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ON THE SMOOTHNESS OF THE GREEN FUNCTION
FOR THE PROBLEM OF BOUNDED INVARIANT MANIFOLDS

A. M. Samoilenko! and O. A. Burylko UDC 517.938

We investigate the smoothness of the Green function for the problem of bounded invariant manifolds of
linear extensions of dynamical systems.

We consider the system of differential equations

W o),

dx
7 = A(y)x, M

dr

where y e R™, x e R", and the vector function a(y) and matrix function A () are defined forall we R™ and

are continuous in the collection of variables w,, ..., y,,. For the vector function afy), we additionally assume
that the Cauchy problem

dy

= =AW Wlhieo =W )

has a unique solution ,(y,) defined forall r < R and continuously dependent on y,. Denote by CO(R'") the
space of functions F(y) continuous in the collection of variables V, ..., WV, and bounded on R™, by C{R™),
g =1, the space of functions having continuous partial derivatives up to the gth order inclusive with respect to each

variable ;, j=1,m (we denote by Df F(y) any derivative of order |p|= 2;’;1 pm of afunction F(y) with

respect to the variables (W, ...,W¥,,) = ), andby C’(R™; a) the subspace of the space CO(R”') of functions

F(y) such that the function F(wy,(y)) is continuously differentiable with respectto ¢ forall te R and Y€ R "
and, in addition,

g—F(w,(w)) .= F(y) e CO(R™).
1 r=0

Numerous works (see [1-6]) are devoted to the investigation of bounded invariant manifolds of dynamical sys-
tems. The introduction of the Green function of the problem on an invariant torus 2] gave the possibility of pres-
enting from the general point of view the perturbation theory of differentiable and continuous invariant manifolds of
dynamical systems, which explains the necessity of investigating the properties of this function (smoothness, rough-
ness, etc.). In particular, the properties of smoothness of the functions Gy(t, w) and u(y) are fairly well studied
in the case where the matrix function A(y) and the vector function a(y) are 2z-periodic in each variable Y, J=

1,m, i.e., they are given on an m-dimensional torus 7 n (4], Although many properties of this system are pre-

served in the case where these functions are given not on a compact manifold but in the entire space R™ [4, 5], the
investigation of the problem of smoothness in this case is quite different and encounters substantial difficulties. This
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is explained, first of all, by the fact that, in the general case, the functions on the right-hand sides of system (1) and
their derivatives may be unbounded. In the present work, we indicate certain classes of functions such that, for the

functions a (), A(y), and f(y) from these classes, the unique Green function and the bounded invariant mani-
fold of system (1) are smooth.
It is known [2] that system (1) has the Green function of the problem of bounded invariant manifolds if there

existsan nx n matrix C(y)e C°(R™) such that the function

Q2 (W) C(w. (), 1<0,
GO(T’ W) = { 0 (3)
QA C(w. (W) - L], t>0,

satisfies the estimate
I Go(t, Wl < Kexp{-v|tl}, 4)

where the positive constants X and 7 are independent of we R™ and t€ R, and Q((y) is the matriciant of the
linear system

dx
a A, x,  QWli=0 = I

In this case, a function of the form Gg(7, y) is called the Green function of the problem of bounded invariant
manifolds of system (1). The existence of this function leads to the existence of a bounded invariant manifold of the
system of equations

v _ dx _
= e, — = AW)x + (W) 5)

for every vector function f(y)e C 0(Rm). This manifold can be represented as follows:

x=u(y) = [ Gty fly(w)dr. ©)

—oo

Recall that a bounded invariant manifold of system (5) is given by the equality x = u(y) if u(y)e C'(R™; a)

and the identity #(y) = A(y)u(y) + f(y) holds forall ye R™.
Note that estimate (4) for the Green function (3) is equivalent to the estimate

G (t. )l < Kexp{-ylr—1]|} @)

for the function G,(t, W) = Q4 (W)Gy (T, v). The latter follows from the identity QF (wq (W) = Q’T:% (y) for
the matriciant of system (1), which is true forany ¢,1,0€ R.
To prove our principal results, we need necessary conditions of convergence and an estimate for the integral

co

Jee,w = | exp{-y(lt—ol +lo-1) + wlol + pymax{Jol,|7l} + p3max{jol.|:[}}do,  ®

- 00

where 7, T € R are parameters, Y and |, are positive constants, and U, and W, are nonnegative constants. Let
us formulate a preliminary result.
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Lemma 1. If
2y > u, )]
where L = | + W, + W3, then the integral J(t,t, W) converges for all t,T € R, and the following esti-
mate is true:

