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• A system of general phase oscillators
interacting in a star-like manner is
studied.

• Analytical descriptions of stability
are given.

• Multistability, heteroclinic orbits,
and chaos are possible.

• The application of the results to
modeling in neuroscience is dis-
cussed.
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a b s t r a c t

A system of phase oscillators with a Central Oscillator (CO) and a set of n Peripheral Oscillators (POs)
is considered. Feed-forward and feedback connections between the CO and POs are determined by two
interaction functions which are assumed to be smooth, odd, and periodic. To describe the competition of
POs for synchronization with the CO, we study the asymptotic stability of fixed points corresponding
to in-phase synchronization of a group of k POs, while other POs are in anti-phase with the CO. It is
shown that stability conditions can be formulated in terms of four parameters that describe the slopes
of the interaction functions at zero and half-period points. Analytical description of stability in terms of
the regions in 4-dimensional parameter space is given. Combining stability analysis with the detailed
study of geometry of invariant manifolds, the bifurcations of fixed points are investigated. We show that
various dynamical regimes such as multistability, heteroclinic orbits, and chaos are possible. Analytical
stability conditions for global synchronization of POs with the CO are formulated for the systems with
local connections between POs. It is shown that synchronization in a large system with local connections
becomes unstable even under weak desynchronizing influence from the CO. The application of the results
to modeling in neuroscience and, in particular, for modeling visual attention is discussed.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Many systems in physics, chemistry and biology can be
modeled by coupled phase oscillators of the Kuramoto type [1].
A review of the mathematical theory of phase oscillator networks
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and their applications can be found in the papers [2–5]. We
consider a special type of phase oscillator systems, the so-called
networks with a central unit. In the networks with a central unit
global interaction is realized through a central oscillator (CO)
that has feedforward and feedback connections with all the other
oscillators that are called peripheral oscillators (PO). Besides
connectionswith the COperipheral oscillatorsmay optionally have
local connectionswith their neighbors. Various types of connection
architectures of networks with a CO are shown in Fig. 1. The
architecture in Fig. 1(a) is known as the star-coupled system.
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Fig. 1. Different types of connections between the CO and POs: (a) star-like connections (without local interaction between POs), (b) POs are arranged in a line, each PO
couples with its nearest left and right neighbors, (c) POs are coupled on a circle, (d) POs locate in the nodes of a two-dimensional square grid, each PO couples with its nearest
neighbors at left, right, top, and bottom, (e) POs locate on the surface of a torus, (f) global connections between POs.
Fig. 1(b)–(e) present different types of connection architectures
with local coupling between POs.

Networks with a central unit appear as parts of more complex
networks in so different fields as communication systems, social
networks, and mammalian brains. In the latter case they are
widely spread due to convergent organization of connections in
the hierarchy of brain structures [6,7]. The study of star-coupled
systems can be helpful in clearing up the role of synchronization in
cognitive functions. Phase oscillator models provide a convenient
and mathematically tractable instrument for this study.

Though the dynamics of phase oscillator networks with a cen-
tral unit (or their equivalent representation in the form of phase
differences, see Eqs. (3) below) has been studied in a number of pa-
pers [8–19], the analysis of stable states in such systems is far from
being complete. In this paper we concentrate on the stability of the
regimewhen POs compete for the synchronizationwith the CO and
only k POs can be synchronizedwith the COwhile other (n−k) POs
work in anti-phase. (A particular case when k = 1 can be consid-
ered as an oscillatory analogue of a winner-take-all procedure.)

Though we use standard linear analysis of fixed points, the ef-
fect of competition for synchronization between POs was not ob-
vious from the beginning. For the Kuramoto system with all-to-all
connections in-phase/anti-phase relations can be obtained in two
assemblies of oscillators receiving synchronizing (the conformist
assembly) and desynchronizing (the contrarian assembly) connec-
tions [20]. In the system with a CO the set of POs can be split into
twomutually anti-phase assemblies despite the uniform influence
on POs from the CO. Moreover, simple analytical description of
parameter regions corresponding to this regime allows one to con-
struct a system with particular in-phase/anti-phase relations in
oscillator activity. The results are applied to understand the mech-
anism of transitions between different dynamical regimes under
the variation of parameters, in particular, the transitions between
stability and instability of different types of the regimes of compe-
tition. Conditions of multistability in the system are studied that
allow one to describe the parameter regions where a given set of
stable states is present.

We also investigate the stability of the in-phase state in a
system with local connections between POs and show that this
state can be destroyed under a weak desynchronizing influence of
the CO if the size of the network is large enough.

2. A system without local connections between peripheral
oscillators

In this section we consider a star-coupled phase oscillator sys-
tem (Fig. 1(a)). Let us index the oscillators by numbers i = 0,
1, . . . , n, where 0 corresponds to the CO and 1, . . . , n correspond
to POs. We consider a system whose dynamics is described by the
following ODEs:

dθ0
dt

= ω0 +

n
i=1

f (θi − θ0), (1)

dθi
dt

= ωi + g(θ0 − θi), i = 1, . . . , n, (2)

where (θ0, θ1, . . . , θn) ∈ Tn+1 are phase variables on a (n + 1)-
dimensional torus, θi ∈ [0, 2π), ωi are the natural frequencies of
the oscillators, f (x), g(x) are interaction functions. The interaction
functions are odd, continuous, 2π-periodic. It follows from these
assumptions that

f (0) = f (π) = g(0) = g(π) = 0.

