
Ukrainian Mathematical Journal, Vol. 50, No. 4, 1998 

ON THE SMOOTHNESS OF THE GREEN FUNCTION 
FOR THE PROBLEM OF BOUNDED INVARIANT MANIFOLDS 

A. M. Samoilenko 1 and O. A. Burylko UDC 517.938 

We investigate the smoothness of the Green function for the problem of bounded invariant manifolds of 
linear extensions of dynamical systems. 

We consider the system of  differential equations 

d ~  dx 
- -  = a ( ~ ) ,  - -  = a ( g t ) x ,  (1) 
dt dt 

where ~t ~_ R m, x ~ R n, and the vector function a ( ~ )  and matrix function A (gt) are defined for all gt ~ R m and 

are continuous in the collection of variables ~l  . . . . .  ~m" For the vector function a (~), we additionally assume 

that the Cauchy problem 

dgt = a(gt) ,  gtl~= 0 = tg 0 (2) 
dt 

has a unique solution ~t(gt0) defined f or all t ~  R and continuously dependent on ~0 .  Denote by C ~  m) the 

space of functions F ( ~ )  continuous in the collection of variables ~I/1 . . . . .  ~q/m and bounded on R m, by C q(R"7), 

q > 1, the space of  functions having continuous partial derivatives up to the qth order inclusive with respect to each 
m 

variable ~I/j, J = 1, m (we denote by D p F(V)  any derivative of  order IPl = ~i=1 Pm of  a function F(gt)  with 

respect to the variables (~1 . . . . .  ~m) = gt), and by C" (R m ; a ) the subspace of  the space C O (R m) of  functions 

F ( ~ )  such that the function F ( ~ t ( ~ )  ) is continuously differentiable with respect to t for all t ~ R and gt 0 ~ R m 

and, in addition, 

d F (~ t t (W)  ) . p ( ~ )  ~ cO(Rm) .  
dt t = o 

Numerous works (see [ 1 - 6 ] )  are devoted to the investigation of  bounded invariant manifolds of  dynamical sys- 
tems. The introduction of  the Green function of  the problem on an invariant toms [2] gave the possibility of  pres- 
enting from the general point of  view the perturbation theory of  differentiable and continuous invariant manifolds of 
dynamical systems, which explains the necessity of investigating the properties of  this function (smoothness, rough- 

ness, etc.). In particular, the properties of smoothness of the functions G o (~, ~ )  and u ( ~ )  are fairly well studied 
in the case where the matrix function A(gt) and the vector function a ( ~ )  are 2x-periodic in each variable ~ j ,  j = 

1, m, i.e., they are given on an m-dimensional toms T m [4]. Although many properties of  this system are pre- 

served in the case where these functions are given not on a compact manifold but in the entire space R m [4, 5], the 
investigation of  the problem of  smoothness in this case is quite different and encounters substantial difficulties. This 
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is explained, first of  all, by the fact that, in the general case, the functions on the right-hand sides of system (1) and 
their derivatives may be unbounded. In the present work, we indicate certain classes of functions such that, for the 
functions a (~ ) ,  A (~),  and f ( ~ )  from these classes, the unique Green function and the bounded invariant mani- 
fold of system (1) are smooth. 

It is known [2] that system (1) has the Green function of the problem of bounded invariant manifolds if there 

exists an n • n matrix C(xr �9 C ~  m) such that the function 

n o (v) c ( v ,  (v)), ,: _< o, 

Go('~,V) = n ~  &], ,:>o, 

satisfies the estimate 

(3) 

II Go(Z,v)ll-< K e x p { - 7  [x l} ,  (4) 

where the positive constants K and Y are independent of ~ �9 R m and t �9 R ,  and 
linear system 

f2{) (~) is the matriciant of the 

_dx = A ( v t ( x C ) ) x  ' ~ ( g t ) l t = 0  = In" 
dt 

G0('c, ~ )  is called the Green function of the problem of bounded invariant 

(6) 

Recall that abounded  invariant manifold of system (5) is given by the equality x = u ( ~ )  if u ( ~ )  �9 C ' ( R  m ; a)  

and the identity t i (~)  -= A ( ~ ) u ( ~ )  + f ( ~ )  holds for all ~ �9 R m. 
Note that estimate (4) for the Green function (3) is equivalent to the estimate 

IIG,(x,v)ll ~ Kexp{-y I t -~ l }  (7) 

Nt+O for the function G t ('c, V) = g2{) (~) G O (~, ~t). The latter follows from the identity ~2 t ( r e  (~)) - "'x+0 (V) 

the matriciant of system (1), which is true for any t, "c, 0 �9 R.  
To prove our principal results, we need necessary conditions of convergence and an estimate for the integral 

for 

J(T, , t ,  bl.) = f exp{-y( l t -Gl  + Icr-~l) + ~llcl + ~2max{l~l, lxl} + bt3max{l<Yl, ltl}}dcy, 
~ c o  

