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a b s t r a c t

We consider the nonlinear extension of the Kuramoto model of globally coupled phase oscillators where
the phase shift in the coupling function depends on the order parameter. A bifurcation analysis of the
transition from fully synchronous state to partial synchrony is performed. We demonstrate that for small
ensembles it is typically mediated by stable cluster states, that disappear with creation of heteroclinic
cycles, while for a larger number of oscillators a direct transition from full synchrony to a periodic or a
quasiperiodic regime occurs.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

A model of coupled limit cycle oscillators explains a variety of
natural phenomena in various fields of science. The applications
range from the description of the collective dynamics of Josephson
junctions [1], lasers [2], electrochemical oscillators [3] to neuronal
populations [4], etc. Very often, when the oscillator network is not
too sparse, it can be approximately considered as fully connected,
or globally coupled.

Ensembles of weakly interacting units are successfully treated
within the framework of phase approximation [5–7]. Most popular
is the Kuramoto model of sine-coupled phase oscillators, or
its extension, the Kuramoto–Sakaguchi model [8]. This model
explains self-synchronization and appearance of a collective mode
(mean field) in an ensemble of generally non-identical elements;
the transition to synchrony occurs at a certain critical value of the
coupling constant that is roughly proportional to the width of the
distribution of natural frequencies [5,6,9,10].

An extension of the Kuramoto model for the case of nonlinear
coupling has been suggested in recent publications [11,12]; see
also [13,14]. Nonlinearity in this context means that the effect of
the collective mode on an individual unit depends on the ampli-
tude of this mode, so that, e.g., the interaction of the field and of
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(A. Pikovsky).

a unit can be attractive for a weak field and repulsive for a strong
one. Formally, this is represented by the dependence of the param-
eters of theKuramoto–Sakaguchimodel (the coupling strength and
the phase shift) on the mean field amplitude. The model exhibits
nontrivial effects like a destruction of a completely synchronous
state and appearance of partial synchrony in an ensemble of iden-
tical units. Moreover, in this setup the frequencies of the collec-
tive mode and of oscillators can be different and incommensurate.
The physical motivation for the nonlinear coupling is as follows.
An important realistic case where the Kuramoto–Sakaguchi model
applies, is that of an array of electronic oscillators (Josephson junc-
tions) with a common LCR-load. The load is driven by the sum of
voltages from the oscillators, and the oscillators are driven by the
load’s current, thus ensuring a linear global coupling. In the case
when the load is nonlinear (e.g. via dependences of capacitance C
or inductance L on the voltage and the current), then the nonlinear
extension of the Kuramoto model should be used.

An analytical description of the dynamics of oscillator ensem-
bles remains an important and challenging problem. A seminal
work in this direction is that of Watanabe and Strogatz (WS)
[15,16]. The WS theory is a powerful tool that provides a nearly
full dynamical description of ensembles of identical oscillators,
sine-coupled to a common external force. In particular, this force
can be the mean field of the population, so that for the case of
identical units the WS theory almost completely describes the
Kuramoto–Sakaguchi and the nonlinear models (see [12]). This
description is given in terms of three collective (macroscopic) vari-
ables, hereafter called the WS variables, plus constants of mo-
tion. The collective variables obey 3WS equations (see [17]); thus,
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the dynamics of an ensemble of identical elements is effectively
three-dimensional. However, the WS theory has one drawback: it
cannot describe certain cluster states, i.e. regimes where the oscil-
lators build identical groups. In this paper, we complement theWS
theory by performing a direct bifurcation analysis of the dynami-
cal phase equations of the model of nonlinearly coupled phase os-
cillators. We will especially emphasize on cluster states and their
bifurcations, in particular on the heteroclinic cycles (see [18] for
a recent review of robust heteroclinic cycles) that can be hardly
treated within the WS approach. We will see that the role of clus-
ters is mostly important for small ensembles. Because of identity
of the oscillators, the system possesses a permutation symmetry,
so we employ the corresponding bifurcation approach (see, e.g.,
[19,20]).

The paper is organized as follows.We introduce the basicmodel
in Section 2. Then in Section 3 we discuss general properties of bi-
furcations, possible attractors and their interpretation as different
synchronization patterns. In Section 4 we present bifurcation dia-
grams for amodel of nonlinearly coupled oscillatorswith quadratic
nonlinearity [12]. In Conclusion a relation to the WS theory is
discussed.

2. Model of nonlinearly coupled phase oscillators

We consider an ensemble of N limit cycle oscillators, described
by their phases θi ∈ [0, 2π), i = 1, . . . ,N . They are assumed to
interact globally, via the complex mean field

reiψ =
1
N

N−
j=1

eiθj , (1)

having amplitude r and phase ψ:

θ̇i = ωi + G(r, ψ, θi). (2)
Here ωi are natural frequencies of the oscillators and G is the
coupling function. Different popular models correspond to dif-
ferent choices of coupling function G. The case G(r, ψ, θi) =

rK Im(ei(ψ−θ)) corresponds to the famous Kuramoto model [6],
while the choice G(r, ψ, θi) = rK Im(e−iαei(ψ−θ)) yields the
Kuramoto–Sakaguchi model [8].

In this paper we focus on a coupling function that nonlinearly
depends on the amplitude of the mean field r and on a set of
parameters β:

G(r, ψ, θi) = rK(r, β) sin(ψ − θ + α(r, β)). (3)
This model has been introduced in [11] and studied in the
thermodynamic limitN → ∞ in [12]. In this paperwe focus on the
properties of small ensembles of nonlinearly coupled oscillators,
restricting our analysis to the case of identical oscillators ωi = ω
and of phase nonlinearity only K(r, β) = 1. The latter restriction
is not very important, as the cases where K(r, β) can change sign
are in fact trivial. Substituting (3) in (2) we obtain an equivalent
formulation of the ensemble dynamics

θ̇i = ω +
1
N

N−
j=1

sin(θj − θi + α(r, β)). (4)

To exploit the phase-shift symmetry of this system one can de-
scribe the system dynamics in terms of the phase differences
ϕi = θ1 − θi+1, i = 1, . . . ,N − 1, (5)
thus reducing this N-dimensional system to the (N − 1)-dimen-
sional system

ϕ̇i = −
1
N


N−1−

j=1,j≠i

sin(ϕi − ϕj + α(r, β))

+ sin(ϕi + α(r, β))+

N−1−
j=1

sin(ϕj − α(r, β))


. (6)

One can check that the order parameter r can be written in terms
of phase differences as

r =
1
N

N + 2
N−1−

i,j=1,i≠j

(cos(ϕj)+ cos(ϕi − ϕj)). (7)

Belowwewill discuss synchronization transitions in the system by
virtue of studying invariant manifolds, fixed points, cycles, hetero-
clinic cycles and their bifurcations for the system in phase differ-
ences (6).