Subtracting Eq. (1) from Eq. (2) we get

dϕi

dt
= ∆i −

n
j=1

f (ϕj) − g(ϕi), i = 1, . . . , n, (3)
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where ϕi = θi − θ0, ∆i = ωi − ω0. We restrict the consideration
of system (3) to the case when all oscillators have identical natural
frequencies

ωi = ω, i = 0, . . . , n,

therefore we put ∆i = 0 in (3). Denote

f ′(0) = a1, f ′(π) = a2, g ′(0) = b1, g ′(π) = b2. (4)

The values in (4) will be used as the parameters of the system.
The case n = 1 is well known, therefore below we always as-

sume that n ≥ 2.

3. Stable points

The points Φ = (ϕ1, . . . , ϕn) with coordinates ϕi ∈ {0, π}

(i = 1, . . . , n) are fixed points of system (3) (other fixed points
can also exist). Our nearest task is to study the asymptotic stability
of a pointΦk with k coordinates equal to 0, and (n−k) coordinates
equal to π . Due to symmetry, for a fixed k all such points have the
same type of stability. Linearizing system (3) we can determine
eigenvalues for the point Φk:

k = 0 : λ1,...,n−1 = −b2, λn = −na2 − b2; (5)

k = 1 : λ1,...,n−2 = −b2 (if n ≥ 3),

λn−1,n = z; (6)

2 ≤ k ≤ n − 2 : λ1,...,k−1 = −b1,

λk,...,n−2 = −b2, λn−1,n = z; (7)

k = n − 1 : λ1,...,n−2 = −b1 (if n ≥ 3),

λn−1,n = z; (8)

k = n : λ1,...,n−1 = −b1, λn = −na1 − b1, (9)

where

z = −z1 ±


z22 + z3, (10)

z1 =
na2 + k(a1 − a2) + (b1 + b2)

2
, (11)

z2 =
−na2 + k(a1 + a2) + (b1 − b2)

2
, (12)

z3 = k(n − k)a1a2. (13)

Note that for the brevity of notation in formulas (6)–(8) a single
variable z is used to denote two different values determined
by (10).

According to (10)–(13) the variables z, z1, z2, z3 depend on
the parameters n, k, a1, a2, b1, b2, therefore the conditions of
stability for a point Φk can be formulated in terms of inequalities
on relations between these parameters. These conditions are
described by the following inequalities:

k = 0 : b2 > 0, a2 > −
b2
n

; (14)

k = 1 : b2 > 0 (if n ≥ 3), z1 > 0,

d = z22 + z3 − z21 < 0; (15)

2 ≤ k ≤ n − 2 : b1 > 0, b2 > 0,

z1 > 0, d < 0; (16)
k = n − 1 : b1 > 0 (if n ≥ 3),

z1 > 0, d < 0; (17)

k = n : b1 > 0, a1 > −
b1
n

. (18)

The last two inequalities in each line (15)–(17) can be transformed
to

M1 : kb2a1 + (n − k)b1a2 + b1b2 > 0, (19)
M2 : ka1 + (n − k)a2 + (b1 + b2) > 0. (20)

Inequalities (19), (20) describe two half-planes relative to the
coordinates (a1, a2). Since for the stability of Φk both of these
inequalities must be fulfilled, the values of the parameters (a1, a2)
must belong to the regionM = M1 ∩ M2.

In general,M is restricted by the lines

L1 : kb2a1 + (n − k)b1a2 + b1b2 = 0, (21)
L2 : ka1 + (n − k)a2 + (b1 + b2) = 0, (22)

and contains both stable nodes and stable focuses. A special case
corresponds to the situation when b1 = b2. In this case the lines
L1, L2 are parallel. Taking into account that at least one of the
parameters b1 or b2 should be positive (and therefore they must
both be positive), one can see that the line L2 locates below the
line L1. Thus M = M1. It is easy to check that for the expression
under the root of (10) the inequality

z22 + z3 =


ka1
2

2

+


(n − k)a2

2

2

≥ 0

is valid. ThereforeM contains only stable nodes in this case.
Fig. 2 shows some examples of the regions of stability (instabil-

ity) for different values of parameters.

Remark 1. For a fixed value of n ≥ 3, the points Φ1 can be the
only stable points among other points Φk (k ≠ 1). The conditions
for that combine inequalities b1 < 0, b2 > 0, a2 < −

b2
n with

conditions (19), (20).

Remark 2. The results of this section are valid for anypair of values
forwhich the interaction functions f (x) and g(x) are equal to 0 (not
obligatory 0 and π ). Moreover, it is sufficient to assume that only
one of the functions f (x) or g(x) is odd.