(8) 

where t, "c e R are parameters, 7 and ~1,1 a re  positive constants, and ~1. 2 and g 3 are nonnegative constants. Let 
us formulate a preliminary result. 

o o  

x = u ( V  ) = ~ G o ( ' ~ , ~ ) f ( v ~ ( ~ t ) ) d z .  

for every vector function f ( ~ )  e C~ This manifold can be represented as follows: 

d ~  dx 
- -  = a ( ~ ) ,  - -  = A ( ~ ) x  + f ( ~ )  (5) 
dt dt 

In this case, a function of the form 
manifolds of system (1). The existence of this function leads to the existence of a bounded invariant manifold of the 
system of equations 
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L e m m a  1. / f  

27>g, 

where bt = bt 1 + ~t 2 + g3 ,  then the integral J('c, t ,  bt) converges f o r  all t ,  "c ~ R,  

mate is true: 

J ( z , t , g )  < K e x p { - y l t - z l  + ~tmax{ltl, lzl}, 

where 

K = 2 ( 2 7  + max{7 ,  g})  

~ ( 2 7  - g)  

(9) 

and the fo l lowing  esti- 

Proof.  W e  d e c o m p o s e  the coordinate  plane O'ct by the straight lines r = 0, z = 0,  t = z, and t = - x  into 

eight  regions.  On  each  o f  these regions,  we consider the integral J ( t ,  "c, bt) as a sum of  integrals  whose  l imits are 

chosen so as to r e m o v e  the modul i  in the integrands. Let  0 < t < z. Then we can write 

J ( t ,  % bt) = f e x p { - g ( t - ' c )  - y ( ~ : - ~ )  - g i g  - ~1,2 o" -- ~313}dG 

+ 
- - t  

I e x p { - g ( t - ~ )  - y ( / : - G )  - g i g  + g2 z - ~t3cr}do 

+ 
0 

I e x p { - y ( t - o )  - y ( ' c - c y )  - g i g  + bt2z + b t3 t}do  
- t  

+ 
t 

I e x p { - y ( t - ~ )  - y (1 : -~3)  + glCr + ~t2z + P.3t}d~J 
0 

I e x p { - 7 ( c Y -  t) - g 0 : -  o') + p q o  + bt2z + 1-1.3 (Y}do 

t 

+ I e x p { - 7 ( ~  - 7 ( ~ - ' c )  + ~tl~ + ~1.2o + g3G}do. (10) 

Condi t ion (9) guaran tees  the convergence  of  each integral in expansion (10). The  condi t ion 0 < t < "r also impl ies  

that - 7 ( t  + x) < - y ]  x - t l- Therefore ,  we have 

J ( t ,  x ,  g) = 
27  - bt 

e x p { - y ( t  + 3"~) + Ixx} 

1 
+ e x p { - y ( t  + 1;) + ~2 x } ( e x p { - ( 2 7  - g l  - ~3)  t} 

27  - ~tl - g3 
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e x p { - ( 2 y  - la 1 - p-3)'~}) + 
27 - gl  
~ e x p { - y ( t - l : )  + p-2"I7 + g3t}(1  -- e x p { - - ( 2 y - -  ].tl)t}) 

+ 
27 + gl  
- - e x p { - y ( t - z )  + p-21J + p -3 t} ( exp{ (2y  + g l ) t }  - 1) 

+ 

P-1 -+" g 3  
e x p { - 7 0 :  - t) + g2 z}(exp{(p-I  + g3) a:} - exp{(~tl  + P-3 ) t})  

+ 
27 - g 
~ e x p { - y ( z - t )  + az}  < K 1 e x p { - y ( z - t )  + p-'c} = K t e x p { - y l ' ~ - t l  + p-lzl}, 

where 

Kl 
2 (27 + p-) 

g l ( 2 y  - g) 

Consider  one o f  the cases  where the parameters  t and z lie on different  sides of  the origin, namely ,  let - t < 

"c < 0. Then  we get  

J ( t , "c , p- ) = 

- t  

J" e x p { - y ( t - G )  - 7 ( z - G )  - glcY - p-2(Y -- P-3CY}MCY 

- -oo  

+ I e x p { - y ( t -  cy) - y ( x - c y )  - ~lcy -- ~2CY + p-3t} dcy 
- - t  

-4- 

o 

j" e x p { - y ( t - c y  ) - y ( c y -  1:) - p-icy - P-2 "~ + g3 t}  dcy 

+ I e x p { - y ( t -  cy) - y ( c y - x )  + P-icy - P-2 "c + g3t} dcy 
0 

t 

I e x p { - y ( t -  cy) - y ( c y - ' c )  + P-tcy + g~-cy + p-3t} dcy 

+ 

..Foo 

I e x p { - y ( c y - t )  - 7 ( G - x )  + P-icy + P-2CY + P-3CY} dcy 
t 

1 

27 - g 
- -  e x p { - y ( 3 t  + x )  + p-t} 

+ ( e x p { ( 2 y  - gl  - P - 2 )  "~} - e x p { - ( 2 7  - p-1 - p - 2 ) t } )  
25' - P-1 - P-2 
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+ 2 e x p { - y ( t - - ~ )  - ~t2x + ~ t3 t} (exp{-g l ' c  } - 1) 

