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We study two coupled active rotators with Kuramoto-
type coupling and focus our attention to specific
transitional regimes where the coupling is neither
attractive nor repulsive. We show that certain
such situations at the edge of synchronization
can be characterized by the existence of a time-
reversal symmetry of the system. We identify
two different cases with such a time-reversal
symmetry. The first case is characterized by a
non-reciprocal attractive/repulsive coupling. The
second case is a reciprocal coupling exactly at the
edge between attraction and repulsion. We give
a detailed description of possible different types
of dynamics and bifurcations for both cases. In
particular, we show how the time-reversible coupling
can induce both oscillation death and oscillation
birth to the active rotators. Moreover, we analyse the
coexistence of conservative and dissipative regions
in phase space, which is a typical feature of systems
with a time-reversal symmetry. We show also, how
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perturbations breaking the time-reversal symmetry and destroying the conservative regions
can lead to complicated types of dissipative dynamics such as the emergence of long-period
cycles showing a bursting-like behaviour.

1. Introduction
Collective dynamics of weakly interacting oscillatory systems can be effectively described by
coupled phase oscillators [1–3]. The classical Kuramoto system of coupled phase oscillators
is based on the assumption that without coupling each subsystem has oscillatory (periodic)
dynamics and hence, for weak coupling, can be reduced to the simple phase equation φ̇j =ωj
with some internal frequencyωj. In particular, it has been used extensively for the study of various
forms of synchronization [4–6]. Systems of coupled active rotators have already been introduced
by Shinomoto & Kuramoto in 1986 [7] to study a more general class of interacting units, where
each unit is governed by a non-homogeneous oscillator φ̇j =ωj − aj cosφj. In particular, such units
undergo for |aj| = |ωj| a so-called saddle-node on invariant circle (SNIC) bifurcation such that the
oscillator is transformed into an excitable unit. In this sense, coupled active rotators provide a
substantial extension compared with the classical Kuramoto system of phase oscillators and are
suitable for the modelling of collective dynamics of neuronal and, in general, excitable systems.
The active rotator of this form is also known as the theta-neuron model [8–12], and it is equivalent
to the quadratic integrate-and-fire neuron [13,14]. Systems of coupled active rotators and their
extensions have been also studied in [15–32]. The onset of various forms of synchronization and
collective dynamics is usually studied in the context of attractive global or non-local coupling.
However, many interesting and unexpected dynamical effects can be observed close to the
transition from attractive to repulsive coupling [33] and also units with different types of non-
reciprocal coupling can lead to new dynamical phenomena [34,35]. In this work, we consider a
minimal network motif of two coupled active rotators with Kuramoto-type coupling and focus
our attention to specific transitional regimes where the coupling is neither attractive nor repulsive.
It turns out that certain situations at the edge of synchronization can be characterized by an
additional structural property of the system, the existence of a time-reversal symmetry. Systems
with this property are known to exhibit rich and unexpected dynamical behaviour and have been
studied extensively from a mathematical point of view [36–41]. A specific feature of such systems
is the possibility of a coexistence of regions with conservative dynamics (e.g. families of neutrally
stable closed orbits) with dissipative regions in phase space.

In our setting of two coupled rotators we identify two different cases with such a time-reversal
symmetry. The first case is characterized by a non-reciprocal coupling where one oscillator
couples attractive and the other repulsive. The second case is a reciprocal coupling with a
Kuramoto-type coupling exactly at the edge between attractive and repulsive coupling. For both
cases, we describe in detail the different dynamical scenarios and the bifurcation transitions
between them. In particular, we show how the coupling can lead to coexistence of rotations in
opposite directions, to the birth and death of oscillations and to the coexistence of a dissipatively
stable synchronous equilibrium with regions of conservative oscillatory motions in the form
of both rotations and librations. In §4, we also consider the influence of generic perturbations.
Such perturbations can induce a drift along the families of periodic solutions in the conservative
regions of the reversible regime. We show that in some cases this can lead to long-period limit
cycles with a bursting-like dynamics. Additionally, we study the effects of the higher Fourier
modes that can lead to even higher multi-stablity of conservative and dissipative regions.

A general system of two coupled rotators has the form

φ̇1 = f1(φ1) + g1(φ1 − φ2), (1.1)

φ̇2 = f2(φ2) + g2(φ2 − φ1), (1.2)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

11
 O

ct
ob

er
 2

02
3 



3

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20230401

..........................................................

where φ1, φ2 ∈ T
1 = R/2πZ are phase variables, and the local dynamics f1,2 as well as the coupling

functions g1,2 are smooth and 2π -periodic. We mainly restrict ourselves to the case

φ̇1 =ω1 + a1 cosφ1 + κ1 sin(φ2 − φ1 + α), (1.3)

φ̇2 =ω2 + a2 cosφ2 + κ2 sin(φ1 − φ2 + α), (1.4)

where both the local dynamics and the coupling functions contain only the leading Fourier
component. In this way, we get the natural frequencies ωi, the phase inhomogeneities ai the
coupling strengths κi and the phase shift α as parameters. More complicated functions fi and
gi will be also shortly discussed, and they will be specified at the corresponding places.

The inhomogeneity ai is an important ingredient of the system, since otherwise the dynamics
is very simple. Indeed, if a1 = a2 = 0, we obtain two coupled oscillators of Kuramoto–Sakaguchi
type [42], which have a phase shift symmetry (φ1,φ2) �→ (φ1 + δ,φ2 + δ) for any δ ∈ T

1. As a result,
the system can be reduced to a single equation for the phase difference ψ = φ1 − φ2

ψ̇ =	− A cos(ψ − σ ),

where 	=ω1 − ω2, tan σ = ((κ1 + κ2)/(κ2 − κ1)) cotα, and

A =
√

(κ2 − κ1)2 sin2 σ + (κ1 + κ2)2 cos2 σ .

