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Coexistence of Hamiltonian-Like and Dissipative Dynamics in Rings of Coupled
Phase Oscillators with Skew-Symmetric Coupling∗
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Abstract. We consider rings of coupled phase oscillators with anisotropic coupling. When the coupling is
skew-symmetric, i.e., when the anisotropy is balanced in a specific way, the system shows robustly
a coexistence of Hamiltonian-like and dissipative dynamics in the phase space. We relate this phe-
nomenon to the time-reversibility of the system. The geometry of low-dimensional systems up to five
oscillators is described in detail. In particular, we show that the boundary between the dissipative
and Hamiltonian-like regions consists of families of heteroclinic connections. For larger rings with
skew-symmetric coupling, some sufficient conditions for the coexistence are provided, and in the limit
of N → ∞ oscillators, we formally derive an amplitude equation for solutions in the neighborhood
of the synchronous solution. It has the form of a nonlinear Schrödinger equation and describes the
Hamiltonian-like region existing around the synchronous state similarly to the case of finite rings.
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1. Introduction. Many phenomena in nature can be studied using models of lattices
of coupled oscillatory systems. Examples are interacting semiconductor lasers [64], neural
networks [3, 55], mechanical systems [34], biological oscillators [67], and others. In the limit
of weak coupling, the dynamics of each subsystem can be described by a scalar phase variable
[32, 74], and the coupled system can be reduced to a lattice of phase oscillators. In this context,
one-dimensional arrays with periodic boundary conditions have been studied extensively [18,
58, 44, 67, 25, 20, 71, 79, 78, 50, 76, 36]. The rotation symmetry of such a system is a
source of rich dynamical behavior including rotating waves [55, 80, 28, 73, 79, 11, 49, 53,
77, 78, 29], heteroclinic cycles [2], symmetric chaos [19, 78, 50, 44, 80], chimera states [38,
1, 76, 7], or compactons [51]. As an application in neuroscience, bifurcation mechanisms
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in rings of coupled Hodgkin–Huxley type neurons with inhibitory and excitatory synapses
were studied in [10, 62, 33, 75], where a complex dynamical scenario and multistability are
reported. A specific coupling structure on a ring is the case of undirected nonlocal coupling
to several nearest neighbors, where self-organized patterns of coherence and incoherence, so-
called chimera states, have been discovered.

While for certain applications, such as molecular chains, the coupling of one element to its
neighbors is symmetric with respect to reflection in space, for other systems the coupling is
essentially directional. This happens, for instance, in laser systems with directional coupling
through optical injection or in neuronal systems, where neurons are coupled in one direction
via chemical synapses. As a result, there is a need for the theoretical understanding of the
dynamical properties of rings with nonsymmetric (anisotropic) couplings.

In this work we focus on a specific case of the anisotropy, when the coupling matrix is
skew-symmetric. This leads to a time-reversibility of the system. In general, a time-reversal
symmetry R of a system ẋ = G(x) is an involution R of the phase space satisfying

(1) G(RΦ) = −R(G(Φ))

and R2 = id, with id being the identical transformation. In particular, time-reversibility
implies that RΦ(−t) is a solution when Φ(t) is. It is well known that a time-reversal symmetry
has far reaching consequences for the geometry of the phase space. Classical results on the
existence of families of periodic solutions, elliptic fixed points, and invariant tori can be found
in the review paper [40]. Remarkably, such dynamical features of conservative or Hamiltonian
systems can in reversible systems coexist with dissipative dynamics. In the following, the
terms “Hamiltonian-like” and “dissipative” are used to distinguish these dynamical features.
Without giving a general definition of “Hamiltonian-like,” its meaning is precisely described
in each specific case in propositions.

Previously, Politi, Oppo, and Badii showed such dynamics in a three-dimensional laser
system [52]. Globally coupled superconducting Josephson junction arrays were studied by
Tsang et al. [70], who showed the coexistence of Hamiltonian-like and dissipative dynamics,
with the Hamiltonian-like dynamics being nonhomotopic to zero. An infinite chain of locally
coupled phase oscillators with reversible properties has been studied by Topaj and Pikovsky
in [68] and an asymmetric ring by Pikovsky and Rosenau in [51]. The latter case corresponds
to a particular case of our model (6), which will be introduced in subsection 3.2. Golubitsky,
Krupa, and Lim proved the existence of families of periodic and quasi-periodic solutions in
the Stokeslet model with time-reversal symmetry [26]. For general theoretical results on the
dynamics of time-reversible systems, see [46, 21, 4, 59, 24, 42, 56, 23, 40, 9, 41, 81, 15, 12, 61,
65], the review [40] by Lamb and Roberts, and references therein.

The purpose of the present paper is to point out that the dynamics of chains of coupled
phase oscillators with skew-symmetric coupling are characterized as well by the coexistence of
Hamiltonian-like and dissipative behavior. For low-dimensional systems with specific coupling
functions, we can provide a full description of the Hamiltonian-like regions as being foliated by
periodic orbits (Propositions 5.1 and 5.2). For higher dimensions we can prove only a weaker
form of Hamiltonian-like behavior. There, the families of periodic orbits do not cover open
sets of the phase space, but we can show that a neighborhood of the synchronous state, which
turns out to be an elliptic fixed point, is densely filled with invariant tori (Proposition 4.2). For
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N = 5 we illustrate the complex structure of the phase space by a numerical study. Finally,
we show that for a large number of oscillators in the vicinity of the elliptic fixed point the
system can be approximated by a nonlinear Schrödinger equation as an amplitude equation,
indicating again in another way a Hamiltonian-like behavior.

This paper is organized as follows. In section 2 the model for the ring of coupled phase
oscillators as well as the system for phase differences are introduced. In section 3 we de-
fine synchronous solutions and rotating waves and provide conditions for their existence and
asymptotic stability.

In section 4 we consider a system with skew-symmetric coupling and show that the phase
space exhibits the coexistence of a Hamiltonian-like and a dissipative dynamics. In particular,
the Hamiltonian-like dynamics emerge close to the synchronized state, and the dissipative
regions are located around rotating waves with nonzero wave numbers. In section 5, global
properties of low-dimensional (dimensions 3, 4, and 5) systems with a coupling function of
Kuramoto–Sakaguchi type are studied in detail.

Section 6 considers specific cases when the reversible or conservative dynamics can occur
in systems with nonidentical coupled oscillators. We show that the system with arbitrary
frequency differences, skew-symmetric (resp., symmetric) coupling, and odd (resp., even) cou-
pling function is divergence free, leading to the coexistence of periodic, quasi-periodic, and
more complicated solutions. For some cases, the first integrals are computed. For a special
constellation of natural frequencies (equally distributed) we show also the reversibility.

Finally, in section 7 we consider the dynamics in a neighborhood of the synchronous
solution in the case of an infinite ring of identical oscillators (N →∞) when each oscillator is
coupled with a finite number 2l of its neighbors. We conclude with a discussion in section 8.

2. Oscillator model with circulant coupling. We consider the following translationally
invariant ring of coupled phase oscillators with periodic boundary conditions:

(2) θ̇i = ωi +
N∑
j=1

Kjg(θi − θi+j), i = 1, . . . , N,

where θi ∈ [0, 2π) are phase variables, ωi are natural frequencies, g(x) is a smooth 2π-periodic
coupling function, Kj , j = 1, . . . , N , are coupling strengths, and all subscripts are assumed
moduloN . The coefficientKN ≡ K0 determines the self-coupling. System (2) can be rewritten
in a way similar to the Kuramoto system [37] as

θ̇i = ωi +
N∑
j=1

Kj−ig(θi − θj), i = 1, . . . , N,

and it describes a network of oscillators with coupling strengths given by the circulant coupling
matrix

(3) K = circ(K0,K1, . . . ,KN−1) =



K0 K1 . . . KN−2 KN−1

KN−1 K0 K1
. . . KN−2

... KN−1 K0
. . .

...

K2
. . .

. . .
. . . K1

K1 K2 . . . KN−1 K0


.
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Figure 1. Networks of seven asymmetrically coupled oscillators: (a) nearest-neighbor coupling l = 1 (see
(6)), (b) second nearest-neighbor coupling l = 2, (c) l = 3. Networks in (d)–(f) are described by (2), where (d)
K1 = K3 = a, K−1 = K−3 = b, and K2 = K−2 = 0; (e) K1 = a1 6= K2 = a2 and K−1 = b1 6= K−2 = b2; (f)
arbitrary Kj, j = 0, . . . , 6. Different colors of arrows denote different coupling strengths.

Figure 1 shows examples of networks with circulant connections for seven oscillators with
coupling strengths K0, . . . ,K6. Note that system (2) reduces to the classical Kuramoto model
of globally coupled oscillators when Ki = K0 for all i = 1, . . . , N − 1 and g(x) = sinx.