+ 
/3"1 + g2 

e x p { - 7 ( t  - z) + P-3 t}(exp{(P-1 + ~2 )f} - e x p { - ( g l  + ['1"2)'~}) 

+ 
2y - g 
~ , e x p { - y ( t - ' O  + g t}  <- gzexp{-v l t - ' c l  + ~ . l t l } ,  

where 

3y 
~ 

g1(27 - g) 

Here, we have also used condition (9). 
Consider the other three cases where the parameters lie in the first and third quadrants of  the plane Oxt. Car- 

rying out the change of variables t ~ ' c  and z ~  t ,  or t--~ - t  and "c ~ - ' ~ ,  or t - - - > - z  and z - - - > - t ,  
respectively, we establish that these cases reduce to the first case considered above. The cases where the parameters 
lie in the other two quadrants of  this coordinate plane can be reduced to the second case considered above by the 
same changes of  the variables. Thus, we obtain estimates of  integrals (9) for the parameters that belong to each of  

eight regions of  the plane O'c t. By setting K = max { K 1 , K 2 }, we complete the proof of the lemma. 

Denote by C q (R m) a class of  matrix or vector functions F ( ~ )  ~ Cq(R m) such that, for certain positive 

constants c~, Otp, ot e, and v, the estimates 

IIF(w)I] < cr IID~,F(w)II-< apllWtl "tpl + @ (11) 

are true for all integer-valued vectors p = (Pl . . . . .  Pm) such that ]p I = Pl + "-  +Pm <- q" For  example,  F ( ~ )  = 

sin ~t 2. For the vector  function a (~) ,  we assume that 

Ila(~)ll  ~ ~111~ll  + c~2, (12) 

sup IIDPa(v)II < + ~ ,  IPl = 1, q,  (13) 
~ R  ~ 

where c~ 1 > 0 and cz 2 > 0. As an example of  such functions, we can mention a ( ~ )  = ~ sin In (1 + ~ z ) ,  etc. We 

prove the following statement: 

T h e o r e m  1. Suppose that the system of equations (1) has the unique Green function (3) satisfying estimate 
(4), a function a ( ~ ) e  Cq(R m) is such that inequalities (12) and (13) are satisfied, and A ( ~ ) ~  Cqv(Rm). I f  
the inequality 

2y > q(C~o+ e~lv),  (14) 

where 

o0: sup/m l( /11 ~ R "  IInll =1 - ~  rl' rl ' 
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is satisfied, then the Green function Gt(z, ~g) has all continuous partial derivatives up to the order q inclusive 
and the following estimates are true: 

t lD~,G,(z,V)[I  --< e x p { - y l t - ~ l  + Ip l (~0+C~lv )max{ t t ] , l ~ l }}  (gpllvll  ~Ipt + Kp), Ipl  = 1, q ,  (16) 

t where Kp and Kp are certain positive constants independent of  ~t, t, and "c. 

Proof. By virtue of the uniqueness of the Green function, according to [4], the difference Gt(z,  ~g) - 
Gt ('L ~)  can be represented as follows: 

G,(~,  v )  - G, (-~, ~ )  = 

+ o o  

Gt (eL ~g) [A (Vcr (~))  - A ( V .  (~))] Get (z, ~)  dcr. 
- - 0 0  

(17) 

Since the constants K and Y in estimate (7) are independent of ~g and % the boundedness of the matrix 

function A(~g) in the entire space R m guarantees the uniform convergence of integral (17) in the parameters 
and ~ .  Therefore, the right-hand side of the inequality 

z(~,WJ) = IlG,(~,~t) - G,(~,~)II  

_< K 2 e x p { - y ( l t - c y l  + I c y - x l ) } l l A ( W o ( V ) )  - A(v~(~))lldcY 
~ e , o  

-< K 2 e x p { - y ( l t - ' c [  + 8max{Itl, lxl}} 

+ c o  

exp ( -  81~1} II A (V~ (V)) - A (Vc (~))11 dcy 
- - o o  

is a continuous function in the collection of variables ~ ,  ~ ;  here, 8 is a certain fixed number that belongs to the 
interval (0, 2y) and, furthermore, for ~ = ~g, we have Z(~ ,  ~g) = 0. This allows us to conclude that the Green 

function G O ('~, ~t) continuously depends on the variables ~t. 