This is again an active rotator with stable and unstable equilibria for |	/A|< 1 and the SNIC
bifurcation for 	/A = ±1. The stable and unstable equilibria for the system in the phase
differences correspond to stable and unstable phase-locked limit cycles for the original two-
dimensional Kuramoto–Sakaguchi system. For |	/A|> 1, the phase-locking is lost, and the
system of two coupled Kuramoto–Sakaguchi oscillators possesses families of neutral periodic
or quasi-periodic orbits depending on the relationship between ω1 and ω2.

The dynamics of system (1.3) and (1.4) becomes more complicated when the inhomogeneity
ai is present. The phase shift symmetry is broken and the transition to the excitable regime of the
single unit induces new dynamical regimes. As we will see, the dynamics are particularly rich
in the cases of time-reversible coupling. In §2, we will recall the definition and basic properties
of systems with a time-reversal symmetry and identify two different cases of time-reversible
coupling for system (1.3) and (1.4). In §3, we study in detail the dynamics and bifurcations for
these two cases. Finally, in §4 we study examples of generic perturbations of the reversible cases.
In particular, we show how orbits with a bursting-like behaviour can emerge from perturbing a
certain reversible scenario.

2. Time-reversible dynamics of two coupled oscillators

(a) What is time reversibility?
A system ẋ = F(x) has a time-reversal symmetry [36–39,43] if there exists an involution R of the
phase space X satisfying

F(R(x)) = −R(F(x)) (2.1)

and R2 = Id, with Id being the identity transformation. The existence of such a time-reversing
symmetry action R, which is typically linear or affine, implies that for a solution x(t) also R(x(−t))
is a solution. The subspace

Fix R= {x ∈ X : R(x) = x} (2.2)

plays an important role in characterizing the dynamics of reversible systems. In contrast to
invariant subspaces of symmetries without time reversal, this subspace is not dynamically
invariant. Instead, a trajectory can cross Fix R, which then implies that the whole trajectory
is mapped by R onto a time reversed copy of itself. In this way, one can distinguish between
intersecting trajectories connecting an attractor–repellor pair related by R, and trajectories
intersecting more than once, which induces locally conservative dynamics. This coexistence of
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conservative and dissipative dynamics in different regions of the phase space is a typical property
of systems with time reversibility [38,39,44,45] that distinguishes them from generic dissipative
dynamical systems.

In systems with time-reversal symmetry one has to distinguish between equilibria within and
outside Fix R. In the first case, an equilibrium has to have the same number of stable and unstable
directions, since these are related by R. In the second case equilibria come in pairs, related by
R, with opposite stability properties. Moreover, there can be bifurcations with a spontaneous
symmetry breaking, where from a branch of equilibria within Fix R a branch containing pairs of
equilibria outside Fix R bifurcates, see e.g. [46–48]. Due to the possibility of locally conservative
dynamics, reversible systems can have structurally stable homoclinic orbits and heteroclinic
cycles, which together with their specific bifurcations have been studied extensively, see [49–51].

(b) Reversible cases in the system of coupled rotators
We identify two cases, for which system (1.1) and (1.2) is time-reversible. First, note that the single
rotator has a time reversal symmetry

(φ, t) �−→ (−φ, − t)

as soon as f is an even function. A coupled system of two identical such units, i.e. with

f1(φ) = f2(φ) = f (φ) and f (φ) = f (−φ),

can become time-reversible in two different ways. Case (I) is characterized by an anti-reciprocal
coupling with an odd coupling function

g1(φ) = −g2(φ) = g(φ) and g(−φ) = −g(φ). (2.3)

The second time-reversible case (II) appears for if the coupling functions are identical and
even.

g1(φ) = g2(φ) = g(φ) and g(φ) = g(−φ), (2.4)

which corresponds to a conservative coupling at the edge between attraction and repulsion. In
both cases, the time-reversible symmetry is given by the action

R : (φ1,φ2, t) �−→ (−φ2, −φ1, −t) (2.5)

with the subspace

Fix R= {(φ1,φ2) : φ1 = −φ2}. (2.6)

For the system (1.3) and (1.4) of active rotators with Kuramoto–Sakaguchi type coupling we
obtain for case (I) with anti-reciprocal and odd coupling the system

φ̇1 =ω + a cosφ1 − κ sin(φ1 − φ2), (2.7)

φ̇2 =ω + a cosφ2 + κ sin(φ2 − φ1), (2.8)

while in case (II) with even and reciprocal coupling we get

φ̇1 =ω + a cosφ1 − κ cos(φ1 − φ2), (2.9)

φ̇2 =ω + a cosφ2 − κ cos(φ2 − φ1). (2.10)

In the following §3, we describe the dynamics and bifurcations in the above two cases.
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Figure 1. Bifurcation diagrams for system (2.7) and (2.8). (a) Parameter plane (κ ,ω) with fixed a= 1. (b) Parameter
plane (κ , a) with fixed ω= 1. Bifurcation curves: red/magenta—saddle–centre bifurcation, green—reversible pitchfork
bifurcation, orange/black—heteroclinic saddle–saddle connections. Global bifurcations induced by a second time-reversal
symmetry (blue) and by the phase shift invariance (brown). Structurally stable phase portraits from the different parameter
regionswith labels (a–h) are given in figure 2, phase portraits at the bifurcation curveswith labels (i–p) are given in figure 3 and
phase portraits of the codimension-two pointswith labels (q–t) in figure 4. The colours of the regions indicate purely dissipative
dynamics (white), mixed typewith a dissipative and a libration region (yellow), different types without libration regions (blue),
different types with librations and rotations (green).

