , Φ∗, which leads to appearance of new fixed points (Fig. 4(k)).
It is easy to see that the number of fixed points increases with the
increase of parameters |p|, |r|, but this does not lead to new types
of bifurcations.

3.2. Unequal coupling strengths, a1 ≠ a2

Consider system (10) with unequal parameters a1 ≠ a2. The
symmetries Z2 with the centres O,Π ,Φ ,Φ∗ will still exist, but the
symmetry D2 will disappear in the general case and the invariant
line Q1 will be destroyed.

For a1 = a2 a homoclinic (saddle connection) bifurcation occurs
in the case when there are no fixed points on the diagonal Q1
except O and Π and these two points are saddles. Disconnecting
a 1-dimensional invariant manifold from these points leads to
disappearance of the (square) heteroclinic cycle (that exists in
the symmetric case) and to appearance of a limit cycle with the
same stability. Later this cycle can undergo a saddle–node (fold)
bifurcation of heteroclinic cycles with the other cycle (that has the
opposite type of stability) and then they both disappear (Fig. 8,
Fig. 13). In a special case when parameters belong to the line A (the
pointsΦ ,Φ∗ have neutral stability being surrounded by concentric
periodic trajectories), disappearance of the heteroclinic cycle does
not lead to appearance of a limit cycle. Also in this case one of the
points O orΠ becomes a sink and the other one becomes a source,
therefore for a1 ≠ a2 there are no periodic trajectories (Fig. 8,
Fig. 13).
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Unstable HC Unstable LC

a cb

Fig. 6. (Colour online) Phase portraits for (ϕ1, ϕ2) ∈ [−π, π)× [0, 2π) before homoclinic/pitchfork bifurcation (a), at the bifurcation moment (b), and after bifurcation (c).
The bifurcation is depicted by the line H/PF∗(M1) on the bifurcation diagram Fig. 3 (right).

Fig. 7. (Colour online) Bifurcation diagrams on the (a, r) plane for p = r (left) and on the (a, p) plane for r = 1/4 (right). Grey regions indicate the cases when the system
has just two attractors (0.π) and (π, 0).
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Fig. 8. (Colour online) Phase portraits for ϕ1, ϕ2 ∈ [0, 2π) for a1 ≠ a2 .

In the case a1 ≠ a2 the pointsΦ andΦ∗ can have opposite types
of stability (this cannot happen if a1 = a2 due to D2 symmetry).
This means that the CO can synchronize with one PO while being
in anti-phase with the other PO. Bifurcation lines for the points Φ
andΦ∗ are different (Fig. 9) (that would be impossible if a1 = a2).
AH and PF bifurcation lines for the points Φ and Φ∗ approach to
each other when a1 → a2 and merge when a1 = a2.

Let us consider the bifurcation diagram of Fig. 9 and describe
bifurcation lines shown on it:

(1) PF(O), PF(Π), pitchfork bifurcations along the invariant
manifoldM1 at the points O,Π , respectively.

Fig. 9. (Colour online) Bifurcation diagram on the (a2, p) plane for a1 = 2, r = 1/4.

(2) PF∗(O), PF∗(Π), pitchfork bifurcations in the transversal to M1
direction at the origin and at the pointΠ , respectively.
(2) AH(Φ), AH(Φ∗), Andronov–Hopf bifurcations at the points
(π, 0) and (0, π). The lines of these two bifurcations are different
as opposed to the case a1 = a2.
(3) HC , a homoclinic (heteroclinic) bifurcation of a square
heteroclinic cycle that consists of the points O, Π and their stable
and unstable 1-dimensional manifolds. The heteroclinic cycles
transform into a limit cycle with the same stability (a1 ≠ a2).
(4) PF(Φ), PF(Φ∗), pitchfork bifurcations at the points (π, 0) and
(0, π), respectively.
(5) TC∗(M1), a transcritical bifurcation of a saddle that belongs to
the invariant manifold M1 with a source in the transversal to M1
direction.
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(6) SNIC(Φ), two symmetric saddle–node bifurcations on the in-
variant cycle that surrounds the point Φ . It is the heteroclinic cy-
cle at the moment of bifurcation that consists of two saddle–node
points and two invariant 1-dimensional manifolds.
(7) SNLC , two lines of saddle–node (fold) bifurcations of limit
cycles. These two lines lie very close to the homoclinic bifurcation
line for a2 = 2 and r ∈ [−1/2, 1/4]. Each limit cycle that appears
at the moment of homoclinic bifurcation will disappear almost at
the same time.Note that the distance between the SNLC bifurcation
lines enlargeswhen a1 is decreasing (this can be seen ifwe consider
the (a2, p) bifurcation diagram for smaller values of the parameter
a1).
(8) BT , a Bogdanov–Takens point that connects AH(Φ), PF(Φ), and
SNIC(Φ) bifurcation lines.

Fig. 8 shows the case when the system has only one attractor
(Fig. 8(a)), bistability of two pointsΦ andΦ∗ like in the symmetric
case (Fig. 8(b)), bistability of a stable point and a cycle (Fig. 8(c)),
and multistability of the points Φ , Φ∗ and a limit cycle (Fig. 8(d)).
All these cases are impossible for a1 = a2.

In the case when a1 = a2 we were able to put b = −1 and
obtain the whole dynamical picture of the system. It is possible
to consider a more general system with two different interaction
functions g1(x) and g2(x) with the parameters of connection
strengths b1 and b2, respectively. If the parameters a1 and a2
are different, we can only fix one of bi. In this case we could
obtain different dynamics for different values of another parameter
bj. This would increase the possibilities for bifurcations of other
types, giving new types of heteroclinic cycles and new types of
multistability. Note that the system is hamiltonian for ai = −bi,
p = r .

3.3. Only two attractorsΦ andΦ∗

From a biological point of view a special interest is represented
by the case when system (10) has only two attractors at the points
Φ = (π, 0) and Φ∗

= (0, π). This case corresponds to the
synchronization of one of the POs with the CO, while the other PO
is in the anti-phase state. This case is important since it represents
the competition of POs for the synchronization with the CO.

If a1 = a2, the points Φ and Φ∗ are symmetric relative to
the line M1, therefore they have the same type of stability for any
parameter values. Thuswe can only have themultistability of these
two points (Fig. 4(i)). In this case the system has also a repeller that
is a heteroclinic cycle consisting of two saddles O, andΠ and their
1-dimensional invariant lines that belong to the diagonals M1 and
Q1. The heteroclinic cycle consists of four points and four lines if
we consider it not on the torus T2 but on the Euclidean plane R2.
We have two regions G1 = A1(Φ) and G2 = A2(Φ) in three-
dimensional space (a, p, r) which represent the situation we are
interested in. One of them is an infinite domain that is bounded by
two planes and a hyperbolic paraboloid:

A1(Φ) = {(a, p, r) : p ≥ r, p < 1/2, p < ar}.

Another region is finite and bounded by a plane and twohyperbolic
paraboloids:

A2(Φ) = {(a, p, r) : p ≥ r, p < ar, p < 2ar + a − 1/2}.