Before proceeding to the analysis, we mention that system (4)
possesses symmetries given by all permutations of the oscilla-
tors [21]. Due to identity of the oscillators, the main dynamical
regimes appear as invariant sets of the system:
(1) Completely synchronous solution, where all the oscillators are

in the same state:
O = {(θ1, . . . , θN) : θ1 = θ2 = · · · = θN}.

(3) Completely asynchronous solution

M =


(θ1, . . . , θN) :

N−
j=1

eiθj = 0


. (8)

The set M is a union of invariant manifolds of dimension N −2
for N ≥ 3 [22], it corresponds to the case of vanishing order
parameter r = 0.

(2) Cluster states, where groups of oscillators have identical
phases. A general n-cluster state can be written as (up to per-
mutation of indices)

Pn =


(θ1, . . . , θN) : θ1 = · · · = θp1; θp1+1

= · · · = θp1+p2; . . . ; θ
∑n−1

1 pj+1 = · · · = θN


, (9)

where p1 + p2 + · · · + pn = N . We will be mainly interested
in two-cluster states (we will see that only such states appear
as stationary solutions)

P2 =

(θ1, . . . , θN) : θ1 = · · · = θp; θp+1 = · · · = θN


, (10)

characterized by the partition (p : N − p).

3. General analysis of synchronization and bifurcations

In this section we study general bifurcation scenarios in the
system of nonlinearly coupled oscillators (4), to be illustrated by
particular examples in the next section.

3.1. Bifurcations in the Kuramoto–Sakaguchi model

We start with the simplest case of linearly coupled oscillators.
Here model (4) reduces to the standard Kuramoto–Sakaguchi
model which we write as

N θ̇i = gi(θ1, . . . , θN , α) = −

N−
j=1

sin(θi − θj − α). (11)

Equilibria. To describe the steady states of the corresponding
system in differences ϕi = θ1 − θ1+i, we need to solves the system
of N − 1 algebraic equations
g1(θ1, . . . , θN , α)− gi(θ1, . . . , θN , α) = 0, i = 2, . . . ,N, (12)
where α is a scalar parameter. The next lemma helps us to charac-
terize the steady states of the system (11).

Lemma 1. For any α ∈ T1, the set (θ1, . . . , θN) satisfies system of
Eq. (12) if and only if one of the following three conditions is fulfilled:
(1) θ1 = · · · = θN ,
(2)

∑N
j=1 e

iθj = 0,
(3) θ1 = θ2 = · · · = θp ≠ θp+1 = θp+2 = · · · = θN , p =

1, . . . ,N − 1, (plus all possible permutations).
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This Lemma means that the only possible steady states are that
of complete synchrony (one cluster), complete asynchrony, and of
two-clusters.

Proof. It is easy to check that states (1)–(3) satisfy the system (12).
We will show that the roots of the system (12) satisfy (1)–(3). We
can rewrite (12) in the following way:

(sin(θ1 − α)− sin(θi − α))

N−
j=1

cos θj

− (cos(θ1 − α)− cos(θi − α))

N−
j=1

sin θj = 0, (13)

where i = 2, . . . ,N . We consider four possible cases.

A. If
∑N

j=1 sin θj = 0 and
∑N

j=1 cos θj = 0 simultaneously, then
the condition (2) of the lemma is satisfied.

B. The next possible case is that of
∑N

j=1 sin θj = 0 but
∑N

j=1
cos θj ≠ 0. In this case (13) implies

sin(θ1 − α) = sin(θi − α), i = 2, . . . ,N.

The last system shows that we can obtain only two-cluster
solutions:

θi =


θ1, i = 2, . . . , p,
−θ1 + 2α + π, i = p + 1, . . . ,N,

which must satisfy equations

p sin θ1 − (N − p) sin(θ1 − 2α) = 0, p = 1, . . . ,N.

The last equations arise from
∑N

j=1 sin θj = 0 and they show
that two-cluster states are possible only for some values of
parameterα in this case. Note that the case p = N corresponds
to a one-cluster solution (condition 3 reduces to condition 1).

C. Consider the case,where
∑N

j=1 cos θj = 0, and
∑N

j=1 sin θj ≠ 0.
As in the previous case we obtain a possibility of two-cluster
(or one-cluster, if p = N) states only:

θi =


θ1, i = 2, . . . , p,
−θ1 + 2α, i = p + 1, . . . ,N,

which satisfy conditions

p cos θ1 + (N − p) cos(θ1 − 2α) = 0, p = 1, . . . ,N.

D. Consider (θ1, . . . , θn) such that
∑N

j=1 sin θj ≠ 0 and
∑N

j=1

cos θj ≠ 0. Denote S :=
∑N

j=1 sin θj, C :=
∑N

j=1 cos θj, s
α
j :=

sin(θj − α), cαj := cos(θj − α). Then Eq. (13) has the following
form:

(sα1 − sαi )C − (cα1 − cαi )S = 0, i = 2, . . . ,N. (14)

D1. Suppose that sα1 − sαi = 0 for all i = 2, . . . ,N . Then using
inequality S ≠ 0 we obtain cα1 − cαi = 0 for i = 2, . . . ,N .
Equalities for sαj and cαj considered together yield ei(θj−α) −

ei(θ1−α) = 0, j = 2, . . . ,N , what means that all the values
of θj, j = 1, . . . ,N , are equal.

D2. Now let us consider another case, where there exists a number
i0 such that sα1 − sαi0 ≠ 0. Without loss of generality we can set
i0 = 2. Then from the first of Eq. (14) we obtain

C = (cα1 − cα2 )S/(s
α
1 − sα2 ).

Substituting C into the second equation of (14), we get

S(sα1 − sα3 )(c
α
1 − cα2 )/(s

α
1 − sα2 )− S(cα1 − cα3 ) = 0.

Using conditions S ≠ 0 and (sα1 − sα2 ) ≠ 0, we obtain

(sα1 − sα3 )(c
α
1 − cα2 )− (sα1 − sα2 )(c

α
1 − cα3 ) = 0,

and then

(sα1 c
α
3 − cα1 s

α
3 )+ (sα2 c

α
1 − cα2 s

α
1 )+ (sα3 c

α
2 − cα3 s

α
2 ) = 0.