By introducing new variables

(4) ϕi = θ1 − θi+1, i = 1, . . . , N − 1,

we reduce (2) to the system in phase differences

(5) ϕ̇i = ∆i +
N−1∑
j=1

Kj(g(ϕj)− g(ϕi+j − ϕi)), i = 1, . . . , N − 1,

where ∆i = ω1 − ωi+1, the subscripts are considered modulo N , and ϕ0 = 0. We remark that
the original system (2) possesses an S1 phase-shift symmetry

θi → θi + const
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that allows us to reduce it to the phase differences (5) where the reduced system has one fewer
variables and does not have the S1 symmetry.

In the paper we mainly consider the case of identical oscillators ∆i = 0, except for
section 6. Section 5 investigates examples of low-dimensional systems where Kj = a, K−j = b,
j = 1, . . . , l, l < N/2,

(6) θ̇i = ωi + a
l∑

j=1

g(θi − θi+j) + b
N−1∑
j=N−l

g(θi − θi+j), i = 1, . . . , N.

The schematic diagram in Figure 1 illustrates examples of seven coupled oscillators with (a)
l = 1, (b) l = 2, and (c) l = 3 where connections in different directions are marked by arrows
of different color.

The system corresponding to (6) in phase differences has the form

(7) ϕ̇i = ∆i + a

l∑
j=1

(g(ϕj)− g(ϕi+j − ϕi)) + b

N−l∑
j=N−1

(g(ϕj)− g(ϕi+j − ϕi)),

i = 1, . . . , N − 1. In the case of identical oscillators ωi = ω, i = 1, . . . , N , without loss of
generality we can set a = 1 by rescaling the time. In this case and for specific coupling
function g(x) = − sin(x−α) we therefore deal with only two bifurcation parameters b and α.

3. Synchronous solution and rotating waves. In the system of identical oscillators, the
synchronous state exists where θi(t) = θj(t) for all i, j, and t. In the system for phase
differences (5) this solution corresponds to the fixed point ϕi = 0, i = 1, . . . , N − 1. In fact,
the reduced system (5) can have many different fixed points depending on the form of coupling
function g(x); however, some of them arise as a result of rotation symmetry of the network.
Note that for identical oscillators the circulant structure of the coupling matrix induces an
equivariance of the system with respect to the cyclic group ZN acting by

γ : (θ1, θ2, . . . , θN ) 7−→ (θN , θ1, . . . , θN−1).

For the reduced system (5) this symmetry is given as

γ̃ : (ϕ1, ϕ2, . . . , ϕN−1) 7−→ (−ϕN−1, ϕ1 − ϕN−1, . . . , ϕN−2 − ϕN−1).

One can check that solutions of (2) of the form

(8)

(
θ(t), θ(t)− 2πk

N
, . . . , θ(t)− (N − 1)2πk

N

)
,

k = 0, . . . , N − 1, are equivariant under the symmetry action γ for arbitrary coupling func-
tion g(x). Equation (8) represents rotating wave solutions with wave number k, where each
oscillator is phase-shifted by 2πk/N with respect to the neighboring one. The corresponding
solutions of the reduced system (5) are equilibria

(9) Mk =

(
2kπ

N
,
4kπ

N
, . . . ,

2(N − 1)kπ

N

)
.
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The synchronous solution is therefore the rotating wave M0 with zero wave number. By
substituting (9) into (5) one can see that the rotating waves with any wave number k exist
for any choice of the coupling function g.

Proposition 3.1. For any coupling function1 g, system of coupled identical phase oscillators
(2) possesses rotating wave solutions (8) with all possible wave numbers k. The corresponding
solutions of the system in phase differences (5) are the equilibria (9).

We note that system (5) can have other equilibria in addition toMk. Let us first point out
the relationship between the system (2) and the corresponding system in phase differences (5).
The following proposition shows that the Jacobian matrices of these two systems evaluated
at the corresponding points share the same set of eigenvalues except the trivial one, which is
induced by the phase-shift symmetry of the original system (2).

Proposition 3.2. Let A and B be the Jacobian matrices of systems (2) and (5), respectively,
that are evaluated at corresponding points (θ1, . . . , θN ) and (ϕ1, . . . , ϕN−1), ϕi = θ1 − θi+1

(i = 1, . . . , N − 1). Then the following relation holds:

det(A− λIN ) = −λdet(B − λIN−1),

where IN is an N ×N -dimensional identity matrix.

The additional zero eigenvalue of the matrix A corresponds to the neutral stability of each
solution of the original system (6) along the eigenvector v = (1, . . . , 1) and appears due to
the phase-shift symmetry. The proof of Proposition 3.2 as well as Proposition 3.3 is in the
appendix.

3.1. Stability of rotating waves. The following result establishes the spectrum of rotating
waves Mk.

Proposition 3.3. Eigenvalues of the Jacobian matrix of system (2) evaluated at the rotating
wave solution Mk are

(10) λm(Mk) =

N−1∑
j=1

Kjηkj

(
1− eı

2mjπ
N

)
, m = 1, . . . , N − 1,

where ı =
√
−1 and ηkj = g′

(
2πk
N j
)
.

Equality (10) implies that the system has [N/2] complex conjugate pairs (the cases when
Imλ = 0 are also taken into account):

(11) λN−m(Mk) = λ−m(Mk) = λm(Mk),

where λ is the complex conjugate to λ. In particular, it holds Im (λN/2(Mk)) = 0 for anyMk

when N is an even number.
The following result follows from Proposition 3.3 and summarizes the stability properties

of Mk.

1Here and hereafter, we assume that g(·) is sufficiently smooth to guarantee the global existence of the
solution, but we do not mention explicitly.
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Corollary 3.4. The following statements hold true:
• If the inequality

Re(λm(Mk)) =
N−1∑
j=1

Kjηkj

(
1− cos

(
2mjπ

N

))
< 0

holds for all m = 1, . . . , N − 1, then the rotating wave Mk is asymptotically stable.
• If there exists an index 1 ≤ m ≤ N − 1 such that Re(λm(Mk)) > 0, then the rotating

wave is unstable.
• If there exists an index 1 ≤ m ≤ N − 1, m 6= N/2, such that Re(λm(Mk)) = 0, then

there exists a pair of complex conjugated eigenvalues

λ±m(Mk) = ±ıΩm, Ωm = −
N−1∑
j=1

Kjηkj sin

(
2mjπ

N

)
.

Corollary 3.4 shows that the conditions Re(λm(Mk)) = 0 provide stability boundaries
for the rotating waves and the synchronous solution k = 0. In the case when Ω 6= 0, an
Andronov–Hopf bifurcation can take place [30, 39, 63, 27].

Using the complex conjugacy ν−m = νm we can rewrite real and imaginary parts of
eigenvalues (10):

Re (λm(Mk)) =

[(N−1)/2]∑
j=1

(Kjηkj +K−jη−kj)

(
1− cos

(
2mjπ

N

))
+

1

2

(
(−1)N + 1

) (
(−1)m+1 + 1

)
KN/2,(12)

Im (λm(Mk)) = −
[(N−1)/2]∑

j=1

(Kjηkj −K−jη−kj) sin

(
2mjπ

N

)
,(13)

where [·] denotes the integer part. Corollary 3.4 together with (12) shows that it is possible
to observe a degenerate bifurcation with up to [(N − 1)/2] critical pairs of eigenvalues at the
point Mk.

Remark. System (5) has equilibria other than the origin and rotating waves (9). For
example, it has fixed points Φ̃ = (ϕ̃1, . . . , ϕ̃N−1) with coordinates 0 and π (ϕ̃i ∈ {0, π}). It
is easy to check that Jacobian matrix of the system (2) at the solution Θ̃ (corresponding to
solutions Φ̃ of (5)) is not circulant. Therefore, the eigenvalues λm(Θ̃) cannot be described
similarly to (10).

3.2. The model with different forward and backward connections. By applying the
results of Corollary 3.4 to system (7) we obtain the following statements about particular
cases, which are used in section 5.

Corollary 3.5. The rotating wave solutions Mk, k = 0, . . . , N − 1, of system (7) undergo a
bifurcation if

(14) Re(λm(Mk)) =
l∑

j=1

(aηkj + bη−kj)

(
1− cos

(
2mjπ

N

))
= 0
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for some 1 ≤ m ≤ [(N − 1)/2]. If, additionally, the inequality

(15) Ω := Im(λm(Mk)) = −
l∑

j=1

(aηkj − bη−kj) sin

(
2mjπ

N

)
6= 0

holds, then a pair of complex conjugate critical eigenvalues λ±m = ±ıΩ appears.