Thus the systemhas two attractorsΦ andΦ∗ when (a, p, r) ∈ A =

A1 ∪ A2. The intersection of the region A with the planes p = r
and r = 1/4 is indicated by grey colour in Fig. 7.

Consider the same problem for the system with a1 ≠ a2. In
this situation the system can have three possible types of phase
portraits: (1) only one attractorΦ∗ (Fig. 8(a)); (2) only one attractor
Φ (symmetric to the previous case); (3) bistability of two attractors
Φ and Φ∗ (Fig. 4(i), and Fig. 8(b)). Three corresponding regions of

parameters denoted as A(Φ∗), A(Φ) and A(Φ,Φ∗) = A(Φ) ∩

A(Φ∗) are shown in Fig. 9.
The regionA(Φ,Φ∗) can abruptly enlargewhen a1 differs from

a2. For example, Fig. 9 shows that region A(Φ,Φ∗) occupies the
interval 1/4 < p < 1/2 if a1 = a2 = 2. But for other values of
a2 even only slightly different from a1 = 2 the region A(Φ,Φ∗)
becomes approximately equal to −1/2 < p < 1/2 at both sides
from the fold bifurcation of limit cycles. Here we can see a typical
way of region A extension when initially stable heteroclinic cycle
(that coexisted with the stable points Φ , Φ∗) disappears after a
homoclinic bifurcation and transmits its stability to a limit cycle
that is born after the bifurcation. Then the new stable limit cycle
disappears after the fold bifurcation with an unstable limit cycle.
Corresponding phase portraits of this bifurcation transition are
shown in Fig. 4(i) and Fig. 8(b), (d).

4. Systems with four oscillators

In this section we consider the model that consists of a CO and
three POs. In this case the equations for phase differences take the
form

ϕ̇1 = −a1(sin(ϕ1)+ r sin(2ϕ1))− a2(sin(ϕ2)+ r sin(2ϕ2))

− a3(sin(ϕ3)+ r sin(2ϕ3))− b(sin(ϕ1)+ p sin(2ϕ1)),

ϕ̇2 = −a1(sin(ϕ1)+ r sin(2ϕ1))− a2(sin(ϕ2)+ r sin(2ϕ2))

− a3(sin(ϕ3)+ r sin(2ϕ3))− b(sin(ϕ2)+ p sin(2ϕ2)),

ϕ̇3 = −a1(sin(ϕ1)+ r sin(2ϕ1))− a2(sin(ϕ2)+ r sin(2ϕ2))

− a3(sin(ϕ3)+ r sin(2ϕ3))− b(sin(ϕ3)+ p sin(2ϕ3)),

(13)

where ϕ1 = θ1 − θ0, ϕ2 = θ2 − θ0, ϕ3 = θ3 − θ0. As in the
previous section, we start from the assumption that all interaction
parameters are identical ai = a, i = 1, 2, 3, and also put b = −1.
Under these conditions we perform the bifurcation analysis of the
system in parameter space (a, p, r). In contrast to the previous
section, the dynamics of the system in three dimensional phase
space is much more complicated, in particular chaotic behaviour
becomes possible. Then we briefly observe the changes in system
dynamics if interaction parameters have different values. Finally
the regimes that combine in-phase and anti-phase dynamics
between the CO and POs will be described.

4.1. Phase space and invariant manifolds

System (13) has 2-dimensional invariant manifolds (planes)

M(1)
2 = {(ϕ1, ϕ2, ϕ3) : ϕ1 = ϕ2},

M(2)
2 = {(ϕ1, ϕ2, ϕ3) : ϕ1 = ϕ3},

M(3)
2 = {(ϕ1, ϕ2, ϕ3) : ϕ2 = ϕ3},

(14)

and a 1-dimensional invariant manifold

M1 = {(ϕ1, ϕ2, ϕ3) : ϕ1 = ϕ2 = ϕ3} (15)

which represents an intersection of planes (14).
Let us assume that a1 = a2 = a3. Under this assumption system

(13) has additional invariant manifolds

Q (1)
1 = {(ϕ1, ϕ2, ϕ3) : ϕ1 + ϕ2 = 0, ϕ3 = 0},

Q (2)
1 = {(ϕ1, ϕ2, ϕ3) : ϕ1 + ϕ3 = 0, ϕ2 = 0},

Q (3)
1 = {(ϕ1, ϕ2, ϕ3) : ϕ2 + ϕ3 = 0, ϕ1 = 0},

(16)

Q (4)
1 = {(ϕ1, ϕ2, ϕ3) : ϕ1 + ϕ2 = 0, ϕ3 = π},

Q (5)
1 = {(ϕ1, ϕ2, ϕ3) : ϕ1 + ϕ3 = 0, ϕ2 = π},

Q (6)
1 = {(ϕ1, ϕ2, ϕ3) : ϕ2 + ϕ3 = 0, ϕ1 = π}.

(17)

Each of these manifolds is a line with Z2 symmetry.
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Fig. 10. (Colour online) Schematic diagram for phase space (ϕ1, ϕ2, ϕ3) ∈ T3:
(a) the cube (torus) with invariant planes M(i)

2 (invariant planes are bounded
by different colour lines); (b), invariant region bounded by invariant planes;
(c) orthogonal projection of the cube on the plane along invariant line (15).
(d) invariant lines Q (i)

1 inside the cube (torus); (e) invariant lines inside an invariant
region; (f) orthogonal projection of invariant lines inside the cube onto the plane
along M1 .

Intersections of 1-dimensional and 2-dimensional invariant
manifolds create eight 0-dimensional manifolds (fixed points):
O = (0, 0, 0, ), Π = (π, π, π), Φ1 = (0, π, π), Φ2 = (π, 0, π),
Φ3 = (π, π, 0), Φ∗

1 = (π, 0, 0), Φ∗

2 = (0, π, 0), Φ∗

3 = (0, 0, π).
These 8 fixed points exist for any parameters a, p, r , but for some
values of parameters the system can have other equilibria. Each of
fixed pointsmentioned above can change its stability if parameters
change their values.

System (13) has permutation symmetry of variables ϕi.
Invariant line (15) is an axis of dihedral symmetry D3 (rotations
around the line by the angle 2π/3 and reflections relative to
invariant planes (14)). Also each of lines (16), (17) is an axis of Z2
symmetry (rotations around the line by the angle π ) [25].