4. An example

Let us apply the obtained results to an example where the
interaction functions f (x) and g(x) are represented by the first two
terms of the Fourier series expansion of odd functions:

f (x) = a(sin(x) + r sin(2x)),
g(x) = b(sin(x) + p sin(2x)), (23)

where a, b, r , p are the parameters.
In this case Eqs. (3) take the form:

dϕi

dt
= −

n
j=1

a(sin(ϕj) + r sin(2ϕj)) − b(sin(ϕi) + p sin(2ϕi)),

i = 1, . . . , n. (24)

In this example the derivatives of the function f (x) at the points
0 and π and the derivatives of the function g(x) at the same points
are

a1 = a(2r + 1), a2 = a(2r − 1),
b1 = b(2p + 1), b2 = b(2p − 1). (25)
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Fig. 2. The regions of stability (instability) of the pointsΦk . The color notation is: green—stable nodes, dark green—stable focuses, blue—unstable nodes, dark blue—unstable
focuses, white line—the line L1 , red line—the line L2 . The values of the parameters: (a) n = 3, k = 1, b1 = −1, b2 = 1; (b) n = 4, k = 2, b1 = b2 = 1; (c) n = 4, k = 2,
b1 = 3, b2 = 1; (d) n = 10, k = 3, b1 = 2, b2 = 5.
Using these values in formulas (19), (20) we get

M1 : ab[k(2p − 1)(2r + 1) + (n − k)(2p + 1)(2r − 1)]

+ b2(4r2 − 1) > 0, (26)
M2 : a[n(2r − 1) + 2k] + 4pb > 0.

Formulas (26) as well as other limitations described by (14)–
(18) allow us to formulate stability conditions for the points
Φk, k = 0, . . . , n, for this particular example in terms of the
parameters a, b, p, r . A list of stability conditions is provided in
Appendix (Table 1).

Bifurcations. The results of the previous section can also be
helpful for understanding the mechanism of transitions between
different dynamical regimes, in particular, the transitions between
stability and instability of the fixed points Φk, k = 0, . . . , n, under
variation of the parameters a, b, p, r . The peculiarities of themodel
construction (star-like coupling, equal natural frequencies of
oscillators, etc.) imply special invariant structures and bifurcations
in the system. The permutation symmetry of POs and oddness
of coupling functions are crucial for bifurcation analysis. Due to
multiple symmetries, system (24) has two invariant manifolds of
a generic type:
(1) m-dimensional manifolds

Mm = {(ϕ1, . . . , ϕn) : ϕk1 = ϕk2 = · · · = ϕkn−m+1},

m = 1, . . . , n,
that correspond to (n − m + 1)-clusters of POs according to
their permutation symmetry Sn, and

(2) m-dimensional manifolds

Qm = {(ϕ1, . . . , ϕn) : ϕki + ϕkj = 0, ϕkl ∈ {0, π}},

i = 1, . . . ,m, j = 1, . . . ,m, j ≠ i,

l = 2m + 1, . . . , n, m = 1, . . . , [n/2],

that occur due to odd symmetry of the right hand side of the
system.

These invariant manifolds split phase space into invariant
regions [21,22].

The points Φk loose stability via Andronov–Hopf bifurcation
when the parameters a, b, p, r cross the surface:

AH(Φk) = {(a, b, p, r) : 4bp + 2nar + (2k − n)a = 0},

k = 1, . . . , n − 1.

Another possible bifurcation is the pitchfork bifurcation which
appears due to the odd symmetry of the system. The critical surface
of the pitchfork bifurcation in parametric space is determined by
the following formulas:

PF(Φk) = {(a, b, p, r) : a(n(4pr + 2r − 2p − 1) + 4k(p − r))
+ b(4p2 − 1) = 0}, k = 1, . . . , n − 1,
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PF(Φn) = {(a, b, p, r) : b(2p + 1) + na(2r + 1) = 0},

PF(Φ0) = {(a, b, p, r) : b(2p − 1) + na(2r − 1) = 0},

which lead to appearance (disappearance) of two new fixed points
inside the invariant manifoldMm.

Other bifurcations of the fixed pointsΦk occur under conditions
b1 = b(1 − 2p) = 0, b2 = b(1 + 2p) = 0.

(1) p = ±1/2. In this case several eigenvalues become zero and
the degenerate pitchfork bifurcation arises. The critical surface
(hyperplane) in parametric space is described by the following
formulas:

PF∗(Φk) = {(a, b, p, r) : p = −1/2}, k = 1, . . . , n,
PF∗(Φk) = {(a, b, p, r) : p = 1/2}, k = 0, . . . , n − 1.

The surface formulas do not depend on k, whichmeans that the
bifurcations simultaneously occur for different Φk. According
to system symmetries the pitchfork bifurcations PF∗ and PF∗

occur in k − 1 and n − k − 1 directions simultaneously, giving
rise to the appearance of many new fixed points from each
Φk. All new equilibria appear in transversal directions to the
invariant manifold andmove inside the invariant region under
parameter variation.