J(t,t,0) £ Kexp{-vy|r—t| + pmax {{z].|7]},

where

K= 2(2y + max{y,u}) .
w2y — )

Proof. We decompose the coordinate plane Otr by the straight ines r=0, 1=0, t=1, and t=-7 into
eight regions. On each of these regions, we consider the integral J (¢, T, ) as a sum of integrals whose limits are
chosen so as to remove the moduli in the integrands. Let 0 <r<t. Then we can write

-1
J(t, T, W) = _[ exp{-Y(t—-1) — y(T—-06) - 146 — 4, G — U36}dC

—o0

-1
+ I exp{-Y(t~6) - Y(1—-6) — ;0 + U T — H30}dC

-T

0
+ [exp{-v(t=0) - ¥(1-0) = ;6 + U2 T + W31}do

-1

t
+ j exp{~Y(t=06) = Y(T—06) + ;0 + U> T + U31}dcC
0

T
+ j exp{~Y(6—1) = Y(T—0) + ;6 + U> T + H30}dC

t

+o0
[ exp{~v(6-1) - ¥(6-1) + 1,6 + 1,6 + uy0}do. (10)

T

+

Condition (9) guarantees the convergence of each integral in expansion (10). The condition 0 < <t also implies
that —y(¢+71) < —Y|T~t| Therefore, we have

Tt = 5 L exp{—v(r+30) + pt}

+ ——————exp{-Y(E+71) + W, THexp{-(2Y -1 — 13)¢
27— by — 13 ty THexp{~(2y — u; —u3)t}
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1
- exp{-Q2y - —-p3)t}) + 77

——exp{-v(t —7) + Uy T + p37}(l — exp{-(2y —p1)1})
1

—v(t — 5 -1
AL exp{—v(t—1) + Uy T + Har(exp{y +ppr} - 1)

exp{-v(t1—1) + y THexp{(; + 1) 7} — exp{(k; +u3)t})
M +Us

+ 2yl—uexp{—Y(‘C—t) +ut} € Kyexp{-y(t—1) + pt} = Kyexp{-yl1-1] + plzl},

where

_ 20y+)
ey -w

Consider one of the cases where the parameters ¢ and T lie on different sides of the origin, namely, let — 1<
1< 0. Then we get

~!

Ji,tw = [ exp{-v(1-0) - ¥(t-0) = w0 — 10 ~ P3o}do

—~oo

-1

+ [ exp{-v(t=0) = y(t=0) — W0 — Wy 0 + U3r}do

-1

0
+ _[ exp{-y(t—6) = Y(6—T) — ;0 — U T + U31}dC

T

-T

+ J exp{-Y(t-0) = Y(G—1T) + 1,0 — Uy T + U3t}dC
0

!
+ [ exp{-v(t-0) = v(6-1) + WO + Uy + py1}do

-1

+

“+ oo
[ exp{-v(6-1 = ¥(6-1) + 16 + 1y 6 + p30}do

t

exp{-y(3t+1) + ur}
2y-u

2——————(exp{(2v — Wy~ W) T} - expi—(2Y — 1y — Kp)1})
YU~
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2
+ ;L“CXP{‘YU‘T) — Uy T + fayri(exp{-p T} - 1)
1

+ exp{~v(t—1) + pyri(exp{(k; + 1)t} — exp{-(i; +p2)1})
My +Ha

exp{-y(t—1) + pr} < Kyexp{-y[r—t+plel},

where

K?_ = ———-i"Y———.
B2y -w

Here, we have also used condition (9).