Corollary 3.6. The rotating wave solutionsMk of system (7) with nearest-neighbor coupling
(l = 1) have all eigenvalues purely imaginary if the condition

(16) ag′(2kπ/N) + bg′(−2kπ/N) = 0

is satisfied. If additionally g′(2kπ/N) 6= 0, then among these eigenvalues there are [(N −1)/2]
complex conjugated pairs.

The solution Mk is asymptotically stable when ag′(2kπ/N) + bg′(2kπ/N) < 0.

The conditions (14) and (15) can be simplified at the synchronized solution M0 of (7) to
the following form:

Re(λm(M0)) = g′(0)(a+ b)
l∑

j=1

(
1− cos

(
2mjπ

N

))
= 0, m = 1, . . . , N − 1,(17)

Im(λm(M0)) = −g′(0)(a− b)
l∑

j=1

sin

(
2mjπ

N

)
6= 0.(18)

The last multiplier on the right-hand side of (17) is always positive and the last multiplier
on the right-hand side of (18) is nonzero because m 6= 0, j 6= 0. For the bifurcation of the
synchronous solution we obtain the following conditions.

Corollary 3.7. The synchronous solution M0 of system (7) with nearest-neighbor coupling
(l = 1) has all eigenvalues purely imaginary if the condition

(19) a = −b 6= 0 or g′(0) = 0

is satisfied. In the case g′(0) = 0, all eigenvalues are zero.
The solution M0 is asymptotically stable when ag′(0) + bg′(0) < 0.

An example when all eigenvalues are zero is the Kuramoto–Sakaguchi [57] coupling func-
tion g(x) = − sin(x − α) for α = ±π/2, where a degenerate transcritical bifurcation occurs,
since g′(0) = − cos(0− α) = 0.

In the case a = b when the coupling is symmetric, the condition (14) reduces to

(20)

l∑
j=1

(ηkj + η−kj)

(
1− cos

(
2mjπ

N

))
= 0.

In particular, the condition holds for all k when the derivative of the coupling function is odd
g′(x) = −g′(−x). We have the following statements.
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Corollary 3.8. Let a = b in (7) and the coupling function is even g(x) = g(−x). Then
the spectrum of all rotating wave solutions Mk is critical, i.e., Re(λm(Mk)) = 0 for all
m = 1, . . . , N − 1 and k = 0, . . . , N − 1.

Corollary 3.9. Let a = −b in (7) and the coupling function is odd g(x) = −g(−x). Then
the spectrum of all rotating wave solutions Mk is critical.

One can show that the system is divergence free for both Corollary 3.8 and Corollary 3.9.

4. Coexistence of Hamiltonian-like and dissipative dynamics in systems of coupled
identical oscillators. In this section, we consider system (2) with arbitrary number N of
coupled identical oscillators. We show that the phase space splits into regions with dissipative
and Hamiltonian-like dynamics, provided the coupling is skew-symmetric, i.e., Kj = −K−j .

For the skew-symmetric coupling, systems (2) and (5) can be written as follows:

θ̇i = ω +

[(N−1)/2]∑
j=1

Kj (g(θi − θi+j)− g(θi − θi−j)) ,(21)

ϕ̇i =

[(N−1)/2]∑
j=1

Kj(g(ϕj)− g(ϕ−j)− g(ϕi+j − ϕi) + g(ϕi−j − ϕi))(22)

with i = 1, . . . , N − 1. Note that K0 = 0 as well as KN/2 = 0 when N is even.
Let us first show that system (22) is time-reversible.

Lemma 4.1. System (22) has time-reversal symmetry R : TN−1 −→ TN−1, where

(23) R(ϕ1, . . . , ϕN−1) = (ϕN−1, . . . , ϕ1), t 7−→ −t.

Proof. One can check that

Gi(RΦ) = Gi(ϕN−1, . . . , ϕ1)

=

[(N−1)/2]∑
j=1

Kj(g(ϕ−j)− g(ϕj)− g(ϕ−(i+j) − ϕ−i) + g(ϕ−(i−j) − ϕ−i))

= −
[(N−1)/2]∑

j=1

Kj(g(ϕj)− g(ϕ−j)− g(ϕ(−i)+j − ϕ−i) + g(ϕ(−i)−j − ϕ−i))

= −G−i(ϕ1, . . . , ϕN−1) = −GN−i(Φ)

for any i = 1, . . . , N − 1. This implies

(G1(RΦ), . . . , GN−1(RΦ))T = −R(G1(Φ), . . . , GN−1(Φ))T .

We emphasize that the reversibility property is independent of the coupling function g(x).
The fixed subspace of the involution R is

FixR = {Φ ∈ TN−1 : RΦ = Φ} =

{
Φ ∈ TN−1 : ϕi = ϕN−i, 1 ≤ i ≤

[
N − 1

2

]}
.
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Generically, the dimension of this set is d(N) := dim(FixR) = N − 1− [(N − 1)/2] = [N/2].
The subspace FixR can be used for describing the dynamical features of the system, because
of the following properties:

• If some orbit intersects FixR at two points, then it is periodic, and it consists of two
parts that are mapped into each other by the involution R.
• Any nonperiodic trajectory can intersect FixR only once (in the opposite case this

trajectory is periodic).
• If a reversible system has a sink or source equilibrium, then it does not belong to

FixR.
• If a reversible system has a sink (source) M, then RM is an equilibrium, and it is a

source (sink).
• If a trajectory starts from a source and intersects FixR, then it tends to a symmetry-

related sink, and this trajectory is heteroclinic (as in Figures 3, 4, and 5). Note that
the reversibility does not imply the existence of a trajectory that starts from a source
and intersects with FixR, i.e., the sink and the related source can be disconnected.

Since all trajectories that intersect FixR two times are time-periodic, it is instructive to
consider the intersection of FixR with its evolution under the flow:

Ft(FixR) = {Φ(t) : Φ(0) ∈ FixR, t ∈ R}.

Reversible periodic trajectories appear for all points of the intersection FixR ∩ Ft(FixR).
Since the dimension of Ft(FixR) is dt(N) := dim(Ft(FixR)) = [N/2] + 1, according to the
transversality theorem, the dimension of the intersection in TN−1 is generically

d∗(N) := dim(FixR∩ Ft(FixR)) = d(N) + dt(N)− (N − 1) =

{
1 when N is odd,
2 when N is even.

Therefore, we generically expect that system (22) possesses one- or two-parametric families
of periodic orbits, depending on the parity of the phase space dimension. Examples of such
families will be described in the low-dimensional cases in section 5. In particular, for the
cases N = 3 and N = 4, when the phase space of the reduced equation (22) is 2 and 3,
respectively, the families of periodic orbits occupy open sets of the phase space forming the
Hamiltonian-like domains filled with just periodic orbits. However, already for N = 5, when
the phase space of (22) is four-dimensional, the families of periodic orbits do not occupy an
open subset of the phase space but rather form two-dimensional invariant manifolds. As a
result, other states appear such as quasi-periodic or chaotic.

The following proposition holds.

Proposition 4.2. For g′(0) 6= 0 and for almost all skew-symmetric couplings K such that
Kj = −K−j, system (22) possesses the following dynamics:

(A) Families of periodic orbits in the vicinity of M0: There exists a one-parameter family
of periodic solutions Φσ(t) in the neighborhood of M0 when N is odd and a two-
parameter family Φ(σ1,σ2)(t) of periodic solutions when N is even, with periods close

to 2π/Ωm, where Ωm = 2g′(0)
∑[(N−1)/2]

j=1 Kj sin(2mjπ
N ).

(B) Dense set of invariant tori in the vicinity of M0: Under the nonresonance and
nondegeneracy conditions (b1) and (b2), given below, in any neighborhood of M0
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there exist analytic [(N − 1)/2]-dimensional tori with conditionally-periodic motions
with incommensurable frequencies close to Ω1, . . . ,Ω[(N−1)/2]. The tori are invariant
with respect to the flow and with respect to the reversibility transformation R. More-
over, if Uε is an ε-neighborhood of M0, then the Lebesgue measure of the invariant
tori tends to the full measure of the neighborhood Uε, as ε→ 0.

(b1) Nonresonance: (q,Ω) =
∑[(N−1)/2]

m=1 qmΩm 6= 0 is satisfied for all q with
|q| ≤ 2l + 2 and some l ∈ N.

(b2) Nondegeneracy: The leading cubic terms (i.e., their imaginary parts) of the
normal form are nondegenerate (equivalent to operator Γ in [60]).