3. Time-reversible dynamics of the coupled rotator model

(a) Case (I): coupled rotators with anti-reciprocal coupling
We first consider the case (I) reversible system (2.7) and (2.8). This system possesses additional
symmetries that involve parameters; these symmetries are generated by the actions

γ1 : (φ1,φ2,ω, t) �−→ (φ2 + π ,φ1 + π , −ω, −t), (3.1)

γ2 : (φ1,φ2, κ , t) �−→ (φ2 + π ,φ1 + π , −κ , t), (3.2)

γ3 : (φ1,φ2, a, t) �−→ (φ1 + π ,φ2 + π , −a, t). (3.3)

Note that γ1 induces for ω= 0 a second time-reversing symmetry action, while γ2,3 for κ = 0
and a = 0, respectively, induce Z2-symmetries without time reversal. As a result of the parametric
symmetries γ1,2,3 the resulting bifurcation diagrams will be mirror symmetric with respect to all
the parameters ω, κ , a. Also the synchrony subspace φ1 = φ2 is flow invariant for system (2.7) and
(2.8). However, this invariance is not induced by a symmetry of the system, but the diffusive
nature of the coupling.

The regions in the bifurcation diagrams in figure 1 correspond to qualitatively different
structurally stable phase portraits. Figure 1a shows the parameter plane (κ ,ω) with fixed a = 1
and figure 1b shows the plane (κ , a) with fixed ω= 1. Note that by a rescaling of time, one
can achieve a = 1 as soon as a> 0. Indeed, a phase portrait for some parameters (κ0, a0,ω0) will
be found equivalently at (κ , a,ω) = (κ0/a0, 1,ω0/a0). Similarly, if ω0 > 0, we get the same phase
portrait at (κ , a,ω) = (κ0/ω0, a0/ω0, 1). In this case, we can study the region a ≈ 0, which shows
small perturbations of the Kuramoto system with its phase shift symmetry to a rotator system
with inhomogeneous rotation speed, see figure 1b. Note that the black and brown bifurcation
curves are present only in figure 1b, since in figure 1a they are outside the plotted region or even
at infinity. Similarly, the blue curve is present only in figure 1a.

Examples of the different generic phase portraits are depicted in figure 2. In figure 3, we show
examples of structurally unstable phase portraits on the different bifurcation curves and figure 4
gives the phase portraits at the codimension-two points. The different dynamical regimes are
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(a) (b) (c) (d)

(e) ( f ) (g) (h)

Figure 2. Different types of structurally stable phase portraits of system (2.7) and (2.8) in case (I) of time reversibility with
anti-reciprocal coupling. The squared regions show the torus (φ1,φ2) ∈ [−π/2, 3π/2] × [−3π/2,π/2]. Parameters in
(a)–(h) are chosen from the correspondinglymarked regions from the bifurcation diagrams in figure 1. Conservative regions are
coloured as follows: orange—librations with clockwise motion, yellow—librations with anti-clockwise motion, blue/cyan—
rotations. Dissipative regions are white. Fixed points are coloured as follows: red—source, blue—sink, green—saddle,
magenta—centre. The dotted line in (a) indicates FixR.

(i) ( j) (k) (l)

(m) (n) (o) (p)

Figure 3. Examples of structurally unstable phase portraits of system (2.7) and (2.8). Parameters are chosen from the
correspondingly marked bifurcation curves in figure 1. Degenerate equilibria (orange hexagons): (k) saddle–centre bifurcation,
(n,o) reversible pitchfork. Structurally unstable saddle–saddle connections aremarked in green in (i,j,l,m,p). Colours of invariant
regions and fixed points as in figure 2.

distinguished by the number and type of the fixed points and also by homoclinic and heteroclinic
connections that organize the dissipative and conservative regions.

The fixed points have the following general properties:

— Depending on the parameter values, the system has up to six fixed points.
— There can be up to four fixed points in Fix R; they are saddles, centres or, at bifurcations,

degenerate saddles.
— Outside of Fix R, there can be only one pair of sink and source. They are always located in

the synchrony subspace and therefore do not depend on the coupling strength κ . They are
related by R, which on the synchrony subspace induces also a time-reversal symmetry of
the single uncoupled rotator.
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(q) (r) (s) (t)

Figure 4. Phase portraits at the correspondingly marked codimension-two points of system (2.7) and (2.8), shown in figure 1.
Degenerate equilibria are marked with hexagons (orange). Structurally unstable saddle–saddle connections are marked in
green. Colours of invariant regions and fixed points as in figure 2.

The bifurcations of the equilibria will be discussed in detail below. The local bifurcations of the
equilibria also induce changes in the configuration of the dissipative and conservative regions.
Note that the regions can change also by global bifurcations given by a reconnection of the saddle
separatrices. The regions have the following general properties:

— Each conservative region is filled with one-parametric family of neutral periodic orbits.
— Periodic orbits can have two different topological types: Rotations, where the curve closes

after a full round trip of both oscillators such that both phases increase unboundedly, and
librations, where both oscillators perform a small oscillatory motion whithout a full round
trip in one of the phases.

— The conservative regions are bounded by homoclinics or heteroclinic cycles, which can
also be of rotation or libration type.

— Each dissipative region consists of heteroclinic orbits, connecting a source and a sink
equilibrium.

The yellow and orange areas in figures 2–4 indicate conservative regions filled with librations
(different colours correspond to clockwise and counter-clockwise motion), cyan and blue regions
are filled with rotations. Dissipative regions can exist only in the presence of a source/sink pair of
equilibria related by R (white regions in figures 2–4). We give now a detailed description of the
different types of local and global bifurcations occuring in this system.

(i) Saddle–centre bifurcation.

The red and magenta curves in the bifurcation diagram in figure 1 indicate a saddle–centre
bifurcation. At this bifurcation a saddle and a centre equilibrium, both in Fix R, merge and
disappear, see also [47,48,52]. The Jacobian at the degenerate equilibrium has an algebraically
double zero eigenvalue. The resulting bifurcation condition for a = 1 is given by

ω= ±

(√
1 + 32κ2 ± 3

) √
2

(
16κ2 − 1 −

√
1 + 32κ2

)

32|κ|
and provides the red and magenta curves in figure 1a. An example of a phase portrait with such
a degenerate equilibrium is given in figure 3k. Together with the new equilibrium of centre type
there emerges also a conservative region, in this case filled with a family of periodic orbits of
librations around this point. Also, a structurally stable homoclinic to the new saddle equilibrium
emerges, giving the boundary of the conservative region, see e.g. the phase portrait in figure 2b.
In figure 2, there are several pairs of structurally stable phase portraits related by this type of
bifurcation: (b,a), (c,d), (e, f ), (g,h).