Let ~ -  ~ = (0 . . . . .  0, ~[/i -- ~ i ,  0 . . . . .  0 )  and let Ig i ~ ~ i  for certain i = 1, m. Dividing relation (17) by 

I]/i -- ~ i ,  w e  obtain 

G~ (~, V) - G, (~, ~ )  
+ o o  

Gt (~, V) A(~gcr (V)) - _ A ( V ~  (~))  G c (% ~g) dG. 
~11 i --~11 i 

Taking into account the continuous dependence of the Green function on the variable ~,  we formally pass to 
the limit as Vg i ~ ~tti in the last equality. This yields 

+ o o  

= ~ Nl( t ,%(L~g)d(L 
~ 1  i 

(18) 

where 

1 
NI (t, ~, c, V) = Gt(6,~g ) /G~(~,V).  

J 
(19) 
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This limit transition is correct whenever the integral on the right-hand side converges uniformly in ~t e D in every 

bounded domain D ~ R m. 

Let us estimate integrand (19). First, we estimate the solution ~r(g)  of Cauchy problem (2) and its deriva- 

tives. Assuming that t > 0, we represent the solution in the integral form as follows: 

t 

~ ' (~ )  = ~ + f a(~tz(~t))d'c. (20) 
0 

Then, by virtue of (12), we can write 

t 

I lvt(v) l l  -< Ilvll + ~ ( c q l l ~ ( w ) l l  + (~2) dff, 
0 

whence it follows that [ 17] 

I Iv , (v) l l  <- l lv l lexp{~l l t l}  + ~zc~-1(exp{chltl} - 1) < (llvll  + a2c~- l )exp{~l l t l} -  (21) 

In a similar way, we can verify that estimate (21) is also true for t < 0. 

The fact that the vector function a(~t) belongs to the space Cq(R m) implies that the solution ~t(~t) of sys- 

tem (2) also belongs to this space for any t s R.  We substitute the solution ~tt(~t ) into system (2). The identity 

obtained can be differentiated q times with respect to each variable ~tj, j = 1, m. We have 

d ( D ~ v t ( V ) )  = D~,a(v(V)), Ipl = 1, q. (22) dt 

Denoteby f2t ( --~ ) the normal fundamental matrix of solutions of the linear system of differential equations 

dy = (Oa(N) l y ,  y~R m. 
dt ~ ~r 

Then the boundedness of the first derivatives of the function a (~)  yields 

where C 1 = const > 0 and ao is defined by equality (15). 

rivatives of ~ t (~) .  For [p l  = 2, equality (23) has the form 

d a2vt(v) / =/aa(v) 
at 7v,  j av v av;avj 

where 

(23) 

Thus, we have obtained an estimate for the first de- 

- -  -k- e 2 (~1/t ( ~ / ) ) ,  ( 2 4 )  
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R2(~gt(~) ) = colon E ~ 02al (lgr(~))Olgt~ Ollltt .... ~. ~. D'am (Igt(~))Oll/t~ O~tl 
k l = 1 k = 1 Olqltl O~t~: OlqlJ ol~li ' 1 = 1 k = 1 O ~ t l  Ollltk Ol l lJ  o l l l i  ' 

Since 

OWt(~V) t=o  = c o l o n ( O , . ~ , l ,  0 ~ . . . . .  0 ) ,  
i - 1  m - i  

we have [D~ ~t t (V)] It = 0 = 0 

inhomogeneous system (24) with the inhomogeneity R2(~l/t(~) ), for t >_ 0 we have 

653 

i ,j=l,m. 

for I p [ = 2, q. Writing the second derivative of  ~ t ( ~ )  as a solution of  the linear 

: '  021q/t ('tl/) J" n t  R2 (V~ (/l/)) a(y- 
0'~/i 0\t/j 0 

Taking into account estimate (23) for the first derivatives and the boundedness of derivatives of a (~ )  (13), we get 

021.[/t (\1/) 02a t 
< mC~ r. e x p { % [ t - ~ ]  + 2%l(;I}dG = C2exp{2c%lt[}.  (25) a-U0g - b ~ 2 o  0 

By analogy, we can obtain the same estimate for the second derivatives for t < 0. 
Further, by using the method of mathematical induction, we prove the general estimate 

IID,~v,(V)II-< C p e x p { ~ 0 1 p l l t l } ,  Ipl = 1-~. (26) 

Beginning with the second derivative, this estimate is equivalent to the following: 

where the vector Pl 
(25)]. Assume that inequality (27) is true for all [Pl [ < [II - 1. Let us prove that it is also valid for 
For Pl = l, equality (22) can be written as follows: 

where 

D P l / 0 V t ( V ) | [  "~ < Cpexp{cz0( lP l [  + 1 ) t t l } ,  Ipl l  = 1, q - l ,  (27) kT j 

is such that [Pl [ + 1 = Ip I. As proved above, inequality (27) holds for [Pl [ = 1 [inequality 

Ipll = Izl. 