(2) b = 0. In this case the system consists of n identical equations
which include only the coupling from the CO to POs (g(x) ≡ 0).
It implies that the degenerate ‘switch’ bifurcation appears. The
critical surface (hyperplane) in parametric space is described
by the following formula:

SW (Φk) = {(a, b, p, r) : b = 0}, k = 0, . . . , n.

The vector field consists of parallel straight lines for the critical
parameter value because each equation in (3) has the same right
hand side. One eigenvalue of each equilibrium changes its sign
to the opposite during the bifurcation. The bifurcation alters the
influence of CO → PO from positive to negative and vice versa.

Intersections of codimension-one bifurcation surfaces pre-
sented above lead to possible bifurcations of higher codimension-
two, three, and four. Note that the bifurcations presented above are
not the only bifurcations in system (3) (there can be local bifurca-
tions of a fixed point different from Φk, fold bifurcations of limit
cycles, etc.). Local bifurcations of Φk can be a part of some global
bifurcation, in particular, the heteroclinic bifurcation [22], which
is typical for synchronization-clustering-desynchronization tran-
sitions in coupled oscillatormodels. A stable heteroclinic cycle that
consists of saddles Φk connected by their one-dimensional invari-
ant manifolds presents slow switching between different clusters
of POs (see Fig. 3(f) for n = 2 and Fig. 11 in [22] for n = 3). Some
POs can temporally win the competition for the synchronization.
The configuration of the winners changes fast after a long synchro-
nization period.

5. Bifurcations in the general case

Considering system (3) with arbitrary odd and periodic cou-
pling functions f (x), g(x)we find the samebifurcations as in the ex-
ample described in the previous section. First of all, one can check
that system (3) has the same generic invariant manifolds Mm, Qm
which include the points Φk. Therefore all bifurcations of Φk oc-
cur inside the manifolds or in transversal directions. System (3)
has the Andronov–Hopf bifurcation at the points Φk with condi-
tions described by (22) for k = 1, . . . , n−1. Standard pitchfork bi-
furcations occur when parameters intersect the surfaces described
by expressions (21) for k = 1, . . . , n − 1, and by the formulas
na2 + b2 = 0, na1 + b1 = 0, for k = 1 and k = n, respectively.
Let us expand a smooth oddperiodic function g(x) in the Fourier
series

g(x) = b
∞
j=1

pj sin(jx)

with the assumption


∞

j=1 |pj| < ∞. In the example considered
above we had p1 = 1, p2 = p and pj = 0, j ≥ 3. The derivatives of
the function g(x) for x = 0 and x = π are

b1 = b
∞
j=1

jpj and b2 = b
∞
j=1

(−1)j+1jpj.

One can check that if either b1 = 0 or b2 = 0 system (3) has
multiple pitchfork bifurcations PF∗ or PF∗, respectively.

System (3) also has a degenerative switch bifurcation (SW ) for
b = 0 that corresponds to switching off the influence from the
central oscillator CO → POs. The system does not have any other
bifurcations at the points Φk, but it can have a number of bifurca-
tions of other fixed points, limit and heteroclinic cycles, etc.

6. Multistability

Multistability conditions. Conditions (14)–(18) guarantee the
stability of Φk. Let us reformulate these conditions to find critical
boundaries for the values k1 and k2 (under fixed values of other
parameters a1, a2, b1, b2, and n) such that for k1 ≤ k ≤ k2 all
fixed points Φk are stable. Assuming that conditions b1 > 0 and
b2 > 0 are satisfied we rewrite inequalities (19), (20) and (14)–
(18) to obtain multistability conditions. Consider three cases.

(1) b1 = b2. In this case (14)–(18) also imply b1 = b2 > 0. Using
the inequalities z1 > 0, d < 0 we can estimate the values of k
such that the points Φk are stable:

if a1 = a2, δ > 0, then k ∈ [0, n], (27)

if a1 > a2, then k > κ0, (28)

if a1 < a2, then k < κ0, (29)

where

δ = na2 + b2, κ0 =
na2 + b2
a2 − a1

.

(2) b1 > b2. In this case system (19), (20) can be rewritten as

if β = 0, δ > 0, then k ∈ [0, n], (30)

if β > 0, then k > κ1, (31)

if β < 0, then k < κ1, (32)

where

κ1 =
b1(na2 + b2)
b1a2 − b2a1

, β = b2a1 − a2b1.

(3) b1 < b2. There are the following six cases of multistability:

if a1 = a2, δ > 0, then k ∈ [0, n], (33)

if a1 = a2, −b1 < δ ≤ 0, then k > κ1, (34)

if a1 > a2, then k > max{κ1, κ2}, (35)

if β < 0, then k < min{κ1, κ2}, (36)

if β = 0, δ > 0, then k < κ2, (37)

if a1 < a2 < a1b2/b1, then κ1 < k < κ2 (38)

where

κ2 =
na2 + b1 + b2

a2 − a1
.
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Using (27)–(38) we also obtain conditions that guarantee the
absence of any stable Φk:

β = 0, b1 ≥ b2, δ ≤ 0, or
β = 0, b1 < b2, δ ≤ −b1.