Consider the other three cases where the parameters lie in the first and third quadrants of the plane Otz. Car-
rying out the change of variables 1 >t and T—>1¢, or t— -¢ and T —> -1, or t—> -1 and T — -1,
respectively, we establish that these cases reduce to the first case considered above. The cases where the parameters
lie in the other two quadrants of this coordinate plane can be reduced to the second case considered above by the
same changes of the variables. Thus, we obtain estimates of integrals (9) for the parameters that belong to each of
eight regions of the plane Otr. By setting K = max {K;, K, }, we complete the proof of the lemma.

Denote by CJ(R™) a class of matrix or vector functions F(y) e C%R ™) such that, for certain positive
p

constants o, O, oc;,, and v, the estimates

NWFll < «, IDEFIl < o, i + o, an

are true for all integer-valued vectors p = (p;, ..., p,,) suchthat |p| = p; + ... + p,, < g. For example, F(y) =

siny?>. For the vector function a(y), we assume that

Na()ll < o llwll + o, (12)

sup |[|Dfa(w)ll < +e, |pl=1g, (13)
yeR™

where o; >0 and o, >0. As an example of such functions, we can mention a(y) = ysinln(l + y?), etc. We
prove the following statement:

Theorem 1. Suppose that the system of equations (1) has the unique Green function (3) satisfying estimate
(4), a function a(y)e€ CHUR™) is such that inequalities (12) and (13) are satisfied, and A (y)e Cl(R™). If

the inequality

2Y > g (g + V), (14)

where

g = sup (max <Mn,n>1), (15)
wer™ \mi=1/\ oy
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is satisfied, then the Green function G,(T, V) has all continuous partial derivatives up to the order q inclusive
and the following estimates are true:

DL G, (t Wl < exp{-vlt—1| + | pl(ag + oy Imax{Jz], [} } (K, Wl + k7)., |pl=1Tq, (16)
where K, and K, are certain positive constants independent of \, 1, and T.

Proof. By virtue of the uniqueness of the Green function, according to [4], the difference G,(T,y) -
G, (1, ¥) can be represented as follows:

Gt v) - Gt W) = [ G o, WAl (W) — Alws ()] G5 (1. %) do. a7

—c0

Since the constants K and vy in estimate (7) are independent of W and 7, the boundedness of the matrix

function A(y) in the entire space R™ guarantees the uniform convergence of integral (17) in the parameters
and . Therefore, the right-hand side of the inequality

Z(W’W) = ”Gt(’cv‘U) - Gt(Tvm—)ll
< K2 [ exp{-v(t-cl + lo -} HIA(Y (W) - A(Ys (W)l do
< KZexp{~vy(lt—tl + Smax{jt|.|x[}} [ exp{-3lol}IA(ws(W)) - A(ws(@)lldo

—o0

is a continuous function in the collection of variables y, ¥; here, d is a certain fixed number that belongs to the
interval (0, 27Y) and, furthermore, for y = ¥, we have Z(Vy, y) = 0. This allows us to conclude that the Green
function Gy(T, ) continuously depends on the variables .

Let y~W¥ =(0,...,0,y;,-v¥,;,0,...,0) and let y; # V; for certain [ = 1, m. Dividing relation (17) by
y; —;, we obtain

Gy - G(LY) _ *j“’ G (o W)A(wo(w)) -~ AW.W) (1. §) do
Vi~V o ~ Vi o |

—o Vi =V,
Taking into account the continuous dependence of the Green function on the variable , we formally pass to
the limit as ; — W; in the last equality. This yields

G (T w) _

-+ oo
[ M@t0wdo, (18)
oy -

i

where

m 9 5
Nl(t, ‘C, G, \l!) - GZ(G,\II)[ Z BA(‘I/c(‘V)) W k GG(T,\U)- (19)

k=1 a‘pck a‘ui
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This limit transition is correct whenever the integral on the right-hand side converges uniformly in Wy e D in every
bounded domain De R™.

Let us estimate integrand (19). First, we estimate the solution ,(y) of Cauchy problem (2) and its deriva-
tives. Assuming that r =0, we represent the solution in the integral form as follows:

VW) = v+ [ a(ye(w) dr. (20)
0

Then, by virtue of (12), we can write

t
.l < llwll + | (eallws (Wl + ) do,
0

whence it follows that [17]

vl < llwllexploglel} + oo (expfoglel} = 1) < (vl + a0y Dexp{aylel}. @D

In a similar way, we can verify that estimate (21) is also true for 1 <0.