The invariant planes split the cube into six tetrahedrons
(Fig. 10(a)). Each tetrahedron has two closed faces (which are
bounded by invariant planes) and two open faces. Thus we can
connect tetrahedrons through their open faces obtaining two cases
of triangular tubes (Fig. 10(b) shows one of these tubes) that
correspond to two invariant regions on the torus T3. Thereby three
invariant planes (14) split the torus into two invariant regions.
Each trajectory can locate inside one of the invariant regions but it
cannot pass to the other invariant region. An orthogonal projection
of the cube along invariant line (15) is shown in Fig. 10(c). In

a

dc

b

Fig. 11. Schematic diagram for phase space (ϕ1, ϕ2, ϕ3) ∈ T3: (a) heteroclinic
connection inside the cube (invariant plane and transversal invariant lines); (b)
the same invariant plane for two neighbouring cubes and heteroclinic connections;
(c) intersection of two invariant planes on the invariant line inside the cube; (d)
heteroclinic connection between two points and saddle limit cycles.

this figure the projections of the same region are shown by the
same colour. Thus phase differences between POs are bounded
|θi − θj| < 2π , i, j = 1, 2, 3, while a phase difference between
the CO and any PO can increase to infinity in R3. Two types
of 1-dimensional invariant manifolds (16), (17) inside the cube
(3-dimensional torus) are shown in Fig. 10(d). The invariant lines
Q (j)
1 , j = 1, . . . , 6, inside an invariant region are shown in Fig. 10(e).

The orthogonal projection of the cube along its diagonal and
invariant lines mentioned above are shown in Fig. 10(f).

Also consider the lines that locate just in the centres of each
invariant region:

L1 = {(ϕ1, ϕ2, ϕ3) : ϕ1 − ϕ2 = 2π/3, ϕ1 − ϕ3 = 4π/3},
L2 = {(ϕ1, ϕ2, ϕ3) : ϕ1 − ϕ2 = 4π/3, ϕ1 − ϕ3 = 2π/3}.

These lines are shown in Fig. 10(b), (c) (projection). System (13)
has the Z3 symmetry group of rotation around the line L1 (or L2)
by angle 2π/3 with the simultaneous shift along this line by 2π/3
(rotation around the torus). The lines are not invariant and they
intersect Q (1)

1 , . . . ,Q (6)
1 . The system has also another cube rotation

symmetry described in [26].
Invariant line (15) connects two points O and Π inside each

2-dimensional invariant plane (14). Also each invariant line (16)
connects the point O with each point Φi, i = 1, 2, 3, which has
two coordinates equal to π and the third coordinate 0. These lines
connect two different points of the same invariant plane inside the
torus T 3 (Fig. 11(b)). In the same way, other three 1-dimensional
lines (17) connect the point Π with three different points Φ∗

i ,
i = 1, 2, 3, which have two zero coordinates and one coordinate
equal to π . If the point Π is connected with the point Φi by
some trajectory in the invariant plane, we obtain a closed contour
of three points O, Φi and Π . This contour can be a heteroclinic
cycle H3(O,Φi,Π) = {O,W u(O),Φi,W u(Φi),Π,W u(Π)} when
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all its points are saddles and additional conditions W u(O) =

W s(Φ), W s(Φ) = W u(Π), W s(Π) = W u(O) are satisfied, where
W s(x), W u(x) are stable and unstable 1-dimensional manifolds
with a starting point x (Fig. 11(a)). Also the heteroclinic cycle
H∗

3 (O,Φ
∗

i ,Π) is possible in the system.
More complicated heteroclinic cycles can be constructed com-

bining the previous ones. As an example, the heteroclinic cycle
H6(O,Φi,Π,O,Φ∗

i ,Π) is shown in (Fig. 11(b)). Note that three dif-
ferent (the same according to symmetry) 3-point heteroclinic cy-
cles have the same part {Π,W u(Π),O} (Fig. 11(c) shows two such
heteroclinic cycles). Heteroclinic cycles H6(O,Φi,Π,O,Φj,Π),
i ≠ j, (or even more complicated) are possible as well.

Another example of a heteroclinic cycle is a connection of
the saddle points O, Π and a saddle limit cycle that belongs
to the invariant plane M i

2 and surrounds the point Φi or Φ∗

i
(Fig. 11(d)). This heteroclinic cycle appears from H3(O,Φi,Π) (or
H3(O,Φ∗

i ,Π)) after the Andronov–Hopf bifurcation of the saddle
Φi (or Φ∗

i ). In this way we can obtain a heteroclinic cycle that
consists of three saddle limit cycles, points O and Π (which can
repeat) and connecting lines.

It can be shown that the origin point is stable along invariant
line (16) (more exactly, along the vector V = (1,−1, 0)) for
arbitrary values of a, r , and p < −1/2. The point (π, π, 0) is
stable along the vector V for p < 1/2 and arbitrary a, r . Using
symmetry we conclude that the point (π, π, π) is stable when
p > 1/2, and the point (π, 0, 0) is stable when p > −1/2. Thus a
lot of information about dynamics of system (13) can be obtained
considering bifurcations on invariant 2-dimensional manifolds
(14). Fig. 13 shows phase portraits on the invariant plane M(1)

2 for
different values of the parameters a and r . Note that bifurcations on
the invariant plane are sufficient (but not necessary) conditions for
changing qualitative dynamics in the whole 3-dimensional phase
space.

4.2. Bifurcations on the planes (a, r) for p = 0 and for p = r

To describe bifurcations for four coupled oscillators, we
consider two cases of parametric planes with varying parameters
a, r: p = 0 in the first case (Fig. 12 (left)) and p = r in the
second one (Fig. 12 (right)). The parameter b is fixed and equal
to −1. We present qualitatively different phase portraits on the
invariant plane M(1)

2 (Fig. 13) since most of the bifurcations (but
not all) are two-dimensional. They simultaneously happen inside
invariant planes M(1)

1 , M(2)
1 , M(3)

1 when stabilities in transversal
directions do not change. Some of the bifurcations presented on
the invariant planes M(i)

2 happen in 3D. In particular, bifurcations
on the invariant lineM1 = M(1)

2 ∩M(2)
2 ∩M(3)

2 in transversal to this
line directions simultaneously happen in three directions inM(i)

2 .
The system has the following bifurcations:

(1) AH(Φi), a subcritical Andronov–Hopf bifurcation on invariant
plane (14) when a saddle-focus point becomes stable and a saddle
limit cycle appears in the invariant plane (Fig. 13(a), (b)). The
bifurcation line is r = 1/6 for p = 0 (Fig. 12 (left)).
(2) AH(Φ∗

i ), a supercritical Andronov–Hopf bifurcation on invari-
ant plane (14). The bifurcation line is r = −1/6 for p = 0 (Fig. 12)
(right).
(3) PF(Π), a subcritical pitchfork bifurcation at the pointΠ along
invariant line (15) (Fig. 13(b), (c)). The saddle point Π (with two
negative and one positive eigenvalues becomes a sink).
(4) PF(O), a supercritical pitchfork bifurcation at O.
(5) PF∗(Π), a pitchfork bifurcation at the point Π in 6 directions
which gives 12 new points (along the symmetry axes of the cube
with the centre inΠ ). The bifurcation happens for p = 1/2.