(ii) Reversible pitchfork (sink/source) bifurcation

The green curves in figure 1 indicate a reversible pitchfork bifurcation, where in a spontaneous
symmetry breaking a pair of a sink and a source equilibrium outside Fix R bifurcate from
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an equilibrium within Fix R that, at the same time, changes its type from a saddle to a
centre [48,53]. The bifurcation condition is here a geometrically double zero eigenvalue. This
bifurcation happens at the bifurcation of the single uncoupled oscillator at ω= ±a, where we have
degenerate equilibria at (φ1,φ2) = (−π/2,π/2) and (π/2, −π/2), respectively, that are independent
on κ . Corresponding degenerate phase portraits are given in figure 3n,o. The bifurcation of
the equilibria induces also a reorganization of the homoclinic and heteroclinic connections and
the conservative and dissipative regions. With the transformation of the centre equilibrium in
Fix R into a saddle, the corresponding conservative region with periodic orbits surrounding
the centre vanishes. As for the usual pitchfork bifurcation, the bifurcating pair of a source and
sink equilibrium emerges with heteroclinic connections to the primary saddle equilibrium in
Fix R. Moreover, as a consequence of the phase space being here the compact manifold T

2, the
source and sink equilibrium inherit global heteroclinic connections to another saddle in Fix R,
which, before the bifurcation, was carrying the homoclinic loop defining the boundary of the
vanishing conservative region. Note that, obstructed by the new heteroclinic connections, also a
conservative region of rotations vanishes. The pairs of structurally stable phase portraits related
by this type of bifurcation in figure 2 are (c–e) and (d–f ).

(iii) Heteroclinic saddle–saddle connections

We have two instances of structurally unstable heteroclinic connections between saddle equilibria
in Fix R, given by the orange and black curves in the bifurcation diagrams in figure 1. The orange
curves indicate such a global bifurcation shown by the degenerate phase portraits in figure 3l,m.
This bifurcation induces the appearance/disappearance of conservative regions with rotations in
between dissipative regions. Pairs of structurally stable phase portraits related by this type of
bifurcation in figure 2 are (b,c) and (a–d).

The black curves in figure 1b correspond to heteroclinic saddle–saddle connections with a
degenerate phase portrait as shown in figure 3p and connects the two structurally stable phase
portraits in figure 2e,h. The mechanism how this global bifurcation leads to restructuring of the
invariant regions is schematically shown in figure 5. A region of undulating rotations (figure 5a)
disappears and a new region of straight rotations in the opposite direction appears (figure 5c).
In the degenerate situation in between we see how two structurally stable homoclinics, which
delineate the region of the rotations form two libration regions with opposite direction of motion,
are reconnected through two heteroclinic saddle–saddle connections forming a heteroclinic cycle
of rotational type.

The bifurcation curves of such global bifurcation curves can typically be found only
numerically. In our case of a planar flow this can be done by a simple shooting method. For
the numerical treatment of more general cases, see [54].

(iv) Second time-reversal symmetry

As already mentioned above, for ω= 0 the parametric symmetry γ1 turns into a second time-
reversal symmetry R2 with fixed space

Fix R2 = {(φ1,φ2) : φ1 = φ2 + π}. (3.4)

This enables a homoclinic orbit to a saddle equilibrium in Fix R to turn into a heteroclinic
connection between two saddle equilibria in Fix R as soon as both saddles are related by R2 and
happens along the blue line in figure 1a. There are two qualitatively different degenerate phase
portraits of this type given in figure 3i,j, corresponding to the case of a bifurcating homoclinc orbit
of libration and rotation type, respectively. Note that in the case of the rotation, there appears also
a homoclinic to a saddle in Fix R2, which is structurally unstable with respect to perturbations
that break the reversibility R2. This type of global bifurcation mediates the transition of the
structurally stable phase portraits in figure 2b,c to their respective images under R2.
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(a)

(b)

(c)

Figure 5. Schematic phase portraits of a heteroclinic saddle–saddle connection (cf. black curve in figure 1(b)). The panels
show the flow in a stripe along a non-trivial closed curve on the torus. (a) Structurally stable situation before the bifurcation
(topologically equivalent to figures 2e and 8c). (b) Degenerate situation at the bifurcation with structurally unstable saddle–
saddle connection (topologically equivalent to figures 3p and 9j). (c) Structurally stable situation after the bifurcation
(topologically equivalent to figures 2h and 8d). Colours of invariant regions and fixed points as in figure 2.

Forω= 0 we find also two codimension–two bifurcations. For a = ±2κ one of the two equilibria
in

Fix R ∩ Fix R2 =
{(π

2
, −π

2

)
,
(
−π

2
,
π

2

)}

has a fully degenerate Jacobian, see phase portrait in figure 4q. At this point, two curves of saddle–
centre bifurcations that exist for ω �= 0 meet in a cusp point. Also the blue curve, indicating the
heteroclinic connection between two saddle equilibria in Fix R, ends at this codimension-two
point since the two saddles merge with the centre in between them and vanish together with the
enclosed conservative region.

The second codimension-two bifurcation, with a degenerate phase portrait shown in figure 4r,
is a pair of saddle–saddle connections between a saddle in Fix R ∩ Fix R2 and a pair of saddles
in Fix R which are related by R2. At this point meet two curves of saddle–saddle connections,
which exist for ω �= 0.