After returning to the old notations and some transformations,
we obtain the expression

sin(θ1 − θ3)+ sin(θ2 − θ1)+ sin(θ3 − θ2) = 0,

which already does not contain parameter α. We provide the
last part of the proof by contradiction. The case D supposes
that condition (2) is not valid. Now suppose that the conditions
(1) and (3) are not satisfied as well. This means that there
exists a solution (θ1, . . . , θN) of the system (13) such that at
least three variables θi1 , θi2 , θi3 of this solution are not equal
to each other. Without loss of generality we can set i1 =

1, i2 = 2, i3 = 3 because we can replace variables using
permutation (network has SN symmetry). Inequalities θ1 ≠

θ2, θ1 ≠ θ3, θ2 ≠ θ3 imply that

sin(θ1 − θ3)+ sin(θ3 − θ2)+ sin(θ2 − θ1)

= −4 sin

θ1 − θ3

2


sin

θ3 − θ2

2


sin

θ2 − θ1

2


≠ 0.

This contradiction proves validity of either (1) or (3).
D3. Consider a situation, when cα1 − cαi0 ≠ 0 for some number

i0. In the same way as in the previous case D2 we prove that
solutions of (13) satisfy one of the conditions (1) or (3).
Lemma is proved. �

Corollaries of Lemma 1. Lemma 1 implies that all steady states of
the Kuramoto–Sakaguchi system, in terms of the phase differences,
are one-cluster, two-cluster, or completely desynchronized states.
As the two-cluster states constitute straight lines (plus those
obtained by permutations of the variables)

ϕ1 = ϕ2 = · · · = ϕp ≠ ϕp+1 = ϕp+2 = · · · = ϕN−1 = 0,

p = 1, . . . ,N − 1, (15)

all bifurcations of cluster steady states in this case are one-dimen-
sional (in the sense that the normal forms are one-dimensional).
Furthermore, to study the existence of nontrivial cluster steady
states we only need to solve scalar algebraic equations

p sin(ϕk − α)+ (N − p) sin(ϕk + α)− (N − 2p) sinα = 0,
k = 1, . . . , p. (16)

This equation has only two solutions on T 1: ϕk = 0 and

ϕk

=



arccos


−
2p(N − p)+ (N2

− 2p(N − p)) cos(2α)
N2 + 2p(N − p)(cos(2α)− 1)


α ∈


0;
π

2


∪

[
π;

3π
2


,

− arccos


−
2p(N − p)+ (N2

− 2p(N − p)) cos(2α)
N2 + 2p(N − p)(cos(2α)− 1)


α ∈

π
2

;π


∪

[
3π
2

; 2π

.

(17)

We can see that a bifurcation in the system (11) occurs only when
α = π/2 and it is transcritical. The bifurcation value of parameter
α does not dependon thenumber of oscillatorsN andon the cluster
partition (number p).

Note that in the case of a symmetric partitionN = 2p, Eq. (16) have
a very simple form

2p sinϕk cosα = 0.

For this partition the only steady states are ϕk = 0 or ϕk = π ,
provided α ≠ ±π/2. There is no any bifurcation on these lines
for these values of the parameter. Vice versa, for α = ±π/2
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a
b

Fig. 1. Illustration of bifurcations of steady states for N = 3 (left panel in (a), the system in terms of phase differences ϕ is two-dimensional), and N = 4 (right panel in (a),
the system in terms of phase differences ϕ is three-dimensional). Panel (b) illustrates particular transitions in the selected regions of the phase space (see text for details).

the whole two-cluster invariant line in the case of symmetric
partition consists of fixed points. These fixed points are degenerate
saddles (in the direction of lines with symmetry mentioned) and
together with their one-dimensional manifolds they build a set of
heteroclinic cycles.

As it follows from Lemma 1 and formula (17), the standard Ku-
ramoto model of identical oscillators (α = 0) and the system with
coupling α = ±π/2 have a simple structure of the steady states.
The standard Kuramoto model has only equilibria of two types: (i)
equilibria that compose the manifold M (with vanishing order pa-
rameter) and (ii) equilibria that have coordinates differences θj−θk
equal to 0 or to ±π . In the case α = ±π/2 all equilibria satisfy ei-
ther (i) lie on the manifold M or (ii) correspond to a completely
synchronous state, where θj = θk, j, k = 1,N , and r = 1.

3.2. Bifurcations in a model of nonlinearly coupled oscillators

Themodel of ourmain interest (system (4) or, equivalently, (6))
differs from the Kuramoto–Sakaguchi model only by the nontrivial
phase shift α. Fortunately, using Lemma 1 we can localize steady
states in a system of equations even more general than (11), with
r.h.s. containing an arbitrary scalar function

α = α(θ1, . . . , θN , β),

where β is some vector of parameters β = (β1, . . . , βm), m ≥ 1.
To do this we need to describe all solutions of the algebraic system

g1(θ1, . . . , θN , α(θ1, . . . , θN , β))

− gi(θ1, . . . , θN , α(θ1, . . . , θN , β)) = 0, i = 2, . . . ,N. (18)

Lemma 2. (θ1, . . . , θN) satisfy system (18) for any smooth scalar
function α(θ1, . . . , θN , β) and a vector of parameters β ∈ Rm if and
only if they satisfy one of the following conditions:

(1) θ1 = · · · = θN ,
(2)

∑N
j=1 e

iθj = 0,
(3) θ1 = θ2 = · · · = θp ≠ θp+1 = θp+2 = · · · = θN , p =

1, . . . ,N − 1, up to permutations.

Proof. Let us assume that conditions of Lemma 2 are violated for
some fixed value of variables (θ1, . . . , θN) = (θ01 , . . . , θ

0
N) and

parameters β = β0
= (β0

1 , . . . , β
0
m). Then Lemma 1 is not valid for

system (12) for the fixed parameter value α = α

θ01 , . . . , θ

0
N , β

0

.

This contradiction proves Lemma 2. �

Note that herewedonot require from functionα (and thus from
the coupling function of the whole system) any type of symmetry.
Nevertheless, all equilibria bifurcations are one-dimensional and
they occur on the straight lines which are invariant, and are
described by (16). However, in the paper wewill consider coupling

function g with permutation symmetry SN and will describe
bifurcations of the system using this symmetry property.