(6) PF∗(O), a symmetric pitchfork bifurcation at the origin in six
directions. Bifurcation plane is p = −1/2 for arbitrary r .
(7) PF(Φi), a supercritical pitchfork bifurcation at the points Φi,
i = 1, 2, 3, inside invariant planes (14) (Fig. 13(c), (d)). The sinks
(focuses) Φi become saddles (with two negative and one positive
eigenvalues) and two sinks appear inside each invariant plane (14).
The bifurcation line PF(Φi) coincides with line PF(Π) in the case
p = r and it is r = 1/2 in this case.
(8) PF(Φ∗

i ), a subcritical pitchfork bifurcation in Φ∗

i , i = 1, 2, 3,
inside (14). The line of this bifurcation merges with the line PF(O)
for p = r , i.e. the surfaces of bifurcations PF(Φ∗

i ) and PF(O)
intersect along the line r = p = −1/2 in the parametric space
(a, p, r).
(9) AH(M2), a supercritical Andronov–Hopf bifurcation of two
points in each invariant 2-dimensional plane (Fig. 13(d), (e)). Each
sink becomes a saddle-focus (with a negative real eigenvalue) after
the bifurcation.
(10) AH∗(M2), a subcritical Andronov–Hopf bifurcation of two
points in each invariant 2-dimensional plane.
(11) A symmetric figure-eight shape homoclinic bifurcation. This
bifurcation happens with two stable limit cycles that appeared
earlier after the pitchfork bifurcation of the point Φi. The
bifurcation implies disappearance of two cycles and appearance of
bigger one. The new stable limit cycle is located inside the unstable
limit cycles that appeared after the AH(Φi) bifurcation. A similar
bifurcation occurs with two unstable limit cycles that appeared
after the pitchfork bifurcation at the pointΦ∗

i for r < 0.
(12) A saddle–node (fold) bifurcation of two limit cycles: the
smaller one that appeared after the previous bifurcation and the
bigger one that appeared after the bifurcation AH(Φi). Three last
bifurcations occur almost simultaneously (transition from the case
of Fig. 13(e) to the case of Fig. 13(g)). Thus the bifurcation lines of
this and the previous bifurcations are very close to the line AH(M2),
therefore they are not shown on the bifurcation diagram Fig. 12
(left). Note that two similar bifurcations (but with reverse time)
occur around the point Φ∗

I for negative values of the parameter r .
Their bifurcation lines locate very close to the line AH∗(M2).
(13) TC∗(π/2), a transcritical bifurcation at the point (π/2, π/2,
π/2) on each of the invariant planes (14) in the transversal to
invariant line (15) direction. The bifurcation line has the equation
a = 1/3 on the plane p = 0. Three saddle-focuses that belong to
three different invariant planes M(i)

2 meet together at the saddle
point S∗ with coordinates (π/2, π/2, π/2). This point becomes a
source after the bifurcation and three other saddle points Si leave
it. In Fig. 13(g), (h), only projections of these points can be seen on
the invariant plane. These figures do not give us full information
about qualitative dynamics of the system in 3-dimensional space.
In contrast to 2-dimensional space the fixed point S∗ changes its
stability.
(14) A saddle-connection bifurcation (on the invariant plane) of
the unstable manifold of O and stable manifold of the saddle point
Si (Fig. 13(h), (i)). The line of this bifurcation (not shown in the
diagram) lies between TC∗(π/2) and PF(Φ∗

i ).
(15) Two Bogdanov–Takens bifurcation points for (a, r) = (1/3,
1/6) and (a, r) = (1/3,−1/6) on the bifurcation plane p = 0. The
linesAH(Φi), PF(Φi),AH(M2) and also the line of symmetric figure-
eight shape homoclinic bifurcations meet at the first BT point. The
same happens for Φ∗

i at the second BT -point. Bogdanov–Takens
points are presented also on the diagram Fig. 12 (right) for the
bifurcation plane p = r . The intersection of surfaces PF(Φi)
and AH(M2) creates a codimension-two bifurcation curve of the
Bogdanov–Takens bifurcation in (a, p, r)-space.
(16) Codimension-3 bifurcation point (a, p, r) = (1/3, 0, 0) of
the intersection of many surfaces. This point is presented on the
bifurcation diagram of Fig. 12 (left) for p = 0.
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Fig. 12. (Colour online) Bifurcation diagrams on the plane (a, r) for b = −1, p = 0 (left) and for p = r (right).

Unstable LC

Stable LC

Unstable LC

a dcb

e hg i

kj

Fig. 13. (Colour online) Phase portraits on the invariant plane (ϕ1 = ϕ2, ϕ3). b = −1, p = 0.

Remark 1. All 2-dimensional bifurcations that happen around the
fixed point Φi on the invariant plane M(i)

2 (Fig. 13(a), (b), (d)–(g))
are described in [23] p. 426 (cases 1–6, reverse time) and [27]
p. 408.

Remark 2. A 2-dimensional system that describes dynamics on
invariant plane (14) duplicates the system with three coupled
oscillators (CO + 2PO) for a1 = 2a2 (or a2 = 2a1).

4.3. Chaos

To understand the chaotic behaviour of system (13), we make
a link between (13) and the well known ABC flow (named after
Arnold, Beltrami, and Childress, first investigated by Arnold [28]).
Consider a system

ϕ̇1 = A sin(ϕ3)+ C cos(ϕ2 − δ),
ϕ̇2 = B sin(ϕ1)+ A cos(ϕ3 − δ),
ϕ̇3 = C sin(ϕ2)+ B cos(ϕ1 − δ).

(18)

System (18) becomes the ABC flow with parameters A, B, C for
δ = 0 and it coincides with Eq. (13) for a = −b = 1, p = r = 0,
when A = B = C = −1, δ = π/2. The chaotic behaviour
of the ABC flow has been studied and described in the literature
from different points of view (see [26,28–35]). One can expect that
system (13) will show similar behaviour at least for the parameter
values mentioned above.

System (18) has eight fixed points (saddles and saddle-focuses)
for any value of the parameter δ. There are four α-type fixed points
(notation from [31]) with a two-dimensional stable invariant
manifold and four β-type fixed points with a two-dimensional
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Fig. 14. An example of chaotic trajectory in alternative phase difference variables ψ1 = θ0 − θ1 , ψ2 = θ2 − θ1 , ψ3 = θ3 − θ1 for a = −b = 1, p = r = 0.

Fig. 15. Maximal Lyapunov exponent versus parameter a for b = −1, p = r = 0.1.

unstable invariant manifold. It is proved in [36] that fixed points
of different types are connected by heteroclinic trajectories for
δ = 0. The same situation takes place for (13) (see Fig. 11).
One can see that this structure is possible for any value of the
parameter δ in (18). A complicatedweb of heteroclinic connections
in the ABC flow appears as a result of intersection of wrapping
two-dimensional manifolds of α-type and β-type fixed points [31]
(infinitely many heteroclinic lines). This structure causes chaotic
behaviour in the system [31]. We conjecture the same nature of
chaos in the case δ ≠ 0. An example of a chaotic trajectory is shown
in Fig. 14.