(39)

Formulas (27)–(38) show that there are regions in parametric
space where all fixed points Φk, k = 0, . . . , n, are stable (maximal
multistability). For example, under condition (38) if κ1 < 0 and
κ2 > n then all fixed points are stable.

Thus, for any value of the parameters a1, a2, b1, b2 except
those described by (39) there are the numbers k1 = [k∗(a1, a2,
b1, b2, n) + 1], k2 = [k∗(a1, a2, b1, b2, n)] (k∗ is the lower bound-
ary of k in inequalities (27)–(38), k∗ is the upper boundary of k in
these inequalities, [x] is an integer part of x) such that all points
Φk, k = k1, . . . , k2, are stable. All points Φk are stable when both
points Φ0 and Φn are stable.

Regions of multistability. For a fixed value of n and other parame-
ters (a1, a2, b1, b2), denote by Pk(a1, a2, b1, b2, n) a nonempty re-
gion in parameter space such that the fixed point Φk is stable. The
condition of multistability can be formulated in terms of intersec-
tions of regions Pk. For example, if intersection of P1 and P2 is not
empty then this intersection is the region of bistability of Φ1 and
Φ2. In the general case, a region of multistability is determined as
an nonempty intersection of Pk:

PJ =


k∈J

Pk,

where J is a set of integer numbers in the range {0, 1, . . . , n}.
We illustrate that in system (24) there is a set of monotonically

increasing regionsP0 ⊂ P1 ⊂ · · · ⊂ Pn. Thismonotonic sequence
of regions enables us to characterize multistability regions PJ .

Fig. 4 shows two cases of multistability in system (24) with one
CO and fifteen POs (n = 15): (a) the parameter r varies and all
other parameters are fixed (a = −0.06, b = 1, p = 0.6); (b) the
parameter p varies and all other parameters are fixed (a = 0.5,
b = 1, r = 0.35). The horizontal lines in Fig. 4(a) correspond to
three values of the parameter r: (r = 0.54, r = 0.62, r = 0.7).
Considering conditions (27)–(38) for the chosen parameter values
we can find that b1 = 2.2 > b2 = 0.2 in all cases and β =

−0.0144 < 0 in the first case only; in two other cases β is positive
(β = 0.0048, β = 0.024). Therefore, conditions (31) and (32) are
satisfied. Thus, r = 0.54 implies multistability for any k ∈ J =

{0, 1, . . . , 15} (κ1 ≈ 19.56 > 15), r = 0.62 implies multistability
for any k ∈ J = {8, 9, . . . , 15} (κ1 ≈ 7.33 < 8), r = 0.7
implies the stability of Φk only (no multistability) for k = 15
(κ1 ≈ 14.67 < 15). In Fig. 4(a) regions Pk are shown by vertical
blue bars [0, r(k)], where r(k) = (0.144k− 2.42)/(0.24k− 3.96).
Similarly, Fig. 4(b) shows multistability regions Pk (blue vertical
bars) under the variation of the parameter p.

Fig. 5 shows the bifurcation diagram of system (24) under the
variation of two parameters p and r . Pitchfork bifurcation lines
PF(Φk), k = 0, 1, . . . , 15, are shown by variable colors (from blue
to red) and some of these curves are labeled by k = 0, k = 14,
k = 15. The blue curve shows the common degenerate bifurcation
PF∗. Regions of multistability are yellow, the region of instability is
dark cyan and the regionwith one stable fixedpoint is filled by light
cyan. The regions Pk, k = 0, . . . , 13, are bounded at the left side
by the vertical green line of the degenerate pitchfork bifurcation
and at the top by PF(Φk) (variable color). The regions P14 and
P15 are bounded at the left side only by the PF(Φ14) and PF(Φ15)
bifurcation lines, respectively. Bistability occurs in the region P14
and multistability of all Φk occurs in the region P0 because P15 ⊃

P14 ⊃ · · · ⊃ P1 ⊃ P0.
Coexistence of Φk and other attractors. Two possible cases occur

in system (3) concerning Φk equilibria:
(1) there exist only fixed points Φk;
(2) these points coexist with other fixed points.

The first case mostly happens when the coupling functions f (x),
g(x) intersect the horizontal coordinate line at the points 0, π only
(except a few special cases, like g(x) = nf (x), for example). The
permutation symmetry Sn implies multistability of Ck

n points of the
same type Φk with all possible sequences of 0 and π if one of these
points is stable. Using time reverse symmetry characterized by the
transformation

γ : (ϕ1, . . . , ϕn, t) −→ (−ϕ1, . . . ,−ϕn, −t)

and conditions (14)–(18), one can find regionswhere the pointsΦk
are sources (changing the proper signs in the inequalities). Then
conditions when any Φk is a saddle can be written as a corollary.
Heteroclinic connections appear when the system has only saddle
equilibriaΦk. It is shown in [22] that such heteroclinic connections
can be stable themselves and they can lead to ABC-like chaotic
flows.