Lemma 2 shows that (like in the standard Kuramoto–Sakaguchi
model) all steady states of system (6) (where α = α(r, β)) belong
only to the invariant manifold M or to clusters with isotropy
Sp × SN−p. In the latter case the problem reduces to solving scalar
algebraic equations

p sin(ϕk − α(r(ϕk), β))+ (N − p) sin(ϕk + α(r(ϕk), β))

− (N − 2p) sin(α(r(ϕk), β)) = 0 (19)

for these steady states. In these equations themean field amplitude
r is defined according to (15) and it depends only on one variable
ϕk, where k = 1, . . . , p. Also we can see that all steady state bi-
furcations have one-dimensional normal forms. Belowwe describe
these and other bifurcations, illustrating them with cases N = 3
and N = 4 (Figs. 1 and 2).
Bifurcations of the completely synchronous state ϕj = 0. The origin
of the system (6) is an equilibrium for any value of the function
α(r, β). Consider the Jacobian matrix of this system at the point
ϕj = 0, j = 1, . . . ,N − 1. All eigenvalues of this matrix have the
same value:

λi = −N cos(α(1, β)), i = 1, . . . ,N − 1.

This means that the origin of the system changes its stability when
α(1, β) = ±π/2. Also, as it was argued above, a bifurcation must
be one-dimensional on each of the invariant lines with symmetry
Sp×SN−p. This bifurcation can be either a transcritical or a pitchfork
one. A pitchfork bifurcation can happen only in the case of an even
number of oscillators and this bifurcation occurs along invariant
lines with the symmetry SN/2 × SN/2 as it was shown by Ashwin
and Swift [21].

Thus, a typical bifurcation of the completely synchronous state
is a transcritical bifurcation (see row (1) in Fig. 1(b)). These
bifurcations occur simultaneously on all invariant lines with the
isotropies Sp × SN−p, p ≠ N/2. Bifurcation parameters β =

(β1, . . . , βm) are defined from the expression α(1, β) = ±π/2.
The steady state at the bifurcation point is a degenerate saddle
(all eigenvalues of the linearized system are zero).

∑[N+1]/2−1
j=1 C j

N
saddles, where [N] is the integer part of N , meet together at the
origin. The bifurcation changes stability of the origin along each of
the one-dimensional directions.

A pitchfork bifurcation of the origin (see row (3) in Fig. 1(b))
occurs simultaneously with the transcritical bifurcation, when the
number of oscillators is even. Two saddles appear (disappear) from
the origin (stable or unstable) and move in opposite directions
along the lines which have SN/2 × SN/2 isotropy. In the case of an
even N these saddles are usually generators of trajectories (one-
dimensional manifolds) which can be parts of heteroclinic cycles,
under some additional conditions.



Author's personal copy

1356 O. Burylko, A. Pikovsky / Physica D 240 (2011) 1352–1361

Fig. 2. Illustration of bifurcations via heteroclinic cycles. Upper panel: HC appears
via a saddle–node bifurcation and gives rise to a limit cycle. Middle panel: The case
of Kuramoto–Sakaguchi, here at the bifurcationpoint a family of neutral cycles exist,
while beyond it only a fully asynchronous steady state is stable. Bottom panel: HC
appears via a transcritical bifurcation and gives rise to a limit cycle.

Clusters and their bifurcations. To find all other steady states on
the invariant lines with the symmetries Sp × SN−p we should
solve appropriate algebraic system (18) that satisfies (15)—this
means that we need to solve one algebraic equation. Typically,
steady states appear (or disappear) by pairs on each invariant
line for ϕj ∈ (0, 2π), j = 1, . . . ,N − 1, and this appearance
(disappearance) corresponds to a saddle–nodebifurcation (see row
(2) in Fig. 1(b)). A saddle–node bifurcation that occurs in the (N −

1)-dimensional space (where our reduced system is considered)
leads to the appearance of two new points, i.e. of two new two-
cluster states. These two points have opposite stabilities along
the one-dimensional manifold with isotropy Sp × SN−p, but the
same stabilities transversal to these one-dimensional manifolds.
In particular, one of these two newly appeared points can be a
stable or an unstable node. A stable node on the one-dimensional
invariant line corresponds to a two-cluster with symmetry Sp ×

SN−p.
Heteroclinic and limit cycles. Saddle steady states that appear in
the transcritical and saddle–node bifurcations described above
may have unstable manifolds that are connected to each other,
thus constituting a heteroclinic cycle (see also a similar structure
described in [22]). When the heteroclinic cycle disappears, a
usual limit cycle may appear, corresponding to a periodic non-
synchronous regime in system (6). We illustrate two types of such
a bifurcation in Fig. 2. In the upper panel we show an appearance of
a limit cycle via a heteroclinic one, that appears at the saddle–node
collision. Generation of a limit cycle by a saddle–node bifurcation
via a heteroclinic cycle is a typical situation in the system (6). In
the case of an even number of oscillators, saddle–node bifurcations
on the invariant lines can give possibility to connect different one-
dimensional manifolds of saddles (pairs of saddles) generated by
pitchfork bifurcation from the origin. The bottom panel illustrates
a heteroclinic cycle appearing at a transcritical bifurcation at
the origin. Heteroclinic (or homoclinic) cycle consists of the
origin point and loops of Sp × SN−p invariant lines. The middle

panel in Fig. 2 shows the same transcritical bifurcation in the
Kuramoto–Sakaguchi model.

Another possibilities of a limit cycle to appear are an An-
dronov–Hopf bifurcation of the point of M (we will show this
below), and a saddle–node bifurcation of two limit cycles. The ex-
istence of more complicated structures such as of a quasiperiodic
torus or chaotic attractors is impossible for the system in phase dif-
ferences (6). This follows from theWatanabe–Strogatz theory [16].
As it was shown in [16,12], the system (4) can be reduced to a
skew three-dimensional system where the equation for one vari-
able fully depends on two other ones. Thus, the dynamics of the
two ‘‘driving’’ variables canbe atmost periodic, and the full dynam-
ics at most quasiperiodic. In the terms of variables we use here, the
‘‘driving’’ variables correspond to phase differences ϕk, their dy-
namics thus can be at most periodic. The full dynamics of phases
θk includes onemore integration and can be at most quasiperiodic.
Multistability. If a saddle–node bifurcation generates a stable node
while a stable node at the origin still exists, we obtain a bistabil-
ity of a fully synchronized and two-cluster regimes. Note that de-
pending on function α(r, β), we can obtain many stable nodes on
the invariant lines, resulting in amultistability of synchronous and
different two-cluster states.