Consider the situation when the parameters a, p, r are slightly
changed in (13). The system has the dynamics that are similar to
the previous case. The trajectories pass inside invariant regions
(triangular tubes) in two different directions along L1, L2 and rotate
around each of the invariant lines Q (1)

1 , . . . ,Q (6)
1 . It is impossible

to predict how many rotations a trajectory makes around any
Q (j)
1 and where it goes after that. In contrast to the ABC flow,

system (13) has (in a general case) a nonzero divergence. Therefore,
the chaotic attractor shrinks around the line L1 (or L2) when the
parameter a is increasing. Another difference between ABC flows
and (13) is that the eigenvalues of the fixed points that belong to
the invariantmanifoldsM(i)

2 have imaginary components, i.e. these
fixed points are saddle focuses. Variations of the parameters p
and r lead to the Andronov–Hopf bifurcation in invariant planes
(Fig. 13), appearance of sinks and sources in T3 and, as a result,
disappearance of direct or reverse chaos. Pitchfork bifurcations
PF(O) and PF(Π) also lead to disappearance of heteroclinic
connections and to chaos destruction. System (13) can have two-
directional chaos (when the system has chaotic trajectories both
for t → +∞ and t → −∞). Such dynamics take place when the
system parameters belong to the region a in Fig. 12. The regions
with one-directional chaos (t → −∞ or t → +∞) are marked
here by b and b∗, respectively.

Fig. 15 presents a numerical confirmation of the existence of
chaos in agreement with the parameter diagram (Fig. 12 (right)).
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Fig. 16. (Colour online) Frequencies ϕ̇1 , ϕ̇2 and ϕ̇3 for a = 3.5, b = −1, p = r = 0.1.

It shows the dependence of themaximal Lyapunov exponent (MLE)
on the parameter a. MLE becomes positive for some values of a >
1/3. The behaviour of three frequencies ϕ̇1, ϕ̇2, ϕ̇3 corresponding
to chaotic dynamics of system (13) is shown in (Fig. 16).

4.4. Unequal coupling strengths

Consider the case when the parameters ai, i = 1, 2, 3, have dif-
ferent values. Planes (14) are still invariant in this case (this means
that two triangular invariant tubes still exist), but invariant lines
(16), (17) are now destroyed by saddle connection bifurcations.
There are no connections OΦi orΦ∗

i Π anymore. Disappearance of
these lines destroys heteroclinic connections that were present in
the symmetric case (Fig. 11) but new asymmetric heteroclinic con-
nections appear between saddle points. The systemstill has chaotic
attractors which can coexist with other stable solutions.

As we have noted, the pointsΦi (Φ∗

i ), i = 1, 2, 3, are equivalent
under the permutation symmetry if a1 = a2 = a3. Thus
the system has the same bifurcation lines (which are usually
Andronov–Hopf or pitchfork bifurcation lines) for Φi (Φ∗

i ). The
situation is completely different when ai are unequal. The fixed
points Φi and Φ∗

i , i = 1, 2, 3, have different types of stability.
As a result, the system has different bifurcation lines for each of
six points mentioned above. Fig. 17 represents a partial bifurcation
diagram in this case. We fix the parameters a1 = 1, a2 = 1.5,
and r = 0.25 and vary the parameters a3 and p. The diagram

does not describe the symmetric case a1 = a2 = a3 but shows
partially symmetric cases a1 = a3 = 1 and a2 = a3 = 1.5, where
the homoclinic bifurcations HC1, HC2 happen on lines (16), (17) in
phase space.Wemark theAndronov–Hopf bifurcation at the points
Φi, Φ∗

i by AHi, AH∗

i , i = 1, 2, 3. The pitchfork bifurcations at these
six points are denoted here as PF(Φi) and PF(Φ∗

i ).
Note that PF bifurcations for some points consist of two

parts. The points O and Π have a pitchfork bifurcation along the
invariant line M1 and in the transversal to this line direction. The
corresponding bifurcation lines are marked as PF(O), PF(Π) and
PF∗(O), PF∗(Π), respectively. The transcritical bifurcation TC∗(M1)
occurs on the invariant line M1 in the transversal to this line
direction. The systemhas somebifurcation lines that are not shown
in Fig. 17. These are saddle–node bifurcations on invariant cycles
(the lines start from the points of a Bogdanov–Takens bifurcation
that are intersections BTi = AHi ∩ PF(Φi), BT ∗

i = AH∗

i ∩

PF(Φ∗

i )), figure-eight shape homoclinic bifurcations, and some
bifurcations that lead to chaos. The point U with coordinates
(−3/2, 1/4) is an intersection of pitchfork bifurcation lines and
threeAndronov–Hopf bifurcation lines. All these bifurcations occur
simultaneously at five different points. This situation is similar to
the one that happens with two POs (Fig. 2(c)). The whole invariant
line M1 consists of degenerate points (with zero eigenvalues) and
there are three other lines in phase space that consist completely of
degenerate points. Stabilities (in the transversal directions) of the
points on these four lines are different.
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Fig. 17. (Colour online) Partial bifurcation diagram on the plane (a3, p) for b = −1,
r = 0.25, a1 = 1, a2 = 1.5.

4.5. The pointsΦi andΦ∗

i are the only attractors of the system

The points Φi correspond to in-phase synchronization of one
PO with the CO and anti-phase dynamics of two other POs with
the CO. The points Φ∗

i correspond to in-phase synchronization of
two POs with the CO and anti-phase dynamics of the third PO. As
in the case of two POs, we are interested in finding the region A in
parameter space, whereΦi andΦ∗

i are the only attractors (without
coexistence of any other stable regimes). This type of dynamics
represents different outcomes of the competition between the POs
for the synchronization with the CO.

Denote by A(Φi), A(Φ∗

i ), i = 1, 2, 3, the regions, where the
only attractors of the system are Φi or Φ∗

i , respectively. As it has
been noted, the points Φi (and Φ∗

i ) are of the same type for a1 =

a2 = a3, therefore A(Φi) ≡ A(Φj), A(Φ∗

i ) ≡ A(Φ∗

j ) for any i and
j. First we can find the regions A(Φi), where any of the pointsΦi or
Φ∗

i is stable. These regions are bigger than A (i.e. A(Φi) ⊃ A(Φi))
since the pointsΦi can coexistwith other attractorswhich are limit
or heteroclinic cycles. Then we can find parameter regions and
appropriate bifurcations, where unwanted attractors vanish. This
usually happens after an Andronov–Hopf bifurcation, pitchfork
bifurcation, fold bifurcation of cycles or after the disappearance
of heteroclinic cycles through saddle-connection bifurcations. The
regions A(Φi) are marked by b in Fig. 12. The regions A(Φ∗

i ) are
marked by b∗ in the same figures.

In the case of different values of ai, i = 1, 2, 3, any of six
points Φi and Φ∗

i can be the only attractor of the system. Also any
coexistence of these points is possible for some parameter values.
Thus we have six different regions A(Φi), A(Φ∗

i ), i = 1, 2, 3, that
can intersect with each other. Our aim is to find A = A(Φ1) ∪

A(Φ2)∪A(Φ3)∪A(Φ∗

1 )∪A(Φ∗

2 )∪A(Φ∗

3 ). Each of thementioned
points has its own bifurcation lines (in contrast to the symmetric
case) and the problem of finding the proper region becomes more
complex.