(v) Rotational symmetry

In the case of a = 0, we have two coupled Kuramoto oscillators with phase shift symmetry, which
can be reduced to a single equation for the phase difference. However, due to the special form
of the coupling in the case (I) time-reversible system (2.7) and (2.8), the phase difference ψ =
φ1 − φ2 stays always constant such that all trajectories are straight diagonal lines φ1(t) = φ2(t) +
ψ(0) with constant velocity φ̇i =ω + κ sin(ψ(0)). For |κ|> |ω| there are two diagonal lines φ2 =
φ1 ± arcsin(ω/κ) with velocity zero. These lines of equilibria, existing along the brown bifurcation
line in figure 1b, give rise to a global bifurcation in the following way. Breaking the phase shift
symmetry with small a �= 0, from each of the two lines of equilibria remains only a saddle and
a centre equilibrium while two narrow conservative regions of librations emerge, as shown in
figure 6. All other trajectories still form two regions of rotations with opposite directions, which
are not straight lines any more but slightly modulated.

The brown line ends in a codimension-two situation where the two lines of equilibria
disappear together with region of rotations in opposite direction. The corresponding phase
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(a)

(b)

(c)

Figure 6. Schematic phase portraits illustrating how locally the degenerate situation with rotational symmetry, occuring for
a= 0 (brown line in figure 1b), is unfolded for positive (a) and negative (b) values of a. The purple line in (b) consists of
degenerate neutral fixed points. Colours of invariant regions and fixed points as in figure 2.

portrait is shown in figure 4t. Note that at this codimension two bifurcation points there
emerge also curves of saddle–centre bifurcations and heteroclinic saddle–saddle connections, see
figure 1b. This bifurcation is described in more detail in [55].

(vi) The uncoupled case

For κ = 0 the two rotators are decoupled. In this case the only bifurcation happens at a = ±ω,
where both rotators simultaneously undergo the SNIC from excitable to rotating behaviour. Note
that the unfolding of this codimension-two point (see the degenerate phase portrait in figure 4s for
κ �= 0) gives rise to the reversible pitchfork bifurcation, where the stable synchronous equilibrium
emerges, and, additionally, to curves of heteroclinic saddle–saddle connections and saddle–centre
bifurcations.

(vii) Summary of case (I)

Having clarified all the details of the bifurcation scenario in the time-reversible case (I) of two
rotators with anti-reciprocal coupling (2.7) and (2.8) we can interpret the bifurcation scenario
as follows. The transition of the single rotator from excitable to oscillatory motion at |κ/ω| = 1
plays the main role. If the single rotator is in the oscillatory regime, the coupled system has only
conservative behaviour. For weak coupling it consists of unidirectional rotation of both units.
Stronger coupling leads to the coexistence of bidirectional rotation and also to regions of libration,
which can be seen as a conservative version of a partial oscillation death, i.e. for certain initial
conditions the coupling prevents the rotating units from rotation or even reverses their rotation.

For coupled rotators in the excitable regime we have always a pair of source/sink equilibria
that induces a dissipative region, which is identical to the basin of the sink. But only for small
coupling this basin covers a set of full measure in phase space. For strong coupling there appear
step by step conservative regions with both rotation and libration. In contrast to the oscillation
death in the oscillatory regime, this can be seen as a partial oscillation birth, where—again only for
a certain open set of initial conditions—non-oscillatory units start to oscillate as a consequence of
the coupling.

(b) Case (II): coupled rotators with reciprocal coupling
We consider now the case (II) of time reversibility given by system (2.9) and (2.10). As above, we
show in figure 7 two bifurcation diagrams with respect to (κ ,ω) with fixed a = 1 (figure 7a) and
with respect to (κ , a) with fixed ω= 1 (figure 7b). In addition to the time-reversal symmetry R,
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Figure 7. Bifurcation diagrams for case (II) time-reversible system (2.9) and (2.10). (a) Parameter plane (κ ,ω) with
fixed a= 1. (b) Parameter plane (κ , a) with fixed ω= 1. Bifurcation curves: red—saddle–centre bifurcation, green—
reversible equivariant sink/source bifurcation, blue/black—heteroclinic saddle–saddle connections.Moreover, there is a global
bifurcation induced by the phase shift invariance (brown). Structurally stable phase portraits from the different parameter
regions with labels (a–f ) are given in figure 8, phase portraits at the bifurcation curves and codimension-two points (labels
(g–p)) in figure 9. Colours of regions as in figure 1.

given by (2.5), the system (2.9) and (2.10) possesses the following Z2-equivariance

γm : (φ1,φ2) �−→ (φ2,φ1),

which is a mirror symmetry with the invariant subspace

Fixγm = {(φ1,φ2) : φ1 = φ2},
corresponding to complete synchronization. Note that the composition

Rγm = γmR : (φ1,φ2, t) �−→ (−φ1, −φ2, −t)

of the time-reversal symmetry and the Z2-equivariance provides another time-reversal symmetry.
This map has two invariant points {(0, 0), (π ,π )}, which will become important for the sink/source
bifurcation discussed below. Moreover, system (2.9) and (2.10) has a time-reversal symmetry
involving the parameters ω and κ :

γ4 : (φ1,φ2, κ ,ω, t) �−→ (φ1 + π ,φ2 + π , −κ , −ω, −t).

According to this symmetry the bifurcation diagram in figure 7a is invariant under the reflection
of both κ and ω together. The parametric symmetry

γ3 : (φ1,φ2, a, t) �−→ (φ1 + π ,φ2 + π , −a, t)

that was already present in case (I) induces the reflection symmetry of the bifurcation diagram
in figure 7b with respect to a, while there is no reflection with respect to κ alone, as in case (I).
The system can have up to four fixed points, either two pairs of a saddle and a centre, all in
Fix R, or two saddles in Fix R and a sink/source pair in the synchronization subspace Fixγm.
We encounter here the similar types of reversible bifurcations as in the case (I) scenario described
above. However, some of them are modified by the additional Z2-equivariance γm.