Rt(Vt(V)) = D~ L 7v;- ~ J 0Vt 0Vi 

The quantity Rl(~qlt(lg) ) has the form of a differential expression with terms in the form of the products 

(28) 
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where j is an integer-valued vector I j [  = 0 ,  Ill  - 1 ,  v = 1, m ,  with constant coefficients. Here, 

D~ -j (Oa(l l / t (~t)) l  = I ~ l  D ~ (Oa(Vt (V)) ]  

where 

A. M. SAMOILENKO AND O. A. BURYLKO 

rtl + r12 + . . . +  q t_ j=<~ ,  rll + 2q2 +...+ II-jlrtl_j =[ l - j l ,  

and C~n 
the estimate 

D~- j (Oa(Vt(V)) ( O~t I 

where 

are certain positive constants. Then, by virtue of inequality (13) and the induction hypothesis, we obtain 

<- M e x p { O L o ( l l - j l l t [  + (I j l+l)c%lrl} 

= Mexp{ao(lll+ 1) It[} v t ~ n ,  (29) 

ll-j] Ii-jl 
]/-)cr+l M = Cj+ 1 ~=, sup ' - v  a(w)ll ~ C~ n ~ C2.n* 

o = 1  ~ t~Rm r I k = l  

Regarding (28) as an inhomogeneous system of equations, we obtain the following equality for the partial deriva- 

tives D~ ( ~gt (V) ) for t > O: 
~tg i 

' l = f Rl (lllz (Ig)) d'c. 
o 

Hence, by virtue of (23) and (29), we get estimate (27) for [Pl [ = [l[. Similarly, we obtain an estimate for t < 0. 
Therefore, inequality (26) is true for all [p [ = 1~ .  

By using estimates (11) and (21), we obtain the following inequality: 

p _ t [[D~,(v)A(tgtOg))[[ < ap [[~gtOg)]lvlpl + ~v 

- ap([[V[[ + a2a71)vlp lexp{alv[p[ [d}  + ap  

# �9 <- % K ( v l p l ) ( l l v l V  Ipl + (a2ai-1)vlpl)exp{alv[p[[t]} + ap 

-- (apl[VH vlpl + "~p)exp{fzlv[p][t [ + o~} ,  ]p[ = 1, q ,  (30) 

where ~p = (~pK(V[p[), -~p = (~pK(v[p[)~lN~lvtPl , and 
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= I 2z-t '  z > 1, 
K(z) 

l 1, z ~ [0; 1]. 

By using estimates (26) and (30) and inequality (7), we can now estimate integrand (19) as follows: 

IINt(t , 'c ,G,V)II  - g 2 c t ~ - m [ ( ~ l l l v l l  v + ~l)exp{eztvl<~l}  + a l ]  

• e x p { - v ( l t - ~ 1  + I<~-*1) + %1+1} 

(Kt Ilvll v § Kt) exp{-T(l t  - "el + I<s - xl) § (% § r v)I<~1}, (31) 

where K 1 = K2Cl-x/r-m~l and K-- 1 = K 2 C I - ~ ( ~ I  + C~). By using the lemma with bt I = ot 0 + a t v  and 
P-2 = ~t3 = 0, we conclude that inequality (14) with q = 1 guarantees the uniform convergence of  integral (18). 

This implies that all partial derivatives of the Green function OGt (% gt), i = 1, m, exist. Inequality (31) also yields 

estimate (16) for IP[ = 1. 
Thus, we have established the statement of the theorem for q = 1. By using the method of mathematical induc- 

tion, we complete the proof of the theorem. Assume that the Green function has all continuous partial derivatives up 

to the order q < 111- 1, where 

m 

1 ---- ( l l  . . . . .  Im), Ill = ~ ,'~- 
i = I  

Also assume that estimates (16) hold for all p such that Ip[ = 1, Ill- 1. Let us prove that inequality (14) with q = 

] l[ guarantees that Gt(•, ~) belongs to Ct(R m) and estimate (16) holds for the indicated value of  q. 

By analogy with (18), we represent the derivatives of the Green function of the ] l [th order as follows: 

or162 

: I 2 
- ~  I)Vl I+l)v21+lk31-- Ill 

C~,,~z,~3 D~v' Gt(G, ~g) D~m A(~g~r(~g)) D~X G~r(z, v)dG, (32) 

where C~,l,~,2,)v 3 are certain arbitrary constants, 

~'i  = ( ~ ' i l  . . . . .  ~'im), ~,lj--> 0 ,  ).2j>--- 1, ~'3j  -->0, 
m 

I~+.I = Y_+ x,+.,, 
j = t  

D~ 2 A(~llt (V)) = 
1~-21 

Do A(V)Iv=vo.(+) 
0 = I  

• ~., Com(D~g~g~(~g)) m' (D$~g~(~g)) % . . .(D~2 ~c(~g))  %2 , 
O 

(33) 