Here we present two results for the case when the symmetry
a1 = a2 = a3 is broken.
(1) The regions A(Φi) and A(Φ∗

i ) enlarge for parameters p and r
when the symmetry of parameters ai is broken (like in the case
N = 2).
(2) The region A enlarges for ai ≠ aj because new possible cases
appear when A(Φi) ≠ A(Φj) and A(Φ∗

i ) ≠ A(Φ∗

j ) for i ≠ j (this
is impossible in the symmetric case).

The region A is shown in Fig. 17 by grey colour. The figure
shows that region A enlarges when partial symmetry conditions
a3 = a1 = 1 or a3 = a2 = 1.5 are broken.

5. Discussion

In this paper we presented the results of bifurcation analysis of
phase oscillator models with star-like architecture of connections.
The case of oscillators with identical natural frequencies was
considered. Interaction functions have been described by two
terms of Fourier expansion, whichmakes the dynamical behaviour
of the system much more complex than in the case of traditional
sinusoid functions. First we derived some general statements
about system dynamics identifying its invariant manifolds and
symmetries. Thenwe focused on small systems containing three or
four oscillators (one CO+2 or 3 POs). In terms of phase differences
between the CO and POs we have got two or three ODEs that
determined the dynamics of the system.

The main results were obtained for parameter space (a, p, r),
where a is the universal strength of coupling from POs to the CO, p
and r are the parameters of feedforward and feedback interaction
functions (without loss of generality the strength of the feedback
connection from the CO to POs can be set equal to a constant,
e.g.−1). In fact, the detailed bifurcation analysis was performed on
the plane (a, r) under different assumptions on p and on the plane
(a, p) under different assumptions on r . Then the results were
reconsidered and adapted to the case of non-identical connection
strengths from POs to the CO (different values of ai). The case
when the dynamics of the system combine in-phase and antiphase
oscillations between the CO and POs obtained special attention.

The results of bifurcation analysis are summarized in bifur-
cation diagrams that provide full description of the boundaries
between the regions with different dynamics and the types of
bifurcations that lead to the changes in the topology of phase
space. These bifurcations include changes of fixed point stabil-
ity and formation (destruction) of limit and heteroclinic cycles. In
3-dimensional phase space, chaotic behaviour of the model has
been investigated. These results are useful to control system dy-
namics through appropriate choice and variation of parameter
values.

The analysis of the system with three oscillators is simple
enough to be sure that no bifurcation is missing though we do
not have a formal proof of this fact. We did our best to make the
list of bifurcations complete also in the case of four oscillators.
Still there is a chance that some codimension-two homoclinic
type bifurcations are missing. This may happen if their analytical
prediction is too difficult.

In the following subsections we try to shed light upon the
question towhat extent the results obtained can be extended to the
systems with more than three POs. Also the comparison with the
systems of globally coupled oscillators will be made. Finally some
applications to modelling in neurobiology will be discussed.

5.1. Systems with an arbitrary number of peripheral oscillators

As it has been shown, system (1) ofN+1 coupled oscillators has
invariant manifolds (7), (8) of a lower dimensionm. The dynamics
on these invariant manifolds is the same as for the system that
has m POs (in general, the system is not symmetric, that is fi ≠

fj). Therefore any dynamical regime on the invariant manifold
will also exist on some invariant manifolds of higher dimensional
systems (generally, some additional conditions should be fulfilled).
In particular, this implies that the system has chaotic behaviour
for some parameter values for any N ≥ 3. Also, a thorough
investigation of stability of the manifold is important because the
stability in transversal direction can be different at different parts
of themanifold (for example, two dimensional invariantmanifolds
(14) of system (13) have different types of stability at different
points of the manifold).
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Further we present some properties of system (3) that together
with the properties described in Section 2 give some notion of
dynamics in the general N-dimensional case.
Fixed points. System (3) has 2N fixed points Φk that have k
coordinates equal to 0 and N − k coordinates equal to π for k =

0, . . . ,N (O = ΦN
= (0, . . . , 0), Π = Φ0

= (π, . . . , π)).
These fixed points are 0-dimensional manifolds of the system and
they exist for any odd functions fj, g that satisfy conditions (2).
These points can be the only fixed points of system (3) for some
functions and parameter values but additional fixed points can
appear for other functions or parameter values (some examples
have already been given for N = 2 and N = 3). The study of
basic fixed points is essential for understanding the behaviour of
the system. It is possible to analytically investigate the stability of
fixedpointsΦk under the parameter variation of the functions fi(x),
g(x). In particular, the stability of the points Φk can be studied by
computing the eigenvalues of the linearized system.
Local bifurcations and simple dynamical regimes. System (6) has
a relatively simple bifurcation structure for |p| < 1/2 which
includes a series of pitchfork bifurcations of the fixed points O,
Π and Φk, k = 1, . . . ,N − 1. The boundaries of surfaces
corresponding to these pitchfork bifurcations are marked by a in
Fig. 3, Fig. 7 for N = 2 and by k in Fig. 12 for N = 3; bifurcation
lines are marked by PF(O), PF(Π), PF(Φ) in Figs. 3, 7, 9, 12 and 17.
We denote by S the region in parameter space (a1, . . . , aN , p, r)
where the system goes through a series of pitchfork bifurcations.
The point O is a source in this case, the point Π is a sink, and the
system has also 2N

− 2 other fixed points Φk that are saddles.
There are no other attractors or repellers except O andΠ (a typical
example of such dynamics is for the parameter values ai = 1, b =

−1, p = r = 0). Each of these two points undergoes (N − 1)
pitchfork bifurcations in the transversal direction to the invariant
manifoldM1. The hyperplanes of bifurcations are

PF∗(O) = {(a1, . . . , aN , p, r) : p = −1/2},
PF∗(Π) = {(a1, . . . , aN , p, r) : p = 1/2}.

Also, each of these fixed points has a pitchfork bifurcation (PF(O)
and PF(Π), respectively) along the invariant manifold M1. In
general, bifurcation surface of these bifurcations can have a
relatively complex structure. In the symmetrical case a1 = · · · =

aN the surfaces take the form:

PF(O) = {(a, p, r) : 2p + Na − 2Nar − 1 = 0},
PF(Π) = {(a, p, r) : 2p − Na − 2Nar + 1 = 0}.

Two consecutive bifurcations PF(O) and PF(Π) keep unchanged
the number of fixed points 2N but transform all points into saddles.
In this case the dynamics can be very complex. For example,we can
refer to the case N = 3 for a = 1, p = r = 0 where the dynamics
is chaotic.

The saddle pointsΦk(k = 1, . . . ,N−1) can undergo a pitchfork
bifurcation and an Andronov–Hopf bifurcation. For each point Φk

there are two pitchfork bifurcation planes at p = ±1/2 and two
other bifurcation surfaces that correspond to the Andronov–Hopf
bifurcation and the pitchfork bifurcation, respectively:

AH(Φk) = {(a, p, r) : 2p − Nar + (k − N/2)a = 0};

PF(Φk) = {(a, p, r) : ((4pr − 2p + 2r − 1)N

− 4k(r − p))a − 4p2 + 1 = 0}.