(i) Saddle–centre bifurcation

The red line of the saddle–centre bifurcation in figure 7a is given by

ω= − 1
8κ

− κ , |κ|> 1
4

.

This expession is derived from the condition that there is an equilibrium in Fix R with two zero
eigenvalues. This is equivalent to finding a double root of the condition for an equilibrium in
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(a) (b) (c)

(d) (e) ( f )

Figure 8. Different types of structurally stable phase portraits in case (II) of time reversibility (2.9) and (2.10) on the torus
(φ1,φ2) ∈ [0, 2π ) × [0, 2π ). Parameters in (a)–(f ) are chosen from the correspondingly marked parameter regions in the
bifurcation diagram figure 7. Colours of invariant regions and fixed points as figure 2.

Fix R. According to the mirror symmetry, we have now a pair of symmetry related degenerate
equilibria (φ∗

1 , −φ∗
1 ) and (−φ∗

1 ,φ∗
1 ), as seen in the degenerate phase portrait figure 9m. Recall that

together with the centres there appear also conservative regions of libration type, see figure 8c.
However, in contrast to case (I), where this bifurcation may induce the coexistence of conservative
and dissipative regions, we find it here only in the purely conservative region, where it induces
regions librations in a fully rotating scenario, figure 8f.

(ii) Reversible equivariant sink/source bifurcation

Similar as the reversible pitchfork bifurcation discussed in case (I), this bifurcation gives rise to a
pair of sink/source equilibria outside Fix R. However, in case (II) it includes an interplay of the
time-reversal symmetry R with the Z2-equivariance γm and is given by a degenerate equilibrium
with double zero eigenvalue that lies in

Fix R ∩ Fixγm = {(0, 0), (π ,π )}.
The corresponding bifurcation condition ω ± a = κ provides the green lines in figure 7. This
bifurcation comes here in two different versions that cannot be distinguished on the linear level.
The first type has a degenerate phase portrait as given in figure 9g. The degenerate equilibrium
connects a folded branch with two centre equilibria in Fix R, which are related by γm, with another
folded branch in Fix γm containing a source and a sink equilibrium, which are related by R.
The branches are organized as in a complex fold of the form z2 + μ= 0, z ∈ C. The structurally
stable phase portraits related by this type of bifurcation are figure 8b,c. Note that this bifurcation
connects a fully dissipative phase portrait with a fully conservative one. In the conservative
phase portrait there are two further saddle equilibria in Fix R, which each have gained in the
conservative situation a structurally stable homoclinic orbit, delineating two regions of librations
around the centre equilibria from two regions of rotation.

The second type has a degenerate phase portrait as given in figure 9l. The degenerate fixed
point connects a pair of branches with saddle equilibria in Fix R, which are related by γm,
with the branch of the sink/source pair. In this situation both folded branches extend to the
same side of the bifurcation such that all four involved equilibria coexist on one side of the
bifurcation and have all disappeared on the other side (figure 9f ). The two types change at
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(g) (h) (i) ( j)

(k) (l) (m)

(o) (p)

(n)

Figure 9. Examples of structurally unstable phase portraits in case (II) of time reversibility (2.9) and (2.10) on the
torus (φ1,φ2) ∈ [0, 2π ) × [0, 2π ). (g–m) Codimension-one; (n–p) codimension-two. Parameters are chosen from the
correspondingly marked parameter regions in the bifurcation diagram figure 7. Colours of invariant regions and fixed points
as figure 2.

a codimension-two point on the green curve where the curve of saddle–centre bifurcations
(red) ends and the corresponding degenerate phase portrait is given in figure 9p. Note that
there is a second codimension-two point along the green curve where another curve of global
bifurcations (heteroclinic saddle–saddle connections) ends. This induces global change in the
dissipative phase portraits emerging at the green line, showing beyond this point also a coexisting
conservative region with rotations.

(iii) Heteroclinic saddle–saddle connections

We have two instances of structurally unstable heteroclinic saddle–saddle connections, given
by the blue and black curves in the bifurcation diagrams in figure 7. At the blue curve a
conservative region of backward rotations appears. Figure 8h shows how this happens from a
purely dissipative situation (figure 8b) where it leads to mixed-type dynamics (figure 8e). After
the codimension-two point (figure 9o), the transition happens from a fully conservative situation
(figure 8c), where the heteroclinic saddle–saddle connection (figure 9j) induces a second region of
rotations in the opposite direction (figure 8d). This type of transition occurs also along the black
curve and has been described schematically in figure 5. Note that this bifurcation occurs for a = 1
only at very large values of ω such that it is out of the range of figure 7a.

(iv) Rotational symmetry

As in case (I), for a = 0 we obtain two Kuramoto oscillators with a rotational symmetry. The
two intervals of the straight magenta line a = 0, |κ| ≥ 1 in the bifurcation diagram in figure 7b
correspond to the situation shown schematically in figure 6, where the forced breaking of the
rotational symmetry induces a global bifurcation and small libration regions emerge from a line
of equilibria (figure 9k).
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(v) Summary of case (II)

Similar to case (I), the dynamics in the synchronization subspace plays a central role for
the dynamics. The SNIC bifurcation in this subspace, which comes here in the full system
as the reversible equivariant sink/source bifurcation, induces together with the sink/source pair
the dissipative dynamics. However, this bifurcation depends here also on the coupling strength,
i.e. it does not coincide with the SNIC of the uncoupled unit. In the dissipative regime large
values of ω can lead to rotations coexisting with the dissipative region. But in contrast to case (I)
there are no librations coexisting with a dissipative region. In the fully conservative regime we
have again situations with rotations, librations and additional rotations in opposite directions.
Comparing the dynamics with and without coupling, we find again both situations, where the
coupling enables rotations of excitable units (oscillation birth) or prevents rotations of rotating
units (oscillation death). While this happens in most cases only for a part of the phase space,
we have here also a case, where for increasing coupling two non-oscillating but excitable units
make the transition from a fully dissipative regime without any oscillations to a fully rotating
regime.