The case of coexistence ofΦk with other fixed points mostly oc-
curs when connection functions have more then two intersections
with the horizontal coordinate line. Multistability of two fixed
points of different types is possible as far as coexistence of Φk with
attractors of other types.

Themultistability already occurs in the simplest nontrivial case
CO + 2POs. A few such cases are shown in Fig. 3. One can see the
coexistence of different stable Φi, i = 0, 1, 2, configurations in
the cases (a)–(c), the coexistence of the stable equilibria Φ1 with
a stable heteroclinic cycle (d), and the coexistence of the stable
equilibrium Φ2 with other stable equilibria different from any Φi
(e). In the last case (f) shown in the figure all equilibria of the
system are unstable (sources and saddles) but two of them form
a stable structure (a heteroclinic cycle).

As far as the system is multistable for most values of the pa-
rameters, possible attractors split the whole phase space into their
own basins of attraction. Even in the simplest case when the sys-
tem has only one type of attractors Φk0 , k0 ≠ n. (no stable limit
or heteroclinic cycles, etc.) phase space is split into Ck

n equiva-
lent regions of attraction corresponding to the symmetry. The at-
traction regions of different regimes Φk change with parameter
variation (Fig. 3). Therefore we can partially control the size of at-
traction basins m(Ωk) of different stable points we are interested
in. The problem of finding parametric regions where the points Φk
are the only attractors of system (24) (important for biological ap-
plications) has been studied in [22].

7. A system with local connections between peripheral oscilla-
tors

Suppose that POs are coupled by local connections with an
architecture shown in Fig. 1(b)–(e). In this case the equations for
system dynamics are

dθ0
dt

= ω0 +

n
i=1

f (θi − θ0), (40)

dθi
dt

= ωi + g(θ0 − θi) +


k∈Ni

h(θk − θi), i = 1, . . . , n, (41)

where h(x) is the interaction function for local coupling (odd,
continuous, 2π-periodic) and Ni are the neighbors of the ith PO.
Below we assume that conditions

f ′(0) = a1, g ′(0) = b1, h′(0) = c > 0,
ωi = ω, i = 0, . . . , n

(42)

are fulfilled.
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a b c

d e f

Fig. 3. Phase portraits forϕ1, ϕ2 ∈ [0, 2π) showmultistability in (24) for CO+2POs. Attractors, repellers, and saddles are indicatedbyblue, red, and green colors, respectively.
The system demonstrates coexistence of the following attractors: (a) Φ0 and Φ1; (b) Φ0 , Φ1 and Φ2; (c) Φ1 and Φ2; (d) Φ1 and the heteroclinic cycle HC(Φ0, Φ2); (e) Φ2
and four D2-symmetric points that belong to invariant regions bounded by invariant lines. The system does not have any stable equilibria in the case (f) but it has a stable
heteroclinic cycle formed by two saddles Φ0 , Φ2 and their 1D invariant manifolds. The corresponding values of the system parameters (a, b, p, r) are: (a) (1, −1, 0, 0.1);
(b) (0.2, −1, −0.8, −0.8); (c) (−0.45, 1, −0.49, 0, 49); (d) (1, −1, 0, 0, 3); (e) (−0, 7, 1, −0.8, −0.4) (f) (0.7, −1, 0.4, 0.4). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
a

b

Fig. 4. Multistability examples for 15 peripheral oscillators in (24). The horizontal
axe k indicates the number of PO (discrete values for k = 0, . . . , 15), the vertical axe
shows: (a) the values of the parameter r for the fixed parameter values a = −0.06,
b = 1, p = 0.6; (b) the values of the parameter p for fixed parameter values a = 0.5,
b = 1, r = 0.35. Vertical (blue) lines show the values of the parameters r and p
where the points Φk are stable. The horizontal dashed lines indicate fixed values of
the parameter r = 0.54, r = 0.62, and r = 0.7 in (a). Multistability of 16 and 8
points occur in the first two cases, only one point Φ15 is stable in the last case. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Eqs. (3) for phase differences will now take the form

dϕi

dt
= −

n
j=1

f (ϕj) − g(ϕi) −


k∈Ni

h(ϕi − ϕk), i = 1, . . . , n. (43)
Fig. 5. Bifurcation diagram on the (p, r)-plane for n = 15, a = −0.06, b = 1.
The stability regions for different points Φk , k = 0, . . . , 13, are bounded at the left
by the pitchfork bifurcation lines PF(Φk) with different numbers k (shown in the
diagram) and the common pitchfork line PF∗ (r ≤ 0.5). In the cases k = 14 and
k = 15 (full synchronization) the stability regions are bounded only by PF(Φ14)

and PF(Φ15) lines, respectively. The hierarchy Pk1 ⊂ Pk2 for k1 < k2 takes place
implyingmultistability ofΦk (yellow). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

If the CO were switched off, it is easy to see that the regime
when all POs work in-phase would be asymptotically stable due to
synchronizing local connections. The introduction of the CO with
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Fig. 6. Maximal roots of the equation det Sn−1(µ) = 0.

repulsive influence on POs may break the stability of the point
Φn = (0, . . . , 0).