(19)

Thus the region S is located inside the region |p| < 1/2 and is
bounded by the surfaces PF and AH . (Note that in general this
region consists of a few finite or infinite (relative to the parameters
ai) parts in parameter space (a1, . . . , an, p, r)). The qualitative
investigation is easier if it concerns the region S. A cascade of local

bifurcations mentioned above creates myriads of new fixed points
and limit cycles making the system dynamics very sophisticated.
Other bifurcations. Transcritical bifurcations are also possible in
the system. These bifurcations are conditioned by some specific
symmetries of the system and can occur along symmetrical
invariant manifolds that are transversal to one invariant manifold
(usually M1) (as it has been shown for lower dimensions).

Heteroclinic bifurcations of different types are also typical for
the system. We have already mentioned the saddle-connection
bifurcation (it is typically accompanied by symmetry breaking),
the figure-eight shape homoclinic bifurcation, the saddle–node
bifurcation on an invariant curve. There are also bifurcations
that create or destroy heteroclinic cycles which are formed by
connected separatrices of saddles.

In the symmetric case, the N-dimensional system generates
a variety of heteroclinic structures which often disappear with
symmetry breaking. Phase space of the system is divided into
invariant regions by k-dimensional invariant manifolds (Fig. 10 for
N = 3) (k < N). Disappearance of such invariant manifolds
with symmetry breaking is accompanied by bifurcations of the
homoclinic tangency type.

System (6) shows interesting and unusual dynamics in the cases
of bifurcations of high codimensions. It is possible for simultaneous
intersections of many bifurcation surfaces (lines) at the point of
maximal codimension in parameter space (Figs. 3, 7, 12 and 17).
For example, system (6) has invariant manifolds that intersect at
the codimension-3 bifurcation point (a, p, r) = (1/N, 0, 0) for an
arbitrary number of oscillators.
Chaos. Starting from the region S, we can formulate necessary (but
not sufficient) conditions of chaotic dynamics for N ≥ 3. First of
all, there must be a pitchfork bifurcation of the fixed points O and
Π that would transform these points into saddles. The fixed points
Φk must be saddle-focuses. Other conditions for chaos appearance
include the presence of closed heteroclinic structures (such types
of structures are shown, for instance, in Fig. 11 for N = 3) and
intersections of invariant manifolds of the saddles. As it has been
shown for N = 2 and N = 3, many connections between saddles
are destroyed when symmetry conditions ai = a are broken.
Partial disappearance of invariant manifolds Qm for aj ≠ aj leads
to disconnections between different saddles and saddle-focuses
which may result in disappearance of chaotic trajectories.

It is difficult to find the lines of bifurcations in a general case
because they aremostly codimension-two homoclinic bifurcations
and the complete picture of many types of such bifurcations is
unknown even in 3D space [24,37]. Another difficulty for the
description of chaotic trajectories is that they mostly appear close
to a heteroclinic but not homoclinic structure.

Fortunately, the system has also good properties for chaos
investigation. The hierarchical structure of the system (described
in Section 2.2) can help us understand its dynamics rising
from lower-dimensional to higher-dimensional cases. The chaotic
structures can be divided into two different categories for each
number N of POs. The first one consists of all trajectories
that belong to invariant manifolds of dimensions from 3 to
N − 1 and are already studied at previous steps. Therefore
the bifurcation diagrams obtained previously are still valid and
additional bifurcation surfaces should be considered in the same
way. The second case consists of the trajectories that do not belong
to any invariant manifold. The bifurcations that lead to this type
of chaotic trajectories can be found as bifurcations of heteroclinic
structures created from connections of invariant manifolds (as it
has been shown for N = 3).

The parametric region of chaotic behaviour is bounded by the
planes |p| < 1/2, |r| < 1/2 and pitchfork bifurcations forO,Π ,Φk.
Shilnikov–Hopf type bifurcations [37] are also possible but they
are not homoclinic but heteroclinic. Andronov–Hopf bifurcation
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surfaces at fixed pointsΦk play a role of boundaries of existence of
the chaotic regime. In the symmetrical case, chaos only exists for
the values of the parameter a > 1/N . This is derived by evaluating
local bifurcations at the points O,Π ,Φk.

Chaotic attractors can coexist with attractors of other types.
Such type of multistability is conditioned by the hierarchical
structure of the system (see Sections 2.1, 2.2). For example,
N-dimensional (N ≥ 4) system (6) has a chaotic attractor on
the manifold M3 in some parametric region Υ . Suppose that there
exists a subregion Υ1 ⊂ Υ such that the system has another
attractor on the invariant manifold Qk, 3 ≤ k < N for parameter
values belonging to Υ1 (this is usually possible as far as the system
has an ample quantity of manifolds Qk for different dimensions k).
Then the whole system will be bistable.

Note that the stabilities of the manifolds Mk and Qk can be
different for different points of these manifolds (as it has been
shown for the manifolds M2 for N = 3). Therefore a chaotic
attractor can leave the manifold if the accuracy of computations
is not high enough and the manifold is not completely stable.

If ai = a and N ≥ 4, the system always demonstrates
multistability of chaotic attractors (if there is at least one). For
example, if the system has a chaotic trajectory on the manifold
M(j)

k , k ≥ 3, then it has chaotic trajectories on the other manifolds
M(i)

k , i ≠ j. Thus starting from the manifold ϕ1 = ϕ2 and obtaining
a chaotic trajectory, we also obtain another chaotic trajectory for
initial conditions ϕ3 = ϕ4. The same situation with multistability
takes place for a partially symmetric system when ai = aj ≠

al. Since this system has symmetric invariant manifolds, it has
multistability of symmetric attractors which can be chaotic.

Finally, it is worth noting that chaos can be one-directional or
bi-directional, i.e. for some parameter values the system can have
chaotic trajectories when t → +∞, for other parameter values
chaotic trajectories appear when t → −∞, it may also happen
that for some parameter values chaos exists when t → ±∞. We
described this phenomenon in Section 4 for N = 3, but it can be
observed for arbitrary N . For example, bi-directional chaos can be
found for (a1, . . . , aN , b, p, r) = (1, . . . , 1,−1, 0, 0), N > 3.

5.2. Star-like coupled oscillators versus globally coupled oscillators

The models of globally coupled oscillators are well known
for a long time and best studied [1,12,20,38–42]. Especially
the Kuramoto model of globally coupled phase oscillators is
investigated in detail for different types of interaction functions
(in particular in the case of equal natural frequencies). The main
feature of such type of models is symmetry that implies the
existence of invariant manifolds of rather simple forms (straight
lines, hyperplanes, etc.). This provides good possibilities for
analytical and computational investigations. Any types of models
without global coupling usually have more complicated dynamics
even in the casewhen such systems have some sort of symmetries.
As an example we can refer to the systems of identical Kuramoto
(or Kuramoto–Sakaguchi) oscillators coupled on a ring [43]. Such
systems have chimera states for five or more oscillators [44–46].