4. Generic perturbations of the reversible cases
For the general system (1.3) and (1.4) of two coupled rotators, the reversible regimes studied
above represent degenerate situations, which can be perturbed in different ways. Already for
identical oscillators, i.e. a1 = a2,ω1 =ω2, and anti-reciprocal or reciprocal coupling κ1 = ±κ2, a
phase lag parameter α �= 0 or α �= π/2, corresponding to case (I) and case (II), respectively,
will destroy the time-reversal symmetry. Other types of generic perturbations are non-identical
oscillators or identical oscillators with different coupling strengths κ1 �= ±κ2.

Only the purely dissipative regimes close to the uncoupled non-oscillatory situation have
phase portraits that are structurally stable also under all such generic perturbations. As soon as
there are conservative regions, all perturbations that break the time-reversal symmetry will lead
to structural changes in the dynamics.

— Centre equilibria will turn into stable or unstable foci.
— There will be a slow drift along families of neutrally stable periodic orbits in the

conservative regions.
— Structurally stable homoclinic orbits, which constitute the boundaries of the conservative

regions, will break.

In this way, there can appear isolated stable and unstable periodic orbits from the families in the
conservative regions. They can be both of rotation and libration type, see figure 10. In particular,
in the cases of perturbations of conservative dynamics with dissipative and conservative regions,
this can lead to multi-stability, where new stable objects of different type emerge in addition to
the structurally stable attracting equilibrium in the dissipative region as in figure 10d. Note that
for non-identical oscillators, there can be additional topologial types of periodic orbits, where
both units perform a different number of round trips during one period. Such an example will be
discussed in detail in the next section.

(a) Bursting-like orbits
A specific example of non-trivial dynamics emerging from a small perturbation of the reversible
dynamics in case (I), figure 2f is shown in figures 11–13. In the time-reversible case we have two
conservative regions, one with librations and the other with rotations. A small perturbation to
non-identical oscillators with slightly detuned frequencies ω1 �=ω2 induces a slow drift across
the conservative region of rotations without stabilizing any of these rotations. At the same time,
the centre equilibrium within the other conservative region of librations is transformed into an
unstable focus. The resulting dynamics are shown in the phase portrait in figure 11.
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(a) (b) (c) (d)

Figure 10. Phase portraits of two coupled oscillators (1.3) and (1.4) for different choices of the parametersω1,ω2, a1, a2, κ1, κ2:
(a) (0.2, 1,−1, 0.5, 3, 2); (b) (0.5, 0.5, 0.21, 0.2, 1.1, 1); (c) (0.7, 0.7, 0.1, 0.1, 1.06, 1) and (d) (0.3, 0.2, 0.9, 0.9, 1.22, 1.2). Colours:
red—unstable, blue—stable, green—saddle.

Figure 11. Phase portrait for system (1.3) and (1.4) with a1,2 = 1, κ1,2 = ∓1, α = 0 as in the reversible case (I), and
ω1 = 1.07,ω1 = 1.13. Stable periodic orbit (blue), saddle (green) and unstable focus (red). Stable and unstable manifolds of
saddle equilibrium (thin red and blue curves, respectively). Conservative regions of librations (yellow) and rotations (blue) from
the reversible case withω1 =ω2 = 1.1.

We observe a stable periodic solution (blue) that performs a bursting-like behaviour with many
rotations during the slow passage through the conservative region of rotations until it comes
close to the saddle equilibrium, where it can stay for an arbitrary long time interval. For varying
detuning of the frequencies the globally stable periodic orbits of this type are organized in a
complicated bifurcation scenario, where close to the conservative situation periodic solutions
with arbitrarily long period and an increasing number of rotations within one burst appear. In
figure 12, we show how the branches of periodic solutions are organized for varying the detuning
ε from the reversible case at ε= 0. Figure 12a shows a self-similar sequence of branches with
increasing winding number (n, n + 1), n = 1, . . . , ∞. Each of these branches ends at a homoclinic
bifurcation, where the period grows unboundedly. However, at each of these transitions, we
observe another self-similar cascade of transitions to orbits of more complicated structure existing
only in increasingly small parameter windows. Figure 12b shows the parameter region around the
first transition in figure 12a, where the branch with winding numbers (1, 2) disappears and a new
branch with (2, 3) appears. On the zoomed scale in figure 12b in between these two major branches
a new branch with winding numbers (3, 5) becomes visible. Zooming into the transition between
this branch and the (2, 3) branch, we find a branch with winding numbers (5, 8), see figure 12c.
Zooming in yet another time, we find a branch with winding numbers (7, 11), see figure 12d.
Examples of time traces of bursting orbits with different detuning values ε and resulting winding
numbers are given in figure 13.
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Figure 12. (a–d) Maximum inter spike intervals for bursting solutions with varying detuning from the time reversible case for
system (1.3) and (1.4) with a1,2 = 1, κ1,2 = ±1,ω1,2 = 1.1 ∓ ε,α= 0.
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Figure 13. Time traces of periodic solutions for system (1.3) and (1.4); φ1—blue, φ2—red. For the indicated choices of the
detuning value ε we find the following winding numbers: (a) (9,10), (b) (4,5), (c) (9,11) and (d) (5,8). Other parameters as in
figure 12.

(b) Nonlinearities with higher harmonics
As explained in §2b, the general system (1.1) and (1.2) has a time-reversal symmetry in two
different cases, where the functions f1,2(φ), governing the local dynamics are identical and even,
while the coupling functions g1,2(φ) have to be also identical but can be either odd and have
opposite signs (case (I)) or even and identical (case (II)). In §3, we investigated the case where both
functions are restricted to the leading term in the Fourier expansion. In the general case where
both functions contain higher-order harmonics, the system can possess more fixed points and, as
a result, a much more complex structure of the invariant manifolds of the saddles, which provide
the global structure of the dissipative and conservative regions in the regimes of mixed-type
dynamics.