Let us compute the eigenvalues of system (43) at the point Φn.
First consider the one-dimensional case shown in Fig. 1(b). The
eigenvalues are determined from the equation
(b1 + na1 + λ) det En−1(λ) = 0, (44)
where En−1(λ) is the (n − 1) × (n − 1)-dimensional matrix (see
Box I).

Thus, one eigenvalue is
λ1 = −b1 − na1 (45)
and other eigenvalues are the roots of the equation det En−1(λ) =

0. These roots can be represented as
λ = −b1 + cµ, (46)
where µ are the roots of the equation

det Sn−1(µ) = det


2 + µ −1 0 · · · 0 0
−1 2 + µ −1 · · · 0 0
0 −1 2 + µ · · · 0 0
· · · · · · · · · · · · · · · · · ·

0 0 0 · · · 2 + µ −1
0 0 0 · · · −1 2 + µ


= 0. (47)

Maximal values of the roots of the equation det Sn−1(µ) = 0 (as a
function of n) are shown in Fig. 6. Note that the curve locates below
zero and rapidly approaches zero when n increases.

Suppose that the interaction between the CO and POs is one-
directional (from POs to the CO only) and synchronizing, that is
b1 = 0 and a1 > 0. Then from (45)–(47) and Fig. 6 it follows that
all eigenvalues are negative, thus the point Φn is asymptotically
stable. This stability is evidently kept if the interaction between
the CO and POs is two-directional and synchronizing, a1 > 0 and
b1 > 0. The situation is quite different if the influence of the CO
on POs is desynchronizing, that is if a1 > 0 and b1 < 0. The
first eigenvalue (45) can be made negative if n is large enough, but
(46) and Fig. 6 show that for large enough n the largest eigenvalue
becomes positive even for a small absolute value of b1, thus if n
increases the point Φn relatively quickly becomes unstable.

Fig. 7 allows one to compare the conditions of stability for dif-
ferent architectures shown in Fig. 1(b)–(e). Computations confirm
the intuitive feeling that the POs arrangement on the circle and on
the torus have higher resistance to the desynchronizing influence
of the CO than the arrangement on the line or on the plane grid.
The unexpected result of computations is that the graphs of maxi-
mal eigenvalues as functions of n turned to be identical for POs on
the line and on the square plane grid. Also they are identical for the
ring and for the torus.
Fig. 7. Maximal eigenvalues for different architectures of connections: 1—no local
connections between POs (magenta straight line); 2—coupling on the line or on
the square plane grid (red curve); 3—coupling on the circle or on the torus (blue
curve). The parameters are a1 = 10, b1 = −1, c = 10. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

Remark 3. The identical behavior of the graphs in Fig. 7 in 1D
and 2D cases shows that the conditions for synchronization of the
system can be more correctly described in terms of the linear size
of the system instead of the number of oscillators in it.

Remark 4. The results of this section are valid for any fixed point
with identical coordinates (not obligatory Φn) of system (43).

It is interesting to compare system (40)–(41) with local con-
nections and the system with global connections between POs
(Fig. 1(f)). In this case the eigenvalues for the point Φn are

λ1 = −na1 − b1 − c and λ2,...,n = −b1 − (n + 1)c.

Thus the conditions of asymptotic stability for the point Φn are

c > −na1 − b1 and c > −
b1

n + 1
.

If a1 > 0, b1 < 0, c > 0, both inequalities are fulfilled for a large
enough value of n.

8. Discussion

In this paper we investigated the stability of some fixed
points in a system of phase oscillators with a central unit. Two
types of network connection architectures have been considered:
the networks with and without local connections between POs.
In the case of star-coupled networks we obtained analytical
description of the parameter regions where POs compete for the
synchronization with the CO and only a given number of POs
can win this competition. Thus we obtain a generalized version
of the winner-take-all procedure when the number of winners is
controlled by the parameters of the system.

The results were applied to an important class of interaction
functions (23) allowing us to describe the bifurcations that lead to
the transitions between stability and instability of the fixed points
Φk, k = 0, . . . , n, under variation of the parameters. Moreover,
it was possible to describe the most important bifurcations that
can appear in the general case of odd interaction functions. Since
stable points Φk can coexist for different values of k, we derived



122 Y. Kazanovich et al. / Physica D 261 (2013) 114–124
En−1 =


b1 + 2c + λ −c 0 · · · 0 0

−c b1 + 2c + λ −c · · · 0 0
0 −c b1 + 2c + λ · · · 0 0
· · · · · · · · · · · · · · · · · ·

0 0 0 · · · b1 + 2c + λ −c
0 0 0 · · · −c b1 + 2c + λ

 .

Box I.
conditions and developed a procedure that guarantees that the
system has a particular type of multistability under a proper
selection of parameter values.

The results of Sections 3–6 can be considered as a generalization
of our study of small systems of phase oscillators [22]. Previous
results were obtained for the networks with two or three POs and
a special type of interaction functions (23). Now we have canceled
any restrictions on the size of the network and used interaction
functions of a very general form.