(C) The statements (A) and (B) hold also for a neighborhood of MN/2 if N is even.
(D) Dissipative dynamics: The equilibrium Mk, k 6= 0, is a sink if the condition

(24) Re(λm(Mk)) =

[(N−1)/2]∑
j=1

Kj (ηkj − η−kj)
(

1− cos

(
2mjπ

N

))
< 0

is satisfied for all m = 1, . . . , N − 1. In this case M−k is a source.

Proof. (A) The existence of families of periodic orbits can be shown using the Lyapunov
center theorem for time-reversible systems [72, 26]. Using the skew-symmetry of the matrix
K and expression (10), the eigenvalues of the synchronous state M0 are

λm(M0) = g′(0)

[(N−1)/2]∑
j=1

(Kj +K−j)

(
1− cos

(
2mjπ

N

))

− ıg′(0)

[(N−1)/2]∑
j=1

(Kj −K−j) sin

(
2mjπ

N

)

= − ı2g′(0)

[(N−1)/2]∑
j=1

Kj sin

(
2mjπ

N

)
=: ıΩm(25)

for anym= 1, . . . , N − 1. Hence, λ±m(M0) =±ıΩm, m= 1, . . . , [(N − 1)/2], and λN/2(M0) = 0
if N is even. It is easy to see from (25) that the following nonresonance conditions are satisfied
for almost all values of Kj for N ≥ 5 and for all values of K for N = 3, 4:

(i) all ıΩm are simple eigenvalues of the Jacobian matrix B(M0);
(ii) ınΩm are not eigenvalues of B(M0) for all n > 1.

When N is odd, the conditions of [26, Theorem 1.1] are satisfied in the neighborhood of
M0 ∈ FixR. Therefore, there exists a one-parameter family of periodic solutions Φσ(t)
of (22).

In the case ofN even, Theorem 2.1 from [26] is applicable. In order to satisfy the conditions
of this theorem, it is necessary to check that R is the identity transformation on ker(B(M0)).
Indeed, the eigenvector of the trivial eigenvalue λN/2(M0) = 0 is v = (1, 0, 1, 0, . . . , 1, 0, 1)T ,
and V0 = ker(B(M0)) = span(v) = (ϕ, 0, ϕ, 0, . . . , ϕ, 0, ϕ), ϕ ∈ T1, hence dimV0 = 1, and
one can check that Rv = v. Therefore, as follows from [26, Theorem 2.1], there exists a
two-parameter family of periodic orbits for even N in the vicinity ofM0. The period of these
solutions is close to 2π/Ωm.
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(B) The existence of dense families of quasi-periodic tori follows from the KAM theory
for reversible systems [60, 48, 5, 16, 15, 14, 40]. Under the nonresonance and nondegeneracy
conditions (b1) and (b2), the conditions of the theorem from [60] are satisfied. More specifi-
cally, the dimensions of tori are (N − 1) for odd N and (N − 2) for even N (in the notation
of [60]: m = (N − 1)/2, k = 0 for odd, and m = (N − 2), k = 1 for even dimensions).

(C) It is easy to check that the equilibrium MN/2 is neutral because ηN/2j − η−N/2j = 0
and, therefore, Re(λm(B(MN/2))) = 0 for any m. Since MN/2 ∈ FixR, the same arguments
as in (A) and (B) can be applied.

(D) We know that the system has equilibria Mk independently of system parameters
and we can check the stability of these points using Proposition 3.3 and Corollary 3.4. In
particular, the real parts of the eigenvalues of Mk, k 6= 0, are

(26) Re(λm(Mk)) =

[(N−1)/2]∑
j=1

Kj (ηkj − η−kj)
(

1− cos

(
2mjπ

N

))
,

m = 1, . . . , N − 1. According to the time-reversal symmetry R the equilibrium M−k is a
source if Mk is a sink and vice versa.

Remark.
1. Condition (24) is only sufficient, and it can be weakened using the fact that the system

can have other attractors/repellors except for Mk.
2. The cases when g(x) is odd or even can be special. One can see that condition (24) is

not satisfied when the function g(x) is odd. Also Im(λm(M0)) = 0, m = 1, . . . , N − 1,
when g(x) is even. This implies that in this situation the origin is a degenerate saddle
and the conservative region may shrink to a single point.

3. We note that the superposition of symmetries ZN and R implies the existence of N−1
other reversal symmetries Ri, i = 2, . . . , N . Hence, there exist N − 1 hyperplanes
FixRi = γiZNFixR1 that are fixed under the transformations Ri, i = 2, . . . , N − 1.
All FixRi intersect in M0 if N is odd and they intersect along one-dimensional line
V0 ∈ TN−1 when N is even.

4. If a periodic orbit intersects only one FixRi in two points, then there are N ZN -
symmetry related periodic orbits. If a periodic orbit intersects at least two FixRi, then
it intersects all of them. As will be illustrated later in section 5 for low-dimensional
cases, the Hamiltonian-like dynamics is localized around the origin when N is odd
and it translates along line V0 when N is even. There is also the second “island” of
Hamiltonian-like dynamics in the even-dimensional case around a neutral fixed point
MN/2.

5. Bifurcation properties in low-dimensional systems. In this section we study in detail
the low-dimensional system (6)–(7) with specific coupling functions. Mostly, we consider the
coupling function of Kuramoto–Sakaguchi type [57]

(27) g(x) = − sin(x− α)

with a phase-shift parameter α. For b = −a, the system has time-reversal symmetry (23),
which leads to the coexistence of Hamiltonian-like and dissipative dynamics as stated in
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Proposition 4.2. The following results not only illustrate Proposition 4.2 but also provide
more detailed information on the properties of both dissipative and Hamiltonian-like regions.
In particular, we describe the structure of their boundaries and effects of the parameters on
the size of the corresponding region.

We also note that for a = b system (7) has the dihedral symmetry DN . Moreover, system
(7) with Kuramoto–Sakaguchi coupling (27) has additional symmetries Γ1, Γ2, and Γ3 that
are given by the actions

γ1 : (ϕ1, . . . , ϕN−1, a, b, α, t) 7−→ (ϕ1, . . . , ϕN−1,−a,−b, α,−t),

γ2 : (ϕ1, . . . , ϕN−1, a, b, α, t) 7−→ (−ϕ1, . . . ,−ϕN−1, a, b,−α,−t),

γ3 : (ϕ1, . . . , ϕN−1, a, b, α, t) 7−→ (ϕ1, . . . , ϕN−1, a, b, α+ π,−t).

5.1. Three coupled oscillators. The system ofN = 3 identical oscillators with Kuramoto–
Sakaguchi coupling function (27) written in phase differences has the following form:

ϕ̇1 = − sin(ϕ1 − α)− b sin(ϕ2 − α)− b sin(ϕ1 + α)− sin(ϕ1 − ϕ2 + α),

ϕ̇2 = − sin(ϕ1 − α)− b sin(ϕ2 − α)− sin(ϕ2 + α)− b sin(ϕ2 − ϕ1 + α).
(28)

It possesses two parameters b and α, while we set the coupling parameter a = 1 without loss
of generality.

It is known that the network of even three elements can have quite variative and complex
dynamics depending of coupling structure (see, for example, [28, 29, 6, 47]). In the follow-
ing, we describe dynamical properties of system (28) in detail. Particularly, Proposition 5.1
summarizes the coexistence of Hamiltonian-like and dissipative dynamics as well as a more
detailed structure of the phase space for skew-symmetric coupling b = −1. The bifurcation di-
agram with respect to parameters α and b is shown in Figure 2(a), and typical phase portraits
for different parameters are shown in Figures 3(a)–(l).

Symmetries and fixed points. The Z3 symmetry in system (28) is generated by the action
γZ3 : (ϕ1, ϕ2) 7−→ (−ϕ2, ϕ1 − ϕ2). The origin M0 = (0, 0) and the two points M1 =
(2π/3, 4π/3), M2 = (4π/3, 2π/3) are equivariant under the action γZ3 . While the locations
of these points do not depend on parameters, their stability does. In addition to the Mk,
the system has three Z3-symmetric saddles. For α = 0, the coordinates of these saddles are
(0, π), (π, 0), and (π, π) (see Figure 3(a)), and they change with parameters. The saddles
exist for all parameter values except for α = ±π/2. Simultaneous connections of stable and
unstable one-dimensional manifolds of the three saddles create Z3-heteroclinic cycles for some
parameter values; see Figures 3(c), (f), (g), and (j).

Bifurcations of fixed points (see Figure 2(a)). As follows from Corollary 3.6 and condition
(16), the Andronov–Hopf bifurcation lines for the points Mk are given by the expressions

Hk =

{
(α, b) : b = −cos(2kπ/3− α)

cos(2kπ/3 + α)

}
, k = 0, 1, 2.