We will now briefly indicate how in the case (I) of a system with anti-reciprocal coupling the
presence of higher-order harmonics in the local function of the local dynamics f (φ) = f1,2(φ) and in
the coupling function g(φ) = g1(φ) = −g2(φ) can lead to more complex time-reversible dynamics.
First, note that already a single rotator φ̇ = f (φ) with an even function f (φ) containing the n-th
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(a) (b) (c)

Figure 14. Examples of phase portraits for the general system of two coupled active rotators (1.1) and (1.2) with higher
harmonics (4.1) and (4.2). Parameters: (a)ω= 0, p= 0, κ = 1.2, r = 0.7, n= 15; (b)ω= 0.1, p= 0.2, m= 3, κ = 1.2,
r = 0.7, n= 5 and (c)ω= 0, p= 1, n= 2, κ = 4, r = 0. Colours of regions and fixed points as in figure 2.

harmonic cos(nφ) can have up to 2n different fixed points. For a system of two such units with
small coupling this gives rise to 4n2 fixed points, which are sinks, sources and saddles outside
Fix R and also saddles inside Fix R. At the other hand, for two Kuramoto oscillators, i.e. f (φ) =ω,
a coupling function g(φ) containing the m-th harmonic sin(mφ) can induce up to 2m lines of
equilibria ψj = φ1 − φ2, j = 1, . . . , 2m, where g(ψj) − ω= 0. Breaking the rotational symmetry by
a slightly non-constant f (φ), this leads to 2m saddle/centre pairs in Fix R and corresponding
conservative regions of rotations and librations, compare figure 6. Hence, we can say that in a
general system (1.1) and (1.2) with case (I) time reversibility, the higher harmonics of f (φ) can
induce multiple equilibria outside Fix R and hence a more complex structure in the dissipative
part, while functions higher harmonics of g(φ) are responsible for the emergence of multiple
equilibria inside Fix R, leading to multiple conservative regions.

We illustrate this in figure 14 by two examples of functions of the form

f (φ) =ω − cosφ − p cos(nφ), (4.1)

g(φ) = κ(sinφ + r sin(mφ)). (4.2)

Note that in figure 14a,c, we have chosen ω= 0 such that we have the second time reversibility
R2, such that there are heteroclinic saddle–saddle connections, compare corresponding phase
portraits in figure 3i,j. In figure 14b, where we have chosen ω �= 0, all saddles in Fix R have
structurally stable homoclinics. Moreover, there are saddle equlibria outside Fix R. They come in
pairs related by R and can have structurally stable heteroclinic connections between them. They
can be involved in a second type of reversible pitchfork bifurcation (saddle–saddle type), where
an equilibrium inside Fix R changes from saddle to centre, while a branch with two saddles
outside Fix R emerges, cf. figure 14b. Figure 14c shows also the result of a third type (centre–
centre) of the reversible pitchfork bifurcations: the emergence of two centres outside Fix R from
a centre inside Fix R that, at the same time, transforms from a centre into a saddle.

We see that some of the structural restrictions, which we encountered in the system (2.7) and
(2.8) of case (I) time reversibility with only first harmonics are no more present for higher-order
harmonics. In particular,

— there can be a large number of equilibria, in particular pairs of saddle equilibria outside
Fix R and sink/source pairs outside the synchrony subspace.

— there can appear multiple nested regions of conservative regions of different type and
nested regions of conservative and dissipative dynamics.

However, the general observation remains true: The anti-reciprocal coupling of case (I) can induce
a partial oscillation death, i.e. for certain initial conditions the coupling prevents the rotating units
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from rotation or even reverses their rotation. Also the effect of partial oscillation birth, where
non-oscillatory units start to oscillate as a consequence of the coupling.

5. Discussion and outlook
We have demonstrated that already for a fairly simple two-dimensional system of two coupled
rotators in the transitional regimes between attractive and repulsive coupling there can arise
quite complex dynamics. Particularly rich dynamics occur for parameter choices where the
system has a time-reversal symmetry. In this case, we also encounter the somewhat unusual
types of bifurcations of time-reversible systems. Additionally, such systems can switch between
dissipative and conservative dynamics, and also display the coexistence of different regions with
such dynamics in phase space, which are governed by complex heteroclinic and homoclinic
structures connecting the fixed points within and outside the symmetry subspace.

Note that certain interesting regimes and properties described in this work for the system
of two connected active rotators also exist for more complex networks of rotators. In particular,
a system of 2N globally connected active rotators φ̇k = fk(φk) + ∑2N

j=1 gkj(φk − φj), where fk(x) =
fk(−x) = fk+N(x), gkj(x) = ±gkj(−x) = ±gk+N,j+N(x), can display a time-reversal symmetry similar
to the cases given here, e.g. with a symmetry action of the form φi �→ −φi+N , i = 1, . . . , N. A
system of 2N + 1 globally coupled active rotators with even coupling functions can have a
time-reversal symmetry with symmetry action φi �→ −φi+N+1, i = 1, . . . , N, φN+1 �→ −φN+1. Also
other symmetry actions, based on other permutations or phase shift symmetries, are possible.
In all these cases, the system can have a coexistence of conservative and dissipative dynamics
over wide regions in the parameter. Our preliminary numerical investigation indicates quite
complex structures in a four-dimensional system. We observe there conservative regions of
multi-parameter families of neutral periodic orbits are bounded by sets of homo/heteroclinic
cycles. Despite the apparent complexity of global bifurcations in multi-dimensional systems,
certain of their properties are similar to the bifurcations described above. Also the destruction of
conservative regions by small symmetry breaking perturbations and the emergence of trajectories
slowly drifting along the families of former neutral periodic orbits occurs in a somewhat similar
way.
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