O) 1 + 0 2 + . . . +  f.OK2 = O, f'Ol + 2( '02 + ' " +  [~.2lc~ = I) '21- 
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Since 13.1[ < [! [ -  1 and [7L3] < l / I -  1, according to the induction hypothesis, the derivatives of  the Green 
function in the integrand satisfy inequalities (16). By virtue of  (26) and (30), we get 

1~-21 
IIO~ 2 A(Vo(V))[I <- ~ [(%Ilvll  v~ + 130)exp{(xlv0l~l}] 

0 = I  

• ~ c0o, exp{c%(o~l + 2co2 +...+1~.21c0~2)1~1} 
o) 

<-- (Mx2 Ilvll vl~zl + Mx2) exp{l?~2l(ao + ~1 v)l~l}, 

where M~2 and M---kz are certain sufficiently large positive constants independent of gt and or. Since [ ~.I [ + 

I )-2 [ + 13-3 [ = [ i I, taking into account the estimates for DXv ~ Gt (or, ~t) and Dxv 3 G t (eL gt) and the estimate proved 

above with theuse of the lemma for ~t 1 = IX2[ ~, g2 = [•1 I t ,  P-3 = IZ'3[~, and ~ = CZo+ (zlv,  we establish 
the uniform convergence of  the integral on the right-hand side of (32). Furthermore, by using inequality (14), we 

obtain estimate (16) for the Green function for q = [l [. Thus, Theorem 1 is proved. 

Remark 1. Under the conditions of Theorem l, the projection matrix COg) belongs to the same class as 
A (qt). 

Indeed, since C(gt) = G0(0,  gt), by virtue of Theorem 1, there exist all derivatives D p C(gt) ,  I p l  = ~7-~. 
By setting t = "c = 0 in inequality (16), we obtain 

IIDPC(v)[I -< gpllvll~lPl+ Kp, Ipl = 1,---~, 

whence it follows that C(V)  ~ C q (grn). 

Theorem 2. Suppose that the conditions of  Theorem 1 are satisfied. I f  the inequality 

y > q ( c % + ~ l v )  (34) 

is true, then, for  any fuced vector function f (~g) ~ C q (Rm), the inhomogeneous system (5) has a unique bounded 

invariant manifold x = u(~g) defined by equality (6) and, moreover, u(~g) a C q (Rm). 

Proof  It is obvious that if inequality (34) holds, then inequality (14) is also satisfied. Then, by virtue of The- 

orem 1, Gt(T,, Ig) a Cq(R m) and inequalities (16) hold for all p such that I P [ = 1-~. Taking into account that 

the vector function belongs to the class C q (R m), we obtain the estimate 

IID(,,(v)f(v~(V))IIP < (t~)llvll~lpl + t~))exp{cxlvlpll t [},  t ~ R ,  [pl = 1-~, (35) 

with certain positive constants L~ ) and L(p 2) independent of qt and t. 
As mentioned above, the existence of the unique Green function (3), (4) of system (1) guarantees the existence 

of a unique bounded invariant manifold of the form (6) for system (5) for every f ( ~ )  ~ C q (R m). Let us show that 

u(lll ) E C q (Rm). Differentiating the integrand in (6) I P[ times with respect to the parameters V1 . . . . .  ~gm, we 
obtain 
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where Csr 
that 

In (36), we have 

DP Go ('~, V) f ( v x  (V)) = ~_. Csr D~ G o ('~, V) D~ f ( v ~  (V)) : = N--p ("c, V),  
Isl+lrl = I/I 

(36) 

are certain positive constants, and the vector indices s = (s 1 . . . . .  s m ) and r = (r 1 . . . . .  r m) are such 

m m 

s/>__0, rj_>0, Isl = Z Si' Irl = ~ rj. 
i = 1  j = l  

D~ f ( ~ t  t (V)) = 
Irl 

D~, f ( v ,  (V)) ~ Coo) (D v Vz (V)) (~ (D(r V~ (V)) ~ ... (D~r Vz (V)) ~ 
0 = 1  c0 

with the indices of summation 

(1) 1 + (O 2 + . . .  + f.O r = 0 ,  0) 1 + 2 m  2 + . . .  + [rl (0 r 

Taking (26) and (35) into account, we obtain the estimate 

IlDv f(w~(w))l[ _< 

where 

=lrl .  

t-(,) rF-)) lr  [[~[]vlrl + exp{lr] ((;to + ~1 v)[ 'el},  z ~  R,  

[ r ]  o )  r 

r ?  = g C g 1I 1, 2. 
0 = 1  co q = l  

(37) 

Taking estimates (4), (16), and (37) into account, we can conclude that inequality (34) guarantees the uniform con- 
vergence of  the integrals 

+ o o  

- - o o  

(38) 

in ~ ~ D in every bounded domain D ~ R m. This implies that all partial derivatives of  the bounded invariant 

manifold x = u ( ~ )  exist. Furthermore, estimating (38), we get 

IIDwPu(V)II-< B(pl)llvll"lPt + B(p 2), IPl = 1,--'q, 

where 

B~i)= KlPl Z Cs,.T~ O, i =  1 ,2 ,  
Isl+lrl=lPl 

i.e., u ( ~ )  ~ Cq(Rm). The theorem is proved. 