In particular, the corresponding bifurcation line for the origin M0 is b = −1.
Z3-symmetric transcritical bifurcations of the origin occur on the bifurcation lines α =

±π/2, where the second condition of (19) holds: g′(0) = 0. In this case, three symmetric saddle
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Figure 2. Bifurcation diagrams in (α, b) bifurcation plane for three (a) and four (b) coupled oscillators.

Hk: line of the Andronov–Hopf bifurcation of Mk; TCk: transcritical bifurcation of Mk; HC: heteroclinic
(saddle connection). Lines HC and H2 (H1) are located very close to each other; they intersect at b ≈ −0.4
and partially merge in figure (a). The points a–l indicate parameter values, for which corresponding qualitatively
different phase portraits are shown in Figure 3. g and f indicate upper and lower parts of the same HC line; i
and e indicate upper and lower regions between H2 and HC; c(0, 1), d(π/2, 1), l(π/2,−1) are codimension-two
bifurcation points; j belongs to H0 between c and l; k belongs to TS0 between d and l. Shaded regions show
stability regions of the synchronous solution.

points (Figures 3(a), (b)) approach the origin simultaneously and create a degenerate saddle
at the bifurcation moment (Figures 3(d), (k)). Then the saddles pass the origin changing its
stability.

Two heteroclinic bifurcation lines HC are very close to the Andronov–Hopf lines H1 and
H2 of M1 and M2, respectively. HC and H lines intersect at the points (α, b) = (0,−1),
(±π/2, 1), (±π/2,−1) and at the point where coordinate b is close to −0.4. The global HC
bifurcation consists of three symmetric saddle connections and it creates stable (Figure 3(g))
or unstable (Figure 3(f)) heteroclinic cycles. This bifurcation leads to the appearance of a
limit cycle with the same stability as the heteroclinic cycle (Figures 3(i), (e)). As a result,
limit cycles appear at the H bifurcation and disappear in HC bifurcation (or vice versa). The
third symmetric HC bifurcation line coincides with the H0 line b = −1.

The system (28) is conservative at the codimension-two bifurcation points (α, b) = (0,−1)
(Figure 3(c)) and (α, b) = (±π,−1). There, it has the first integral

I(ϕ1, ϕ2) = cosϕ1 + cosϕ2 + cos(ϕ1 − ϕ2).

The system is also conservative when (α, b) = (π/2, 1) (Figure 3(d)).
The regions where the origin is stable consist of two parts: (1) b > −1, α ∈ (−π/2, π/2)

and (2) b < −1, α ∈ (π/2, 3π/2) (gray in Figure 2(a)). The regions of the stability of Mk,
k = 1, 2, are located between two neighboring Hi lines and it has width π along the α-axis.
In particular, the stability region for M1 is located between two (blue) bifurcation lines H1

in Figure 2(a) and it satisfies the inequalities
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Figure 3. Phase portraits for different parameter values for N = 3 coupled oscillators. Phase portraits in
(a)–(l) correspond to system (28) and parameters from the points a to l in Figure 2(a). For all figures in the
bottom panel b = −1 and for (m) α = 0.2, ∆1 = ∆2 = 0, p = 2, for (n) α = 0, ∆1 = 0, ∆2 = 0.2, p = 0, for
(o) α = 0.2, ∆1 = −∆2 = −0.6, p = 0.4, for (p) α = 0.4, ∆1 = 0.1, ∆2 = 0.2, p = −0.9. Phase portraits (m),
(o), and (p) correspond to the coupling function (33) with additional second harmonic term; (n)–(p) are phase
portraits for different natural frequencies of the oscillators. Colored areas indicate Hamiltonian-like regions in
the phase space that are filled with neutrally stable limit cycles. Colors for fixed points indicate as follows:
red—source; blue—sink; green—saddle; magenta—center; dark green—degenerate saddle. Stable limit cycles
are shown in blue, unstable in red.
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arctan

(
1 + b√
3(1− b)

)
+ 2nπ < α < arctan

(
1 + b√
3(1− b)

)
+ (2n+ 1)π, n ∈ Z.

The case b = −1 (α arbitrary) is especially interesting for us. In this case, the sys-
tem possesses the time-reversal symmetry R presented by the action (23). The line FixR :
{(ϕ1, ϕ2), ϕ1 = ϕ2} is fixed under this symmetry. The superposition of Z3 and R gives two
other reversible symmetries with the corresponding fixed subspaces ϕ1 = 0 and ϕ2 = 0. As a
result, the system has Hamiltonian-like and dissipative regions that coexist in the phase space,
yellow and white regions, respectively, in Figure 3(j). The following proposition rigorously
states that the phase portrait shown in Figure 3(j) holds qualitatively for almost all values of
the parameter α when b = −1.

Proposition 5.1. For b = −1 and α /∈ {0,±π/2, π}, system (28) possesses the following
dynamics in the phase space:

(A) Hamiltonian-like region: There exists a region in the phase space which contains the
originM0 and which is foliated by a one-parametric family of periodic orbits. This re-
gion is bounded by a Z3-equivariant heteroclinic cycle consisting of three saddle points
and connecting one-dimensional invariant manifolds of these saddles. The correspond-
ing saddle points belong to the fixed subspace of the reversibility symmetry FixR or
one of its symmetry images under the action of Z3.

(B) Dissipative region: The points M1 and M2 are sink and source, respectively. That is,
there exist neighborhoods of the points M1 (resp., M2) such that all orbits starting
from these neighborhoods are asymptotically attracted toM1 (resp., repelled fromM2).

Proof. (A) Proposition 4.2 implies that system (28) has a one-parameter family Φσ(t) of
periodic solutions with periods near 2π/Ω1 where Φ0(t) = M0 and the parameter σ varies
along FixR. Hence, a neighborhood of M0 is foliated by periodic orbits.

Let us now show that the maximal region D0 containing the set of neutral periodic orbits
is bounded by the heteroclinic cycle. It is known that the boundary of an invariant region is
flow-invariant. For our two-dimensional system, three types of invariant sets are possible: a
limit cycle, a homoclinic cycle, and a heteroclinic cycle. A limit cycle is impossible because it
must be neutral from the inside (it borders neutral periodic orbits), and it is neutral from the
outside as well, since any trajectory in its small neighborhood intersects FixR twice and is,
therefore, periodic. Hence the assumed bounding periodic orbit is neutral and is internal with
respect to D0. A homoclinic cycle cannot be a border of D0, since, according to Z3 symmetry,
there are three such homoclinic loops that are connected to three different saddles Si and
contain the same neutral fixed point M0. Hence these homoclinic orbits must intersect each
other, leading to a contradiction. Therefore, a Z3-symmetric heteroclinic cycle is the only
possible border for D0. More specifically, it consists of three saddles, S1 (ϕ̃, ϕ̃) ∈ FixR1,
S2 (−ϕ̃, 0) ∈ FixR2, S3 (0,−ϕ̃) ∈ FixR3, where ϕ̃ = π-2α, FixRi = γ̃i−1

Z3
FixR, i = 1, 2, 3,

and of three one-dimensional invariant manifolds of these saddles.
(B) The eigenvalues ofM1 are −3

√
3

2 sinα± ı
√

3
2 cosα; hence, for α /∈ {0, π},M1 is either

a source or sink.

Our numerical observations (using numerical integration, software AUTO [22], as well as
DsTool [8]) indicate that the dissipative region extends to T2 \ D0.
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We note that system (28) also has another time-reversal symmetry R′ : (ϕ1, ϕ2) 7−→
(−ϕ2,−ϕ1) at the codimension-two points (α, b) = (0,−1) and (α, b) = (±π/2, 1) (Figures 3(c)
and (d) correspondingly). The fixed subspace of R′ is FixR′ =

{
(ϕ1,−ϕ1), ϕ1 ∈ T1

}
. A

further time-reversal symmetry R′′ : (ϕ1, ϕ2) 7−→ (−ϕ1,−ϕ2) exists when α = ±π/2 for any
parameter b (Figures 3(d), (k) and (l)). FixR′′ in this situation consists of only two points
(ϕ1, ϕ2) = (0, 0) and (ϕ1, ϕ2) = (π, π) in contrast to the previous case where FixR′ is a
one-dimensional line.

5.2. Four coupled oscillators. System (7) of N = 4 identical oscillators is three-dimensi-
onal for the phase differences (ϕ1, ϕ2, ϕ3):

(29) ϕ̇i = g(ϕ1)− g(ϕi+1 − ϕi) + b(g(ϕ3)− g(ϕi+3 − ϕi)), i = 1, 2, 3,

where g(x) = − sin(x − α). Here we also set a = 1 without loss of generality. Apart
from the synchronous solution M0 at the origin, system (29) possesses the equilibria M1 =
(π/2, π, 3π/2), M2 = (π, 0, π), and M3 = (3π/2, π, π/2).