One can also observe a coexistence of limit cycles appeared via
different saddle–node bifurcations accompanied by heteroclinic
cycles. Part of these cycles are stable but other ones are not.
Attractors. As a result, one can observe the following types of
possible stable regimes or their combinations in system (6):

(1) Complete synchrony ϕj = 0, j = 1, . . . ,N .
(2) Two-cluster regime with symmetry Sp × SN−p.
(3) Limit cycle.
(4) Heteroclinic cycle.
(5) Manifold M(N).

Stability of M. Consider the invariant set M. This set is (N − 3)-
dimensional in TN−1 and consists of steady states of the system. To
describe local bifurcations, we need to consider the property of the
Jacobi matrix

J = J(ϕ1, . . . , ϕN−1, α(r, β))

=
∂(g1(ϕ1, . . . , ϕN−1, α), . . . , gN−1(ϕ1, . . . , ϕN−1, α))

∂(ϕ1, . . . , ϕN−1)

on the points of the manifold M. We will show that N − 3
eigenvalues of Jacobian vanish, so there is no any motion inside
the manifold.

Lemma 3. Jacobian rank of the system (6) is:

rank(J) =


1, for two-clusters with symmetry SN/2 × SN/2,
2, in other cases.

Proof. Jacobian matrix J has the elements

Jkk =
∂gk
∂ϕk

= −


cos(ϕk − α)−

∂α

∂ϕk

N−1−
j=1

cos(ϕj − α)

+


1 +

∂α

∂ϕk


cos(ϕk + α)+

N−1−
j=1,j≠k

cos(ϕk − ϕj + α)


,

Jki =
∂gk
∂ϕi

= −


cos(ϕi − α)− cos(ϕk − ϕi + α)

−
∂α

∂ϕi

N−1−
j=1

cos(ϕj − α)

+
∂α

∂ϕi


cos(ϕk + α)+

N−1−
j=1,j≠k

cos(ϕk − ϕj + α)


.
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Sincewe consider themanifoldM, then using (8) and (5)we obtain

cosα +

N−1−
j=1

cos(ϕj − α) = 0

and

cos(ϕk + α)+ cosα +

N−1−
j=1,j≠k

cos(ϕk − ϕj + α) = 0.

Thus, in this case the elements of the Jacobian matrix are

∂gk
∂ϕj


M(N)

= cos(ϕj − ϕk − α(0, β))− cos(ϕj − α(0, β)),

j, k = 1, . . . ,N − 1.

Denote each column of matrix J by Jk, k = 1, . . . ,N − 1. To prove
that rank of the matrix is not greater than two, we need to show
that there exists a linear dependence between any three columns
J i, Jk, J l of matrix J , i.e. there exist two scalar functions γj and γk
such that

γjJ j + γkJk = J l.

One can check that the last expression is satisfied with functions

γj =
sin(ϕl − ϕk)

sin(ϕj − ϕk)
, γk =

sin(ϕl − ϕj)

sin(ϕk − ϕj)
,

when ϕj ≠ ϕk. Thus rank(J) ≤ 2.
We can rewrite the equation for the columns in the form

sin(ϕk − ϕl)J j + sin(ϕl − ϕj)Jk + sin(ϕj − ϕk)J l = 0.

All coefficients are not equal to zero in this expression when ϕi ≠

ϕk ≠ ϕl. Thus rank(J) is not less than two when the system has at
least a three-cluster regime. Then rank(J) = 2 for three-or-more
cluster regimes.

In the case of even number of oscillatorsN = 2p, the system can
have two-cluster states with symmetry SN/2 × SN/2 that belong to
the invariant manifold M. This means that in the last equation one
coefficient is equal to zero that implies rank(J) = 1. The lemma is
proved. �

The lemma shows that the Jacobian has N −3 eigenvalues equal to
zero on the manifold M. However, as it was shown, the rank of the
Jacobian depends on values of the variables (i.e. on the coordinates
of points on the manifold). Thus, to find the eigenvalues of J we
need to consider not only 2 × 2 minor of Jacobian matrix but
the whole matrix. Each of the eigenvalues is a function of N − 3
variables in the points of the manifold. Let us express the last
two variables ϕN−2 and ϕN−1 as the functions of the variables
ϕ1, . . . , ϕN−3 using expressions for real and imaginary parts of (8).
Then we obtain:

ϕN−2 = arctan

f2
f1


−

1
2
arccos


f 21 + f 22

2
− 1


+
π

2
(1 − sign(f1)),

ϕN−1 = arctan

f2
f1


+

1
2
arccos


f 21 + f 22

2
− 1


+
π

2
(1 − sign(f1)),

where

f1(ϕ1, . . . , ϕN−3) = −1 −

N−3−
j=1

cosϕj,

f2(ϕ1, . . . , ϕN−3) = −

N−3−
j=1

sinϕj.

In the case of a uniform distribution of oscillators on the cir-
cle (splay state according to terminology used for Kuramoto
model [16]), that is when

ϕ1 =
2π
N
, ϕj = jϕ1, j = 2, . . . ,N − 1,

and the eigenvalues of the Jacobian are

λN−2,N−1 =
N
2
(cosα ± i sinα).

In general case, the eigenvalues are

λN−2,N−1(ϕ1, . . . , ϕN−3)

=
N
2


cosα ±


cos2 α − h2(ϕ1, . . . , ϕN−3)


,

where |h(ϕ1, . . . , ϕN−3)| ≤ 1 is some rather complicated smooth
function. Therefore, we obtain an Andronov–Hopf bifurcation
when α = ±π/2. This bifurcation happens simultaneously in each
point of manifoldM except for the points with isotropy SN/2×SN/2
where function h(ϕ1, . . . , ϕN−3) = 0.

In the case of three coupled phase oscillators, the zero-dimen-
sional manifold M(3) consists of two points (2π/3, 4π/3) and
(4π/3, 2π/3). At an Andronov–Hopf bifurcation, each of these
two points changes its stability and generates supercritically (or
destroys subcritically) a limit cycle. With a further variation of
a parameter, this limit cycle can grow in amplitude and disap-
pear, either in a saddle–node/heteroclinic bifurcation, or via a sad-
dle–node bifurcation of two limit cycles.