Imposing stronger conditions on the vector function a ( ~ )  and weaker conditions on A ( ~ )  and f ( ~ ) ,  we can 
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also obtain certain results concerning the smoothness of 

cq, B(Rm), 0 < [3 < 1, of matrix or vector functions F ( ~ )  s cq(g m) satisfying the conditions 

A. M. SAMOILENKO AND O. A. BURYLKO 

where c~, v, L v, 

Theorem 3. 

folds, A (~) 

Gt('c, ~),  u (~),  and C ( ~ ) .  We introduce the class 

IID,~F(v)II < Lpexp{vlp[  Ilwll 1-~} + L~, 

/ and Lp are positive constants, and 

(39) 

m 

P = (Pt . . . . .  Pro), Ipl = ~ Pi, Pi ~ N.  
i=1 

Suppose that there exists a tmique Green function of the problem of bounded invariant mani- 
cq, B(Rm), and a function a(gt)6 Cq(R m) satisfies the condition 

I la (~) l l  <- c~111~11 ~, 0 < 9  < 1 ,  (40) 

and inequality (13). Then the inequality 

2 y >  q ( ~ 0 + c ~ i v ( 1 - { 3 ) )  

is a sufficient cond#ion for the validity of the inclusions Gt('c, gt) ~ Cq(R m) and C (~t) 

estimate 

IIDgG~(~,V)II < (Wp exp{vlplllViI ~-I~} + we) 

x e x p { - y ( I t  - "el + Ipl (c% + o h v(1 - B)) max i l t l ,  I'cl}}, 

(41) 

cq.~(R m) and the 

[p I = ~ -  (42) 

Proof. By virtue of the uniqueness of the Green function Gt('c, gt), we can write the difference of the values 

of this function for different values of the parameter ~t in the form (17) and verify that Gt(z, ~)  ~ C~ m) (see 
the proof of Theorem 1). Then we can write the formal equality (18) and prove that, under the conditions of Theo- 
rem 3, the integral on the right-hand side of this equality is uniformly convergent in gt in every bounded domain 

D c R m. By virtue of condition (13), we obtain estimate (26) for D~ ~t t (~)- 

Writing the integral representation (20) of the unique solution of system (2) for t >_ 0 and using (40), we obtain 

the inequality 

t 

IIv,(v)ll -< Ilvll + ~ IIv~(~r ~do. 
0 

By solving this integral inequality (see Theorem 1.12 in [7]), we get 

IIv , (v) l l  <-- ( l l v l l  1-~ + c ~ l ( 1 - [ ~ ) l t l )  ~/(~-~) 

Analogously, we establish that the last estimate is also true for t < 0. Thus, with regard for (39), we write 
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P _ ," IIDv,(wA(vt(ug))II < Lp exp{vlplllvt(v)ll ~-~} + Lp 

< Zp exp{v Ipl (Ilvll 1-~ + cq (1 - [3)Itl)} + Z;~ 

< (Lp exp{v Ipl Ilvll ~-~} + Lp) exp{ct 1 v(1 - ~)Ipl Itl}, 

Therefore, we can estimate the integrand in (18) as follows: 

II N1 (t, X, Or, v)ll -< 

Ipl = l,--~. 

K 2 C 1 ~ (Lp exp{v Ilvll 1-~} + L~) 

x e x p { - y ( l t  - crl + 1(~- x[) + ( %  + oq v(1 - [3))tol}. 
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Inequality (41) enables us to use Lemma 1 and thus prove the uniform convergence of integral (18) in ~ and estab- 

lish estimate (42) for q = 1. Hence, Gt(~, Ig) E C 1 (Rm). 
Further, by using the method of mathematical induction, we prove the theorem for any q. Assuming that the 

statement of the theorem is true for all 

m 

lql = 1,111-1, Ill : Y~ li >- 2, 
i = 1  

we prove that it is also true for q = I I l- We write the I I Ith-order partial derivatives of the function Gt(z , ~ )  in the 
form of the formal equality (32). According to (33), we get 

llD~ A(V~(V))II - 
1~-21 

(/_% exp{v0 Ilvll ~-~ } + L~2) exp{oq v0(1-D)lol} 
0 = 1  

co~. 2 

x ~ Coo , I I  (Cn)nexp{%(c~ + 6~ + . - . +  (%,)l(rl} 
r r l = l  

-< (Sx 2 exp{vl~.2l Itvll 1-~ + sx,}) e x p { ( %  + (zlv(1-~))19~21 Iol} ,  

where S~2 a n d  5~'2 are certain positive constants. According to the induction hypothesis, estimates (42) hold for 
the derivatives of the Green function in the integrand in (32). Therefore, by virtue of Lemma 1, inequality (41) im- 
plies that integral (32) is uniformly convergent and estimate (42) holds for q = [II. 