The bifurcation diagram in the parameter plane (α, b) for N = 4 is shown in Figure 2(b),
where Andronov–Hopf (H) and transcritical (TC) bifurcation lines of the rotating waves are
plotted. The stability region for the origin is the same as in the case of three oscillators
(shaded). The stability region of the point M2 coincides with the instability region of the
origin. Stability regions of two pointsM1 andM3 are also complementary to each other and
are bounded by the lines α = 0, α = π, and b = 1.

It is interesting to note that the system is conservative at the codimension-two points
(α, b) = (0,−1) and (α, b) = (π,−1) with the first integrals I1(ϕ1, ϕ2, ϕ3) = ϕ1 −ϕ2 +ϕ3 and
I2(ϕ1, ϕ2, ϕ3) = cos(ϕ1) + cos(ϕ1 − ϕ2) + cos(ϕ2 − ϕ3) + cos(ϕ3).

The case of skew-symmetric coupling b = −1 leads to the emergence of coexisting
Hamiltonian-like and dissipative dynamics. The following proposition describes it in more
detail.

Proposition 5.2. For b = −1 and α /∈ {0,±π/2,±π} system (29) possesses the following
dynamics in the phase space:

(A) Hamiltonian-like region: There exist neighborhoods of the equilibriaM0 andM2 which
are foliated by two-parametric families of periodic orbits.

(B) Dissipative region: The equilibrium M1 is either a sink or a source. That is, there
exists a neighborhood of the point M1, such that all orbits starting from this neigh-
borhood are asymptotically attracted to M1 (resp., repelled). The equilibrium M3 has
complementary stability properties.

Proof. The proof follows from Proposition 4.2 with the following specific remarks: (A)
According to (10), the eigenvalues of the origin are λ1,3(M0) = ±ıΩ1 = ±ı2 cos(α) and
λ2 = 0. For α 6= ±π/2, it holds that Ω1 6= 0.

(B) We note that the Hamiltonian-like regions aroundM0 andM2 shrink to points when
|α| approach π/2.

The following observations provide more details and complete the global picture of
the dynamics in the phase space for b = −1; they are also summarized in Figure 4. We
note that the superposition of Z4 and R gives another time-reversal symmetry R′ with
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Figure 4. (a) Structure of the phase space of the system of four coupled oscillators (29) for b = −a = −1 and
α ∈ (0, π/2). (b) Hamiltonian-like region D filled by a two-parametric family of periodic orbits and bounded by
a surface of heteroclinic cycles. (c) Fixed subspace for the time-reversibility transformation FixR as a Poincaré
section for the system when α = 0.2. Blue region indicates the intersection of FixR with the attraction basin
of the rotating wave M1 (heteroclinic trajectories start at M3, intersect FixR, and converge to M1). Red and
green regions indicate families of nonisolated periodic orbits that intersect FixR transversally in neighborhoods
of M0 and M2, respectively.

FixR′ : {(ϕ1, ϕ2, ϕ3) : ϕ2 = 0}. The intersection of the planes FixR and FixR′ gives the
one-dimensional flow-invariant subspace V0 = FixR ∩ FixR′ =

{
(ϕ, 0, ϕ), ϕ ∈ T1

}
= span v,

where v = (1, 0, 1) is an eigenvector corresponding to the eigenvalue λ2 = 0 of the equilibrium
M0. It is easy to check that the whole line V0 is filled with equilibria. The equilibrium M2

belongs also to subspace V0. The equilibria in V0
⋂

(D0
⋃
D′0) are neutral in the directions

transverse to V0 and they are saddles otherwise, outside of the conservative regions. Each
periodic trajectory rotates around V0 and it has two intersections with invariant plane FixR
at points (ϕ1, ϕ2, ϕ1), (ϕ1−ϕ2,−ϕ1, ϕ1−ϕ2) and two corresponding intersections with FixR′
at (−ϕ1, 0, ϕ2 − ϕ1), (ϕ2 − ϕ1, 0,−ϕ1). One can check that the plane FixR contains two
lines of nonisolated fixed points ϕ2 = 2(ϕ1 + α) ± π (or, equivalently, this is one line in T2

with rotation number 1:2). Each fixed point of the line is a degenerate saddle, it is neu-
tral along the line, and it has attractive and repulsive one-dimensional invariant manifolds in
directions transversal to the line. According to the rotational symmetry, another invariant
plane FixR′ also has one-parametric lines of degenerate saddles defined by the expression
ϕ3 = −ϕ1 +2α±π. Fixed points on the intersection of the above mentioned line with V0 have
all zero eigenvalues. There are four such points with coordinates (±π±α, 0,±π±α) that are
on the boundary between the conservative and the dissipative parts (Figure 4).

The one-parametric family of the invariant one-dimensional manifolds of saddles form a
two-dimensional surface (tube), which is the boundary between the Hamiltonian-like region
D0 (D′0) and the dissipative region. The whole separatrix surface consists of heteroclinic cycles
that connect two degenerate saddles of the same invariant line. There are also heteroclinic
orbits that connect the saddle of the invariant line and the sink M1 (or the source M3).

5.3. Five coupled oscillators. In the case of five coupled oscillators (6) with nearest-
neighbor coupling (l = 1) and coupling function (27), the situation is more complicated, since
the phase space is four-dimensional, and we are not able to give a complete description of the
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(a) (b)

Figure 5. (a) Trajectories of (6) for N = 5 and α = 0.2. Blue trajectory is periodic; green and magenta
are quasi-periodic with different amplitude; red trajectory is heteroclinic and connects the repeller M4 with the
attracting equilibrium M1. The first three trajectories belong to the Hamiltonian-like part of the system, while
the last one belongs to the dissipative part. (b) Different domains of the fixed point subspace of the involution R:
red—Hamiltonian-like region, where all Lyapunov exponents are close to zero; light and dark blue—attraction
basin of one of the asymptotically stable rotating waves. Black lines correspond to the families of periodic orbits.

phase space structure as in the case of N ≤ 4. Nevertheless, one can illustrate the coexistence
of dissipative and Hamiltonian-like regions that are densely filled with two-dimensional tori
and families of periodic orbits. Figure 5(a) shows different trajectories belonging to the
dissipative domain (heteroclinic orbit in red) and Hamiltonian-like (tori in green and magenta,
as well as a periodic orbit in blue).

The following result follows from Proposition 4.2.

Corollary 5.3. For b = −1 and α /∈ {0,±π/2,±π}, system (6) of N = 5 oscillators with
coupling function (27) possesses the following dynamics in the phase space:

(A) Hamiltonian-like region: (i) In a neighborhood of M0 there exists a one-parameter
family of periodic solutions. (ii) In any neighborhood of M0 there exists an analytic two-
dimensional torus, which is invariant with respect to the flow and with respect to the re-
versibility transformation R. Moreover, if Uε is an ε-neighborhood of M0, then the Lebesgue
measure of the invariant tori tends to the full measure of the neighborhood Uε, as ε→ 0.

(B) Dissipative region: For 0 < α < π, the rotating waves M1, M2 are sinks and M3,
M4 are sources. For −π < α < 0, the stability is inverse, i.e., M1, M2 are sources and M3,
M4 are sinks.

In Figure 5(b) we illustrate numerically the dynamics using the two-dimensional fixed
point subspace of the involution R:

FixR = {(ϕ1, ϕ2, ϕ3, ϕ4) : ϕ1 = ϕ4, ϕ2 = ϕ3} .

The red domain in Figure 5(b) indicates a Hamiltonian-like region and blue the dissipative
one. In particular the red domain corresponds to the points, which lead to the orbits with all
four Lyapunov exponents close to zero (less than 10−4 in absolute value). The blue domain
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belongs to the attraction basin of one of the rotating waves: light blue to M2 and dark blue
to M1. Black lines in Figure 5(b) correspond to one-parametric families of periodic orbits.

6. Nonidentical oscillators.

6.1. Divergence-free dynamics. We have shown that system (5) is Hamiltonian-like in
the whole phase space for three and four oscillators when coupling function g(x) = − sinx and
a = −b. The system has N neutral rotating wave pointsMk, saddles, heteroclinic structures,
continuous sets of periodic orbits (as shown in Figure 3(c) for three oscillators), and quasi-
periodic or chaotic trajectories (for higher dimensions). In such a case, the vector field has
zero divergence even for arbitrary frequency differences ∆i. The following proposition holds.

Proposition 6.1. (A) The system (5) with arbitrary frequency differences ∆i, i = 1, . . . ,
N − 1, skew-symmetric coupling K−j = −Kj, and odd coupling function g(x) is divergence
free.

(B) The system (5) with arbitrary frequency differences ∆i, i = 1, . . . , N − 1, symmetric
coupling K−j = Kj, and even coupling function g(x) is divergence free.