More nontrivial situations can happen in the case of four glob-
ally coupled oscillators. Invariant manifold M(4) in this case con-
sists of six straight lines. Coordinates of such lines are (ϕj, π, ϕj +

π) up to permutations. Invariant manifold has Z2 isotropy. The
function h(ϕj) = sinϕj appears in the expressions for the eigen-
values of the Jacobian matrix. An Andronov–Hopf bifurcation
happens simultaneously in each of the manifold’s points. Thus,
we obtain a two-dimensional surface that consists of limit cycles.
Noteworthy, the bifurcation differs from a Neimark–Sacker bifur-
cation. Each of this cycles is attractive (repulsive) only inside the
surfaces described by Watanabe–Strogatz theory [16], in other di-
rection it is neutral. A possible way of this two-dimensional sur-
face to disappear is a saddle–node heteroclinic bifurcation on the
invariant lines described above. A two-dimensional set of hete-
roclinic cycles occurs at the point of bifurcation (such a set was
shown in Fig. 10 in [22]).

Another possibility is disappearance (appearance) of two limit
cycles in a saddle–node bifurcation of cycles.We can note that such
a bifurcation happens for each pair of limit cycles which belong
to different two-dimensional sets of cycles. Such a bifurcation
happens also inside the Watanabe–Strogatz surfaces. Thus we
obtain a saddle–node bifurcation of two-dimensional surfaces, one
of them is stable and other is unstable.

4. Nonlinearly coupled oscillatorswith quadratic phase nonlin-
earity

As an example of application of the general picture outlined
above, we consider the model (4) with a particular dependence of
the phase shift on the amplitude of the mean field [12]:

α = α(r, β) = β1 + β2r2. (20)

Here the two-dimensional space of parameters (β1, β2) is a
cylinder R × T ⊃ (β2, β1), because the r.h.s. of the equations
are 2π-periodic with respect to β1. The oddness of the r.h.s. of the
system implies the symmetry of the parameter plane (β1, β2) →

(−β1,−β2).
According to the consideration above, two types of bifurcation

happen when
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Fig. 3. Bifurcation diagram for N = 3 oscillators in the (β2, β1) parametric plane (cf. Fig. 1(a)). Right panel is an enlargement of the central part of the left one. TC —
transcritical bifurcation (see Fig. 1(b)(1)), SN — saddle–node bifurcation (see Fig. 1(b)(2)), AH — supercritical Andronov–Hopf bifurcation (see Fig. 1(b)(4)), HC(SN), HC(TC)
heteroclinic bifurcations (see Fig. 2). Points A, B and C are codimension-two bifurcation points. The region where a stable limit cycle exists (right panel) is surrounded by a
supercritical AH bifurcation line and two lines of heteroclinic bifurcations of different types.

cos(α) = cos(β1 + β2r2) = 0.

One possible bifurcation is an Andronov–Hopf bifurcation (AH) on
the invariant manifold M. Since r = 0 on the manifold, then we
obtain two straight bifurcation lines

β1 = π/2 and β1 = 3π/2 (21)

on the parameter cylinder. The line β1 = π/2 corresponds to
a supercritical Andronov–Hopf bifurcation, while the line β1 =

3π/2 corresponds to a subcritical one. Manifold M is stable if
β1 ∈ (π/2, 3π/2) and it is unstable ifβ1 ∈ [0, π/2)∪(3π/2, 2π).

Another possible bifurcation is a transcritical bifurcation (TC)
at the origin (ϕj = 0, j = 1, . . . ,N − 1) along each of the
invariant lines with the symmetry Sp × SN−p, p = 1, . . . ,N − 1. A
pitchfork bifurcation (PF) at the origin occurs, simultaneously with
the transcritical one, along the invariant lines with the symmetry
SN/2 × SN/2 for the system with an even number of oscillators. At
this bifurcation point the origin is a degenerate saddle with N − 1
zero eigenvalues. The origin point of the system corresponds to
the state of full synchronization, where order parameter r = 1.
Therefore, straight lines

β1 + β2 = π/2 + πm, m ∈ Z, (22)

correspond to the transcritical (TC) or to the transcritical–pitchfork
(TC/PF) bifurcations in the parametric space. The origin (i.e. the
regime of full synchrony) is stable for β1 + β2 ∈ (−π/2 +

2πm, π/2 + 2πm), m ∈ Z, and it is unstable for β1 + β2 ∈

(π/2 + 2πm, 3π/2 + 2πm).
These two types of bifurcation are independent of the number

of oscillators, so the grids of straight bifurcation lines (21)–(22) are
present at any bifurcation diagram for model (20) (Figs. 3 and 7).
Other bifurcations of the fixed points occur only on invariant lines
(15) and all of them are of the saddle–node type. The expressions
for the order parameter on the invariant lines (15) are

r2 = r2(p,N − p) =
1
N2
(2p(N − p) cos(ϕk)

+ (N − 1)2 − 2(p − 1)(N − p − 1)+ 1),

where ϕk, k = 1, . . . , p, is a variable that changes along invariant
lines with Sp × SN−p isotropy. To find the coordinates of the
steady states we need to solve Eq. (19) with this expression for the
order parameter. This expression simplifies in the case of an even
number of oscillators to

r2(p, p) =
1
2
(cos(ϕk)+ 1), k = 1, . . . , p,

and is independent of the number of oscillators. Thus, it describes
appearance (disappearance) of two points on the invariant line
with symmetry SN/2 × SN/2 after each pitchfork bifurcation at the
origin. The coordinates of these points (which are saddles) on the
invariant lines are then

ϕk = ± arccos


1
β2
(π(1 + 2m)− 2β1 − β2)


, m ∈ Z.

These symmetric points are important because they are the basis
for heteroclinic cycles in cases of even number of oscillators.

For any number of oscillators, together with the grid of the
straight lines describing Andronov–Hopf and transcritical bifur-
cations (21)–(22), there are a lot of bifurcation lines that corre-
spond to saddle–node bifurcations (SN) on invariant lines. Some of
these lines correspond to heteroclinic bifurcations (HC or HC(SN)),
provided some additional conditions are satisfied. At these sad-
dle–node/heteroclinic bifurcations limit cycles appear. Let us fix
some parameter value β1 ≠ ±π/2 and increase parameter β2.
Then new and new saddle–node bifurcations occur on the invari-
ant lines, steady states appear at these bifurcations in such a way
that their stability alternates along this line. Stability of appearing
heteroclinic cycles also alternateswith increasing of the parameter
β2. Thus, stabilities of limit cycles that move inside each invariant
region after such a bifurcation also alternate. The period and the
amplitude of each of the limit cycles decrease when parameter β2
increases, but no bifurcation of small limit cycle can happen be-
cause we demanded that β1 was not equal to ±π/2 where such a
bifurcation only could occur.