There are two features of phase oscillator networks that
are critical for their complex behaviour: (1) non-global type of
coupling, (2) non-identical interaction functions. Each of these
conditions is sufficient to obtain chaotic dynamics in a small
network. To illustrate this statement, let us consider the following
system:

θ̇0 = ω +

N
j=1

f (θj − θ0),

θ̇i = ω + g(θ0 − θi)+

N
j=1

h(θj − θi), i = 1, . . . ,N,
(20)

where f (x) = a sin(x−α), g(x) = b sin(x−β), h(x) = d sin(x−δ),
a, b, d, α, β , δ are the parameters.

For f (x) = g(x) = h(x) the system represents the
Kuramoto–Sakaguchi model of globally coupled oscillators. For
h(x) = 0 we have a star-like coupled system with phase shifts.
Consider system (20) with 4 oscillators. If it is a Kuramoto model
(f (x) = g(x) = h(x), α = β = δ = 0), it cannot have chaotic
attractors. As we have shown, a chaotic attractor can appear in
the star-like coupled system (without phase shifts) if feedforward
and feedback interaction functions are different f (x) ≠ g(x). In
this case both conditions (1) and (2) are fulfilled. In fact, this is
not necessary. For example, it can be shown that chaotic attractors
appear in system (20) under the following parameter values: a =

b = 1, d = 0, α = β = π/2; a = b = 1, d = 0.2, α =

β = δ = π/2; The first set of parameters corresponds to a non-
global (star-like coupled) system with identical feedforward and
feedback coupling. The second set corresponds to a system with
global coupling but non-identical interaction functions. In fact, we
can obtain chaos for a wide range of parameters a, b, d and for
different values of phase shifts α, β , δ being close to π/2.

The basic differences between two types of the models
mentioned above are in their invariant manifolds. A system of
globally coupled oscillators of the Kuramoto-type has invariant
manifolds

Pm = {(θ0, . . . , θN) : θ0 = · · · = θp1 ; θp1+1 = · · · = θp1+p2 ;

· · · ; θn−1
1 pj+1 = · · · = θN},

where p1 + p2 + · · · + pm = N , and

M =


(θ0, . . . , θN) :

N
j=0

eiθj = 0


.

The manifolds Pm correspond to m-cluster states (a partial case
of this cluster corresponds to full synchronization P1) [47].
These manifolds are possible due to permutation symmetry of
all oscillators. The second invariant manifold M is a (N − 1)-
dimensional set in TN+1 that corresponds to the situation when
the order parameter of the system is equal to zero [48]. A partial
case of the manifold M is the uniform distribution of oscillator
phases around the circle. The manifolds Pm split the phase space
of the system in phase differences into closed identical invariant
regions in RN [25,48]. Each of these regions consists of a part of
the invariant manifold M. Therefore |ϕi| < 2π and any trajectory
cannot intersect the manifold M if this trajectory does not belong
to it. Typical trajectories for the system are symmetric limit and
heteroclinic cycles around the manifold M.

The situation is different for star-like coupled system (1).
This system has only the permutation symmetry of peripheral
oscillators (not all oscillators) and it has the corresponding
invariant manifolds Mm that are of a similar type as Pm. System
(1) can also have invariant manifolds Qm for special interaction
functions (5) and it does not have M as an invariant manifold. The
invariant manifoldsMm split phase space into invariant regions for
the system in phase differences (3). But invariant regions in this
case are not bounded in RN (phase differences |ϕj − ϕj| < 2π , but
the variables ϕi are not bounded in contrast to the case of globally
coupled oscillators). Limit cycles and quasi-periodic trajectories
of (3) in TN which are unbounded in RN are not possible for the
Kuramoto system with global connections.

System (1) has a hierarchical structure relative to its invariant
manifolds (8). Adding a new PO to the system with N POs gives a
new system which includes the previous system with its invariant
manifolds. For example, system (6) withN+1 POs and parameters
a1, . . . , aN−1, aN , aN+1 has the invariant manifold MN : ϕN =

ϕN+1 which corresponds to the system of N POs with parameters
a1, . . . , aN−1, aN +aN+1 (see Section 2.2 for the general case). Such
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a feature is absent in the models of globally coupled oscillators.
If we add a new oscillator to such a system, the previous system
can be considered as an invariant manifold for a new one but the
properties of the new and old systems are different. As an example,
we can adduce Kuramoto–Sakaguchi model with identical natural
frequencies. Consider its m-dimensional invariant manifold that
corresponds to the cluster θi = θj. The system that represents
this manifold loses its permutation symmetry, it does not have
its own manifold M (of a proper dimension) and it does not have
heteroclinic cycles when the phase shift parameter is equal toπ/2.

Thus, the system of globally coupled identical oscillators has
more symmetries than the system with a star-like coupling
and this makes its structure simpler and more convenient for
investigation. But hierarchical structure of system (1) provides
good possibilities for using the results obtained for lower-
dimensional cases for investigation of the higher-dimensional
cases. Reduced system (3) is associatedwith themodels of globally
coupled phase oscillators considered in the papers [12,17–20].
The study of this system can show new aspects in the study of
synchronization of globally coupledmodels and their applications.

5.3. Biological applications

According to the temporal correlation hypothesis [49] the
features of objects that are simultaneously present at the input of
sensory systems are coded by synchronous activity of an assembly
of neurons representing each object in the brain. The activity
of assemblies representing different objects is not synchronous.
Following this hypothesis, we assume that the activity in the
neocortex can be represented by a system of interacting phase
oscillators with each oscillator representing a single external
object. We can further simplify the model by assuming that there
is no other interaction between the cortical oscillators but through
the interaction with the central executive of the attention system
that is also represented as a phase oscillator.

This approach has been applied to attention modelling in the
papers [50,51] allowing an association of different types of system
dynamics with the forms of attention focusing. In particular, the
synchronization of the CO with a particular PO was interpreted
as focusing attention on the corresponding object. In terms of
such a model it is possible to simulate consecutive selection of
objects simultaneously present in the visual scene [8] andmultiple
tracking of moving objects [52].

Another application of phase oscillator networks with the
central element is for modelling perception of ambiguous figures.
Such a model based on the chaotic dynamics to switch between
different perceptions was described in the paper [22]. It has been
shown that chaotic dynamics can give the distribution of switching
times that coincides with the one observed in psychophysical
experiments.

In all these applications a particular set of parameter values
and special interaction functions were selected and tested in
computational experiments to obtain the necessary behaviour of
the system and to satisfy neurobiological data. The present paper
provides a general view on the model capabilities allowing the
selection of parameters based on the theoretical ground.Moreover,
our results can be helpful in organizing a proper evolution of the
model dynamics by passing through a predetermined sequence of
bifurcations.

The assumption that all natural frequencies of oscillators are
identical can be considered as a simplification of the real situation
when the range of oscillator frequencies is narrow. In the general
case the system should be able to work under arbitrary values
of natural frequencies selected in the biologically conditioned
frequency range (e.g. gamma frequency range). For non-identical
natural frequencies the results obtained are also helpful since they
can be used as a starting point for investigation of more complex
behaviour associated with this case.
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