Proof. We give the proof for case (A), since case (B) is analogous.

divG(Φ) =
N−1∑
i=1

∂ϕ̇i
∂ϕi

=

[(N−1)/2]∑
i=1

Ki(g
′(ϕi)− g′(ϕ−i))

+

N−1∑
i=1

[(N−1)/2]∑
j=1

Kj(g
′(ϕi+j − ϕi)− g′(ϕi−j − ϕi))


=

[(N−1)/2]∑
j=1

Kj

(
N−1∑
i=0

(g′(ϕi+j − ϕi)− g′(ϕi−j − ϕi))

)

=

[(N−1)/2]∑
j=1

Kj

(
N−1∑
i=0

(g′(ϕi+j − ϕi)− g′(ϕi − ϕi+j))

)
= 0,

since g′(x) = g′(−x) is implied by g(x) = −g(−x).

Remark. We remark that a system of Kuramoto–Sakaguchi oscillators with the phase shift
α = π/2 is a particular situation of case (B) of Proposition 6.1.

Proposition 6.2. The system (22) with nearest-neighbor coupling

ϕ̇i = K1(g(ϕ1)− g(ϕ−1)− g(ϕi+1 − ϕi) + g(ϕi−1 − ϕi))

and odd coupling function g(ϕ) has the first integral

I1(ϕ1, . . . , ϕN−1) =

N−1∑
i=0

h(ϕi − ϕi+1),

where h′(ϕ) = g(ϕ), ϕN = ϕ0 = 0. We note that h(ϕ) is even.
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Proposition 6.3. Consider the system (22) with even oscillator number and odd coupling
function g(ϕ) with skew-symmetric coupling matrix (Kj = −K−j) and Kj = 0 for even j,
i.e., oscillators are coupled with the nearest neighbors, third neighbor, fifth neighbor, etc. This
system has the first integral

I2(ϕ1, . . . , ϕN−1) =

N−1∑
i=1

(−1)i−1ϕi.

6.2. Pairwise equidistant natural frequencies and reversibility. In this section we show
that the general system (5) can have the reversibility property when the coupling is skew-
symmetric and the frequencies are not identical but satisfy a particular relation. System (5)
for skew-symmetric coupling can be written as

(30) ϕ̇i = ∆i +

[(N−1)/2]∑
j=1

Kj(g(ϕj)− g(ϕ−j)− g(ϕi+j − ϕi) + g(ϕi−j − ϕi)),

where i = 1, . . . , N − 1; see also (22).

Proposition 6.4. System (30) is time-reversible with the involution R determined by (23)
if and only if the following relation between the frequency differences holds:

(31) ∆N−i = −∆i, i = 1, . . . , [N/2].

Proof. We rewrite system (30) as

(32) ϕ̇i = G̃i(ϕ1, . . . , ϕN−1) = ∆i +Gi(ϕ1, . . . , ϕN−1), i = 1, . . . , N − 1.

It holds that

G̃i(RΦ) = ∆i +Gi(RΦ) = −(−∆i +GN−i(Φ))

and
−G̃N−i(Φ) = −(∆N−i +GN−i(Φ)).

Remark. Note that (31) and, hence, conditions of Proposition 6.4 hold for the particular
case of equally distributed frequencies ωj = ω0 + hj in the case of an odd number N of
oscillators.

In this case it is easy to see that the reversibility condition (23) is satisfied if and only if
(31) holds, which corresponds to pairwise equidistant distribution of frequency pairs around
the frequency of the first oscillator: (ωi+1 + ωN−i+1)/2 = ω1. We recall that ∆N/2 = 0 when
N is even.

As a result of Proposition 6.4, the Hamiltonian-like dynamics appears in systems of non-
identical oscillators that satisfy relation (31). Indeed, at least for small deviations ∆ from zero,
the families of periodic orbits that are mentioned in statement (A) of Proposition 4.2 persist,
since they appear due to the generic intersection of Ft(FixR) and FixR. The dissipative
equilibria remain also dissipative under small perturbations.
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6.3. Nonhomotopic to zero Hamiltonian-like part. A Hamiltonian-like dynamics of (30)
that is nonhomotopic to zero is possible when |∆i| are large enough. An example is shown in
Figure 3(o) for three oscillators, where such a region is foliated by periodic trajectories that
are nonhomotopic to zero. There might be a coexistence of the regions with homotopic to
zero periodic orbits with another region filled with nonhomotopic to zero periodic orbits; see
the yellow and green regions in Figure 3(o). The coexistence of many regions of two types is
also possible, as shown in Figure 3(p) for N = 3 and the coupling function

(33) g(x) = − sin(x− α) + p sin(2x)

with an additional parameter p. Increasing frequency differences |∆i| from zero leads to a
sequence of the disappearance of equilibria via local bifurcations. The homotopic to zero
Hamiltonian-like part of the dynamics disappears together with the disappearance of the
equilibrium within FixR. Then, a possible Hamiltonian-like part can consist only of non-
homotopic to zero nonisolated orbits. Similar situations were observed for other systems in
[69] and [68]. From this point of view, it is instructive to give conditions when the system
does not possess equilibria.

Proposition 6.5. System (30) does not have fixed points when one of the following condi-
tions is satisfied:

min
x∈T1

g(x) > −4[(N − 1)/2] min
i
|∆i|

or

max
x∈T1

g(x) < −4[(N − 1)/2] max
i
|∆i|.

Proof. The proof follows from the conditions ∆i + G̃i(Φ) > 0 (< 0) for i = 1, . . . , [N/2].
Note that the conditions of this proposition are satisfied when the frequency differences are
large enough.

7. Large system (N → ∞) and nonlinear Schrödinger amplitude equation for skew-
symmetric coupling. In this section we consider the dynamics in a neighborhood of the
synchronous solution θi = θ in the case of very large chains (i.e., N � 1) of identical oscillators,
where each oscillator is coupled with a finite number 2l of its neighbors:

(34) θ̇i = ω +

l∑
j=−l

Kj g(θi−θi+j), i = 1, . . . , N,

and a skew-symmetric coupling matrix K, i.e., Kj = −K−j , j = 1, . . . , l. The subscripts are
taken modulo N , i.e., the system possesses the ring structure. For this case we will highlight
once again that the dynamics behaves reversible, i.e., Hamiltonian like.

Using the “co-rotating” coordinates ψi = θi−
(
ω+ g(0)

∑l
−lKj

)
t, system (34) reduces to

(35) ψ̇i =

l∑
j=−l

Kj f(ψi−ψi+j)
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with f(x) = g(x) − g(0). Since f(0) = 0, the one-dimensional invariant synchronization
manifold

S = { (ψ1, . . . , ψN ) : ψi = ψ, i = 1, . . . . , N }

consists of equilibria ψi = ψ = const, which are related to each other by the phase-shift
symmetry. Hence, the equilibria have neutral stability along the manifold and the same
stability properties in the transverse directions to the manifold. Therefore, in order to study
the dynamics in the neighborhood of a synchronous solution, it is enough to consider the
neighborhood of the origin ψi = 0, i = 1, . . . , N . Note that in this section we do not write the
system for phase differences (5) but work directly with (35). This will result in the persistence
of the phase-shift symmetry in the obtained amplitude equations.

Expanding function f(x) in Taylor series, we rewrite system (35) as follows:

ψ̇i =
l∑

j=−l
Qjψi+j +

f ′′(0)

2f ′(0)

l∑
j=−l

Qj(ψi−ψi+j)2 +
f ′′′(0)

6f ′(0)

l∑
j=−l

Qj(ψi−ψi+j)3 +O(‖ψ‖4),(36)

where Qj = −Kjf
′(0) for j = −l, . . . , l, j 6= 0, and Q0 = f ′(0)

l∑
j=−l,j 6=0

Kj .

The Jacobian matrix Q is circulant and, similarly to (10), its eigenvalues are given by λm(Q) =∑l
−lQje

ı2πjm/N for m = 1, . . . , N . In the limit of large N , the spectrum can be approximated
by the asymptotic continuous spectrum [78, 79] via

λ(φ) =

l∑
j=−l

eıjφQj = Q0 +

l∑
j=1

(
(Qj+Q−j) cos(jφ) + ı(Qj−Q−j) sin(jφ)

)
, φ ∈ [0, 2π].

(37)

The function φ 7→ λ(φ), φ ∈ [0, 2π] presents a closed curve in the complex plane C. Using the
definition of Qj with skew-symmetric coupling K−j = −Kj ∈ R, we obtain

λ(φ) = ı 2

l∑
j=1

Qj sin(jφ) = ı ω̃(φ) with ω̃(φ) ∈ R.