The number of the hyperbolic steady states increases with
increasing of parameter β2. These steady states tend to con-
centrate near the center part of the invariant lines. A saddle–
node/heteroclinic bifurcation on the line with symmetry S1 × SN−1
usually occurs close to this central region, where the coordinate ϕ
of the saddle–node point is close to π . Thus, we can approximately
calculate that such a bifurcation occurs at

β2 ≈
N2

(N − 2)2
(πm − β1), m ∈ Z.

The lines of a saddle–node/heteroclinic bifurcation alternate on the
bifurcation cylinder. Each heteroclinic cycle generates a limit cycle
(or a set of limit cycles for 4 and more oscillators) with the same
stability. The period and the size of each cycle decrease with in-
creasing of parameter β2. Stable and unstable limit cycles enwrap
each other inside invariant region, and alternate. A saddle–node
bifurcation of limit cycles is impossible for the system considered
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Fig. 4. Schematic bifurcation diagram for the (β2, r) parametric plane and the case
α = β2r2 . TC — transcritical bifurcation, HC — heteroclinic cycle (bifurcation), SN
— saddle–node bifurcation.

because of monotonic increase of cycles sizes (it would be, how-
ever, possible for more complex than (20) dependences α(r), e.g.
for α = β1 + β2r2 + β3r4).

Noteworthy, the first saddle–node bifurcation in the system
usually happens when β2 < π/2 − β1, and this bifurcation
can generate a stable node. Then we obtain multistability of
the fully synchronous state (the origin where r = 1) and
the stable two-cluster states. If the first transcritical bifurcation
(when β2 > π/2 − β1) does not produce a stable heteroclinic
cycles, then the two-cluster states are the only attractors in the
system. The stable nodes accumulate on the invariant line with
increasing β2, thus we obtain a multistability of two-cluster states
when β2 is large enough. The appearance of stable limit cycles
after saddle–node/heteroclinic bifurcation eliminates one stable
node (on each invariant line with the same symmetry). However,
since a heteroclinic bifurcation happens more rarely than simple
saddle–node bifurcations of two points, then the coexistence of
a stable limit cycle with two-cluster states is typical for the
system. Therefore, we can obtain multistability of all possible
attractors in the system: full synchronous state, two-cluster state
(with different order parameters), limit cycle of phase differences,
heteroclinic cycle, and invariant manifold M.

4.1. Three interacting oscillators

For three oscillators interacting according to phase shift (20),
the bifurcation diagram is depicted in Fig. 3. The corresponding
bifurcations have been already illustrated in Figs. 1 and 2 above.
According to this bifurcation diagram, we show in Fig. 4 a
schematic dependence of the synchronization states in the system
as parameter β2 changes while β1 = 0. One can see that the
basic transition in terms of phase differences is: Full synchrony
→ two-cluster state → periodic oscillations. The first transition
is with hysteresis (i.e. in some small region of parameters full
synchrony and two-cluster state coexist), and the second transition
is via heteroclinic connection. On the diagram Fig. 3 several
codimension-two points are marked, we will discuss them in the
next subsection.

4.2. Four and more coupled oscillators

In the Figs. 5 and 6 we show schematically a saddle–node/hete-
roclinic bifurcation for the case N = 4. An unstable heteroclinic
cycle (Fig. 5) consists of ten fixed points and ten one-dimensional
invariant manifolds that connect these points. Four saddle–node
bifurcations happen simultaneously on four S1 ×S3 invariant lines.
This heteroclinic cycle includes also two saddles S ′ that belong to
S2 × S2 invariant line. Thus, the system of four oscillators, that

Fig. 5. Schematic phase portrait for N = 4 coupled oscillators, showing only
invariant lines corresponding to cluster states 1+3 and 2+2, and planes connecting
them. We illustrate a coexistence of two types of heteroclinic cycles. One unstable
HC (blue) is shown at the bifurcation point, another stable HC (red) is beyond its
bifurcation. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

a b

c

Fig. 6. Schematic diagrams of the saddle–node/heteroclinic bifurcation for 4
globally coupled oscillators. (a) — prior bifurcation, (b) — at the bifurcation point,
(c) beyond bifurcation.

moves along this heteroclinic cycle, shows temporary switches
between 1+3 and 2+2 clustering. This unstable heteroclinic cycle
is robust and it will exist also beyond the saddle–node bifurcation;
however it will consist of two lines connecting S ′ only, like the
stable cycle depicted in the figure. This stable heteroclinic cycle is
shown inside theunstable one. It consists of two saddles S ′′ and two
connecting lines Γ1, Γ2. The stable heteroclinic cycle appears at a
saddle–node bifurcation on the invariant line in the same way as
the unstable one, only for a smaller value of parameterβ2. The next
heteroclinic bifurcation will occur after merging of stable node N+

and saddle S and it will produce causes stable heteroclinic cycle.
Fig. 6 shows an appearance of a two-dimensional sets of stable

limit cycles inside one invariant region. Four pairs of saddles S
and stable nodes N (Fig. 6(a)) collide and create two-dimensional
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Fig. 7. Bifurcation diagrams for (a) N = 4 and (b) N = 5 oscillators in the (β2, β1) parametric plane. In (b): SN1 — the line of saddle–node bifurcation on S4 × S1 invariant
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sets of heteroclinic cycles (Fig. 6(b)). Beyond the bifurcation, when
saddle–node points SN disappear, two heteroclinic cycles appear,
with two-dimensional sets of limit cycles between them (Fig. 6(c)).
The set of limit cycles surrounds the one-dimensional invariant set
M. This set of limit cycles shrinks as parameter β2 increases, but it
never reaches manifold M.

The heteroclinic cycles presented in Fig. 5 lie on invariant
surfaces and correspond to switches between the cluster states.
They are borders of sets of limit cycles that exist inside the
bulk of the phase space (that is bounded by the invariant lines
and surfaces), and enwrap the manifold M. To an unstable HC
corresponds a cylindrical set of unstable limit cycles, and to a
stable HC corresponds a cylindrical set of stable limit cycles. In
this way the structure of heteroclinic cycles determines the overall
structure of the trajectories also outside of invariant manifolds.