By setting t = z = 0 in estimate (42), we establish that C(~g) ~ cq,~ (Rm). The theorem is proved. 

T h e o r e m  4. Suppose that system (1) has the unique Green function (3) satisfying estimate (4), A (~) 
cq,~ ( Rm ) , and inequalities (40) and (13) hold for the vector function a Og ). If  the inequality 

7 >  q ( a 0 + a l v ( 1 - ~ ) )  (43) 

is true, then, for a fixed vector function f(~g) e cq,~ (Rm), system (5) has a unique bounded invariant manifold 

x = u(llt ), which also belongs to the class cq, f~(Rm). 
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Proof. Since condition (43) is stronger than (41), by virtue of Theorem 3, we can write estimates (42) for the 
derivatives of the Green function Gt(z, ~1). By analogy with Theorem 2, we estimate the integrand of (38), taking 

into account that f ( ~ )  ~ cq~ (Rm). This yields 

IINp(~, V ) I I -  
lsl+lrl = Ipl 

Csr(Wsexp{vls[ Ilvll 1-~ + Ws)) 

• e x p ( - y  [zl + Isl (Oto + c~l v(1 - [3))Izl} 

Irl 
x ~ ( t  r exp(v0 Ilvll 1-~) + Z;) exp{~ I v0( l  - ~ ) I z l )  

0=1 

co r 

• ~ Co,~ I-I (cq)nexp{~olrl[xl} <- (Qpexp{vlpl l lvl l  1-~} + Qp) 
co 4 = 1  

• exp(-Tlz l  + Ipl(~0 +~1v(1-[3))},  Ip[ = 1,--~, (44) 

where Qp and Qp > 0. Therefore, condition (41) guarantees the uniform convergence of integral (38) in ~ ,  

which implies that there exist all partial derivatives of the bounded invariant manifold u ( ~ )  up to order q inclu- 

sive. Estimate (44) also implies that u (~ )  ~ cq,~ (Rm). The theorem is proved. 

Remark 2. Consider a linear extension of a dynamical system to an m-dimensional toms, i.e., the case where 

= q~ ~ T m in system (1). It is obvious that, under the conditions of Theorems 1-4, we have v = 0 and, therefore, 

IlOgGt(z,~P)ll <- gpexp{ -7( l t - z [  + ~0lpJmax{ltl ,  lzl}}, Ipl = 1, q,  t,~c~R. 

By setting t = 0, we obtain known estimates for the derivatives of the Green function G0(z, r [4]. 

Remark 3. It turns out that the validity of inequalities (14) and (41) under the conditions of Theorem 2 and 

Theorem 4, respectively, is insufficient for the bounded invariant manifold to belong to the class Cq(R rn), i.e., if 
the inequalities 

7 <  q ( C t o + ~ l v )  < 27 

and, correspondingly (Theorem 4), 

Y < q ( O t O + ~ l V ( l - ~ ) )  < 27 

are satisfied, then the Green function Gt('~, ~ )  necessarily belongs to the class Cq(Rm)~ 
manifold u (~ )  may not belong to this class. 

Let us illustrate this statement by the following example: 

whereas the invariant 

Example 1. Consider the system 
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d~ d dx 2 sinh 
dt = tanh ~ ,  - -  = x + -  

dr cosh 2 

where ~ ,  x ~ R,  fo r  which  c, 0 = 1 and v = 0. This system has a unique Green function G0(r, ,  ~ )  with the ma-  

trix C ( ~ )  = 0 and index y =  1; according to (3), this function has the form 

f 0, r,_<0, 
Go( r,, ~g) = 

L - e  - z ,  r , > 0 .  

The invariant mani fo ld  is def ined by the expression 

j- + ;  sinh ~ e -2z  dr, 
+ ~ ' ( - 2 ) e - ~ s i n h ~ ' ~ O g )  dr, = - 2  e_2Z + sinh21g 

x = u(~t)  = coshZ~l/x(~t ) 
0 0 

= sinh ~g In tanh 2 ~1/. 

In the case considered,  we  have 27  > ot 0 + c~ 1 v = y,  and q = 1, i.e., the condit ions o f  Theorem 1 are satisfied, 

whereas the condi t ions  o f  Theorem 2 are not satisfied. Al though the Green function belongs to the space C :  ( R )  

(moreover,  it is analyt ic  in ~ ) ,  the invariant manifold u(~g) does not have a finite derivative at the point ~ = 0: 

l im du(~t)  _ lim 
~ 0  d ~  ~r 

(cosh~t l n t a n h 2 ~  + 2 c o s h - : ~ )  = _oo;  

this means that u ( ~ )  does not  belong to C:  (R). 
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