The only significant restriction is the assumption that the
interaction functions f (x), (or g(x)) and h(x) are odd. This
assumption is used due to a technical reason: we use this
assumption to derive Eq. (3) from Eqs. (1) to (2) (similarly, Eq. (43)
from Eqs. (40) to (41)). In fact this assumption can be relaxed by
using the derivatives of the function f1(x) = f (−x) instead of the
derivatives of the odd function f (x) (similarly, using the derivatives
of h1(x) = h(−x) instead of the derivatives of the odd function
h(x)). However, this assumption is essential for the bifurcation
analysis in Sections 4–6 where we consider interaction functions
of a particular type. For example, the pitchfork bifurcation requires
that the interaction function is odd.

Phase oscillator systems with a CO and local connections be-
tween POs avoided attention of researchers somehow. Still their
dynamical behavior is interesting and to some extent unpre-
dictable. As we show, in contrast to the systems with global syn-
chronizing connections between POs whose synchronization is
very stable, the synchronization in large systems with local con-
nections can be disrupted even by a weak desynchronizing influ-
ence of the CO. The architectures on the circle or on the torus are
a bit more stable than the architectures on the line or on the plane
grid but their advantage rapidly disappears when the linear size of
the network increases.

Note that the point Φn can be a stable point of a system with-
out local connections and desynchronizing influence of the CO for
n = 1 only. If local connections are present, they turn independent
POs into an ensemble of coherent POs that interacts with the CO as
if it were a single oscillator. But this ensemble is stable if only its
size is small enough. Otherwise it cannot resist the desynchroniz-
ing influence of the CO and its coherence is destroyed.

Our interest in system (1)–(2) and its stable states is related to
the application of this system (or its generalization) as a model of
selective attention [23–28]. The systemswith relaxation oscillators
and a central inhibitory neuron, the systemswith Hodgkin–Huxley
type neurons and star-like connections, as well as phase oscilla-
tor systems of other architectures were used as attention models
[29–33]. Selective attention is a built-in mechanism of perception
that allows the animals to extract from the large amount of simul-
taneously obtained information a smaller part (which is usually of
significant importance) that should be processed in more detail.
There is a hypothesis that the attention system has hierarchical
structure with a special controlling subsystem (called the central
executive) at its top that controls the formation of the focus of at-
tention [34–36]. Recent experiments have shown that the interac-
tion of the central executive with neural assemblies representing
visual objects may be realized by synchronizing their activities at
gamma band frequency [37]. This evidence is in line with the gen-
eral concept of the temporal correlation theory which states that a
single object is represented in the cortex by synchronized activity
of a neural population specific for this object [38].

According to themodel assumptions, the CO represents the cen-
tral executive of the attention system (assumed to be a distributed
network in the prefrontal cortex) and POs represent neural assem-
blies in the association cortex whose activity is elicited by external
objects that are simultaneously present at the input of the visual
system. In terms of the model, an object is included in the focus of
attention if the POs that code this object work synchronously (in-
phase) with the CO. Other POs (representing distracting objects)
should be out of phase relative to the CO. Therefore the regime of
in-phase/anti-phase relations between the CO and POs can be in-
terpreted as attention focusing on a single object (k = 1) or on sev-
eral objects (k > 1). The latter case can be interpreted as divided
attention. Note that the model LEGION of consecutive selection of
objects [39] built of relaxation oscillators also demonstrates phase
shifts in the activity of oscillators representing different objects but
this model does not allow one to control the number of objects in
the focus of attention.

In the simplest case it is assumed that each object is coded
by a single PO. This case is modeled by a star-coupled network.
The results obtained in Sections 3–6 provide a general view on
the parameter regions of the model that allow the objects to
compete for attention attraction. In a more realistic situation an
object is represented by an assembly of coherent POs. In this case
the question arises whether this coherence is stable under the
influence of the CO. This question has been studied in Section 7.
The results show that withoutmassive usage of global connections
one should be careful in using desynchronizing connections from
the CO to POs in order to organize the competition between the
assemblies of locally connected POs for the synchronization with
the CO. This destroys the coherence in the assembly if its size is
large enough. This may probably be the reason for the fact that
visual attention is usually spread on a rather small portion of the
visual field at eachmoment of timewhile attention to a large object
is implemented through saccades.
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Appendix

Expression (25) for the derivatives of functions (23) provides
the possibility to explicitly find the regions of the parameters a,
b, r , p where inequalities (14)–(18) are fulfilled. The results of
computations of these regions are summarized in Table 1 which
provides an explicit description of the interaction functions that
guarantee a particular number of asymptotically stable points Φk.
In this table we consider only the values of n greater than 3 since
similar results for the case n = 2 can be easily extracted from
our previous publication [22]. For k (1 ≤ k ≤ n − 1) the results
are obtained by solving inequalities (26) together with one or both
inequalities b1 = b(2p + 1) > 0, b2 = b(2p − 1) > 0.
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Table 1
Conditions for asymptotic stability, n ≥ 3.
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