The bifurcation analysis of higher-dimensional cases (for N ≥

5) shows similar results. The bifurcation diagram consists of three
types of lines: a straight line of an Andronov–Hopf bifurcation, a
straight line of a transcritical bifurcation, and lines of saddle–node
bifurcations on invariant lines with the symmetry Sp × SN−p, p =

1, . . . ,N − 1. All the saddle–node bifurcation lines have similar
‘‘tongue-like’’ form. The ‘‘tongue’’ is formed by two border lines:
one lies left of the straight line of a transcritical bifurcation and
approaches this line asymptotically with increasing of parameter
β2, the second border line crosses the TC lines. The saddle–node
bifurcation generates a sink and source only on the invariant line
with symmetry S1 × SN−1, while on other invariant lines with
the symmetry Sp × SN−p, p ≠ 1 a pair of saddles appears.
Therefore, there exist only 1×(N−1) stable clusters. Furthermore,
heteroclinic cycles and stable limit cycles appear at a saddle–node
bifurcation with S1 × SN−1 symmetry only (the corresponding
bifurcation lines are drawn with blue in Fig. 7).

Let us discuss the codimension-two points marked in Fig. 3.
At point C two borders of the saddle–node tongue meet. Only
one stable state is involved in both saddle–node bifurcations
(say, on the left line States 1 and 2 are created, while on the
right line State 2 annihilates with State 3), at the codimension-
two point C all three involved steady states meet. At another
codimension-two point A the type of the saddle–node bifurcation
changes. On one side (left to the point A) no heteroclinic cycle
appears at the saddle–node, while right to point A the transition
can be saddle–node/heteroclinic, provided −π/2 < β1(A) <
π/2 and the line has symmetry S1 × SN−1. We have checked
that the latter condition holds for N = 3, . . . , 8 only and for
N ≥ 9 one has β1(A) < −π/2. Thus, for N ≥ 9 there is no
saddle–node/heteroclinic transition. In the thermodynamic limit
(N → ∞) saddle–node bifurcations do not play any important
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Fig. 8. The comparative diagram of saddle–node bifurcation lines on the (β2, β1)

parametric plane for the Cases 3, 4, 5, 6, and 7 oscillators. The tip of the ‘‘tongues’’
shifts down as N grows, and for N ≥ 9 is below thee line of Andronov–Hopf
bifurcation β1 = −π/2.

role for transitions from full synchrony to complete asynchrony,
only an Andronov–Hopf and a transcritical bifurcation can occur.
Bifurcation diagram for this case was shown in Fig. 12 of Ref. [12].
The lines in this diagram satisfy Eqs. (21), (22) in variables β0 =

β1, ε
2

= β2,M = r and they correspond to AH and TC lines in
Figs. 7 and 8. Finally, the point B on the bifurcation diagram Fig. 3
corresponds to a degenerate situation depicted in themiddle panel
of Fig. 2.

We show bifurcation diagrams on the planes (β1, β2) for four
and five coupled oscillators in Fig. 7. The structure of these
diagrams is basically the same as for three oscillators Fig. 3,
but with some quantitative changes. To clarify these changes we
compare in Fig. 8 the basic saddle–node ‘‘tongues’’ for N =

3, . . . , 7. One can see that with increase of N the tip shifts down
and for a fixed β1 ≈ 0 the saddle–node bifurcation can be
observed for a small number of oscillators only. Thus, for a fixed
β1 ≈ 0 the loss of full synchrony with increase of β2 occurs
as direct transition from full synchrony to periodic oscillations
via a transcritical bifurcation (bottom row in Fig. 2), and not via
clustered states.

5. Conclusion

In this paper we have performed a detailed bifurcation analysis
of the nonlinear generalization of the Sakaguchi–Kuramoto model
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of globally coupled phase oscillators. We have demonstrated that
system (6) has only three types of equilibria describing three dif-
ferent classes of the dynamics: full synchronization, asynchronous
state, and two-cluster states. This result is valid for any phase-
shift function α, even if α(θ1, . . . , θN , β) depends on the phases
asymmetrically. Using this result, we have found all possible at-
tractors of the system and described possible bifurcations. Alto-
gether there are five types of attractors: (i) full synchronization
O, (ii) asynchronous state—an (N − 2)-dimensional manifold M,
(iii) two-cluster states P2, (iv) a quasiperiodic attractor that corre-
sponds to a limit cycle for the system in phase differences, and (v) a
heteroclinic cycle for the system in phase differences that consists
of two-cluster states connected by their one-dimensional invari-
ant stable/unstable manifolds. We have established that possible
bifurcations of full synchrony O are a transcritical one and a trans-
critical–pitchfork one (for an even number of oscillators). Theman-
ifold M can undergo an Andronov–Hopf bifurcation, that occurs
at each point of manifold simultaneously. There are three possi-
ble bifurcations with P2 states: a saddle–node one, a transcritical,
and a and pitchfork bifurcation. These local bifurcations determine
the following global bifurcations of heteroclinic cycles: a transcriti-
cal/heteroclinic one, transcritical–pitchfork/heteroclinic one, and a
saddle–node/heteroclinic one. The following types of bifurcations
are possible for the limit cycles: an Andronov–Hopf bifurcation
from the points of manifold M, a saddle–node (fold) bifurcation of
the limit cycles inside invariant regions and on WS-surfaces, and
the mentioned above heteroclinic bifurcations that lead to the ap-
pearance (disappearance) of limit cycles. An interesting feature of
the heteroclinic bifurcations in the system is that they yield a con-
tinuous set of limit cycles (Fig. 6). Also such heteroclinic cycles can
coexist with the set of limit cycles. We have also demonstrated a
mutistability of all possible attractors in the system.

The main novelty in addition to the consideration in the
framework of WS theory [12] is the characterization of cluster
states that in terms of phase differences appear (via a transcritical,
a pitchfork, or a saddle–node bifurcation) as steady states
on invariant lines of the corresponding cluster configurations.
At saddle–node bifurcations these steady states disappear via
heteroclinic cycles. Remarkably, heteroclinic cycles in this model
are not destroyed but remain to exist (for other examples of
heteroclinic cycles in ensembles of identical phase oscillators
see [23,24,20]). This is related to the partial integrability of the
system resulting from theWS theory. According toWS, because the
equations have N −3 constants of motion, periodic orbits form the
families of corresponding dimensions, the heteroclinic cycles form
the limiting cases of these families, describing cycles that include
nearly clustered states.

The analysis performed in this paper complemented the
conclusion on the transition from full to partial synchrony in
nonlinearly coupled oscillator ensembles, made in Pikovsky and
Rosenblum [12]. We have demonstrated that for small ensembles
the transition is of the type ‘‘full synchrony’’ → ‘‘cluster state’’ →
‘‘periodic/quasiperiodic partially synchronous state’’ occurs, while

for a large number of oscillators a direct transition ‘‘full synchrony’’
→ ‘‘periodic/quasiperiodic partially synchronous state’’ is typical.
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