Hence, the whole spectrum lies in the interval [−ımaxφ ω̃(φ), ımaxφ ω̃(φ)] ⊂ ıR.
The following result states that small-amplitude modulations of a basic spatially periodic

pattern eıφ0k are governed by a nonlinear Schrödinger equation with suitable boundary condi-
tions to guarantee the correct periodicity for the chain. Assuming that the coupling function
has a cubic nonlinearity (i.e., g′′(0) = 0) the approach in [35], adapted to the spatially discrete
case as in [25, 78], yields the following statement.

Theorem 7.1. Assume that system (36) satisfies the following conditions:
(1) the coupling matrix is skew-symmetric : Q−j = −Qj;
(2) there exists φ0 = 2π pq 6= 0 with p, q ∈ N coprime, ω0 := ω̃(φ0) 6= 0, and ω̃′′(φ0) 6= 0;

(3) the coupling function has a cubic nonlinearity at θ = 0, i.e., g′′(0) = 0;
(4) the nonresonance condition

∑l
j=1Qj sin3(jφ0) 6= 0 holds.



HAMILTONIAN-LIKE AND DISSIPATIVE DYNAMICS 2099

Set ρ = 2f ′′′(0)
f ′(0)

∑l
j=1Qj sin(jφ0)

(
cos(jφ0)−1

)
, choose r ∈ {1, . . . , q}, and consider a smooth

solution B : R×[0, T∗]→ C of the nonlinear Schrödinger equation with quasi-periodic boundary
conditions:

(38) ı∂TB =
1

2
ω̃′′(φ0)∂2

ξB + ρ|B|2B, B(ξ+1, T ) = eı 2πr/qB(ξ, T ).

Then there exist constants N0 ∈ N and C > 0 such that for all N ≥ N0 with eıφ0N = eı 2πr/q

the following holds. If the initial condition (ψk(0))k=1,...,N for system (36) satisfies

‖ψ(0)− εΨε
B(0)‖2 ≤ ε3/2, where ε = 1/N,

then the solution ψ(t) = (ψk(t))k=1,...,N of (36) satisfies, for all t ∈ [0, T∗/ε
2], the estimate

‖ψ(t)− εΨε
B(t)‖2 ≤ Cε3/2,

where
Ψε
B(t) :=

(
B
(
ε(k+ω̃′(φ0)t), ε2t

)
eı(ω0t+φ0k) + c.c.

)
k=1,...,N

and ‖ψ‖2 :=
(∑N

1 ψ2
k

)1/2
is of order ε1/2.

Thus, the above result states that the slowly varying amplitude B of the basic spatially
periodic pattern is transported by the group velocity ω′(φ0) and deformed by the Hamilto-
nian evolution of a family of the nonlinear Schrödinger equations depending on a periodic-
ity parameter; cf. [45]. This reconfirms that the dynamics near the synchronous states is
Hamiltonian-like.

8. Discussion. In this concluding section we point out some general consequences of our
results.

(i) Unidirectional rings are special case of anisotropic coupling: The case when the ring
is unidirectional is important for applications and considered in many works; see, e.g., [17,
43, 79, 50, 13, 66, 54]. The general network (2) is unidirectional when Ki 6= 0 for j =
1, . . . , [(N − 1)/2] and Kj = 0 in other cases. For the forward-backward system (6) the
condition for unidirectionality is just b = 0. The bifurcation diagram Figure 2 shows that the
system dynamics does not change qualitatively with a small variation of coupling parameters.
Actually, one can see that the straight line b = 0 and lines b = ±ε intersect bifurcation lines
(AH, HC, TC) transversally at almost the same points when ε is close to zero. This tells
us about the structural stability of the system along parametric line b = 0 independently on
parameter α.

(ii) Effects of higher harmonics in the coupling function: In section 5 we considered ex-
amples where the coupling function had only the first term of the Fourier series (27). If the
coupling function has higher harmonics, the basic properties related to the symmetries or
reversibility of the system remain the same. However, a more complex shape of g(x) can
lead to the appearance of new solutions or new bifurcation properties. For instance, for the
Hansel–Mato–Meunier [31] coupling function (33) the system (5) has additional fixed points
when |p| ≥ 1/2. If these additional points belong to FixR, there might appear the same
Hamiltonian-like regions around them, similarly as described above.
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An example in Figure 3(m) shows that the system of three coupled oscillators with function
(33) has four different Hamiltonian-like regions: three of them are bounded by homolinic loops
(colored regions in Figure 3(m)) and one is bounded by a Z3-heteroclinic cycle. These regions
coexist with the simply connected dissipative region that includes the sink M1, the source
M2, and heteroclinic trajectories that connect these two points. Figures 3(n), (o), and (p)
illustrate other possible examples. In particular, Figure 3(o) shows how two Hamiltonian-like
regions coexist, one of which is homotopic and the other is nonhomotopic to zero.

Appendix.

Proof of Proposition 3.2.

Proof. Let us first rewrite (2) and (5) in the vector form:

(39) Θ̇ = F (Θ), Θ = (θ, . . . , θN ),

and

(40) Φ̇ = G(Φ), Φ = (ϕ1, . . . , ϕN−1).

We append the first equation θ̇1 = F1(θ1, . . . , θN ) = F1(θ1, θ1 − ϕ1, . . . , θ1 − ϕN−1) of (39) to
(40) and obtain the extended N -dimensional system:

(41) ˙̄Φ = Ḡ(Φ̄), Φ̄ = (θ1, ϕ1, . . . , ϕN−1),

where

(42) Φ̄T =

(
θ1

ΦT

)
= SNΘT , SN =



1 0 . . . 0 0

1 −1
. . .

. . . 0
... 0

. . .
. . .

...

1
...

. . . −1 0
1 0 . . . 0 −1


.

One can check that det(SN ) = (−1)N−1 and S−1
N = SN . The Jacobian matrices at the

corresponding points Θ0, Φ0, and Φ̄T
0 = SNΘT

0 are A = ∂F
∂Θ(Θ0), B = ∂G

∂Φ (Φ0), and B̄ =
∂Ḡ
∂Φ̄

(Φ̄0). The elements of the Jacobian matrix A = A(Θ) = (Aij)i,j=1,...,N are

Aii =

N∑
j=1

Kj−ig
′(θi − θj) =

N∑
j=1

Kj−ig
′(ϕj−1 − ϕi−1), i = 1, . . . , N,

Aij = −Kj−ig
′(θi − θj) = −Kj−ig

′(ϕj−1 − ϕi−1), i, j = 1, . . . , N, j 6= i.

Using the relationship (42) we have B̄ = SNAS
−1
N . It also holds that

B̄ =

 B̄11 b̄

¯̄bT B

 ,
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where ¯̄b = 0, because the right-hand sides Ḡ2, . . . ḠN do not depend on θ1. Further, the
right side of the first equation in (41) is Ḡ1(ϕ̄) =

∑N
j=1Kjg(ϕj), and it is independent of the

variable θ1, which implies B̄11 = ∂Ḡ1/∂θ1 = 0. Using the above properties we obtain the
necessary result:

det(A− λIN ) = det(S−1
N (B̄ − λIN )SN ) = det(B̄ − λIN )

= det

(
−λ b̄
0 B − λIN−1

)
= −λ det(B − λIN−1).(43)

Proof of Proposition 3.3.

Proof. Let A be the corresponding Jacobian matrix. Direct calculation gives

Aii(Mk) =
N∑
j=1

Kj−ig
′(Mk,j−1 −Mk,i−1) =

N∑
j=1

Kj−iηk(j−i) =
N∑
j=1

Kjηkj ,

Aij(Mk) = −Kj−ig
′(Mk,j−1 −Mk,i−1) = −Kj−iηk(j−i), i, j = 1, . . . , N, j 6= i,

where Mi,j = 2πi
N j denotes the component of Mi. Since A(Mk) is circulant, it can be

presented as a polynomial of the cyclic permutation matrix

PN =


0 1 0 . . . 0

0 0
. . .

. . .
...

...
...

. . .
. . . 0

0 0 . . . 0 1
1 0 . . . 0 0


in the following form:

A(Mk) =
N∑
j=1

Kj−iηk(j−i)IN −
N∑
j=1

Kj−iηk(j−i)P
j−i
N =

N∑
j=1

Kjηkj

(
IN − P jN

)
,

where ηkj = g′
(

2πk
N j
)
, k = 0, . . . , N − 1. Eigenvalues of this circulant matrix can be written

as

λm(Mk) =

N∑
j=1

Kjηkj(1− νjm), m = 1, . . . , N,

where νm = exp
(

2πı
N m

)
are eigenvalues of PN . Note that equalities νjN = exp

(
2πı
N jN

)
= 1

imply λN (Mk) = 0.
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