The fact that the vector function a(y) belongs to the space CY(R™) implies that the solution ,(y) of sys-
tern (2) also belongs to this space forany t€ R. We substitute the solution ,(y) into system (2). The identity
obtained can be differentiated g times with respect to each variable ;, j = 1,m. We have

d
(05w, (w) = Dfalw(w). Ipl=Tq. @)

Denote by Q' (-g—\% ) the normal fundamental matrix of solutions of the linear system of differential equations

dy (aa(\!l) ) m
Q| e . yeR™
ar oy lw=w,(w) Y

Then the boundedness of the first derivatives of the function a(y) yields

“(5)

where C, = const > 0 and o is defined by equality (15). Thus, we have obtained an estimate for the first de-
rivatives of ,(y). For |p| = 2, equality (23) has the form

< Crexpiaglr—-1l}, (23)

d (v, (W)J (aa(w) j 3%y, ()
dr\ oy, oy, ) oy : + Ry (v, s 24
dl‘( aWi a\u] a\‘; “V=‘V1(W) a\Vi aWj -(W (W)) (24)

where
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mom 32 v, v, &8y (W)W, Y ) —
Ry (v, () = Colon[z zaax (¥, (v)) V¥, OV, L3y am (W, () OV ‘Vr], i j=Tm

1T owowy, Owj oy T T T v, 9y, Ay, 9y, ,
Since
MWW eoton(0....,0,1,0,...,0),
a\;l t=0 ——

- m-—1

we have [Dfw, (]| _, = 0 for [p| = 2,¢. Writing the second derivative of y,(y) as a solution of the linear
inhomogeneous system (24) with the inhomogeneity R,(y,(y)), for 1>0 we have
az\yr(\l’) - j'Qr (aa

— | R dc.

Taking into account estimate (23) for the first derivatives and the boundedness of derivatives of a(y) (13), we get

I

mcfj exp{tylt — 6| + 2aplo]}do = Crexp{2 aylt|}. (25)
0 0

9%a

<
oy?

Il 3y, (¥)
oy, 0y

By analogy, we can obtain the same estimate for the second derivatives for < 0.
Further, by using the method of mathematical induction, we prove the general estimate

IDEw, (Wil < Coexp{oglpltlel}, Ipl=17g. (26)

Beginning with the second derivative, this estimate is equivalent to the following:

o —_
DY (%\f“’—))“ s Gexplag(lp |+ DIel}. Ipyl = Tg—1, @n

where the vector p; issuchthat |[p;| + 1 = |p|. As proved above, inequality (27) holds for |p;| = 1 [inequality

(25)]. Assume that inequality (27) is true for all |p, | < || ~ 1. Let us prove that it is also valid for |p;| = ||
For p, =1, equality (22) can be written as follows:

d ;(dy (W)D v, (W) ([ Ow, (W

—=|Dy| = |1 = L D L + R , 2

dt( Y ( a\vi aw W awl I(Wt (W)) ( 8)
where

0
Rncw) = o[BG 20 ] 0o (2000

The quantity R;(w,(¥)) has the form of a differential expression with terms in the form of the products

~j [ 9a(y, j ;
o (252 %2)
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where j is an integer-valued vector |j| = 0,|/[-1, v = 1, m, with constant coefficients. Here,

. 1= jl . y |
D{V_J ( aa(gf‘;(\l’))) = Z Dgl ( aa(g‘l’!‘;(“’))) Z CUT] (D\}l W{ (W))T‘I (D\;, w{ (W))ﬂz . '(D‘f;j J \V{ (W))nl—] ,
! o=1 t 1

where
Ny + My +..+ Ny =0, M+ 2N+ + [i=jng =11-j|

and C,, are certain positive constants. Then, by virtue of inequality (13) and the induction hypothesis, we obtain
the estimate

i [ 92y, (W) i [ OV _ .
i (P2 oy [ 3] < ettt it D
= Mexp{ag(lil+ D) 12|} VieR, 29)
where
i/l 1 18]
M= Ciy Y sup D" awll Y Con D, G-
G=1w€Rm n k=1

Regarding (28) as an inhomogeneous system of equations, we obtain the following equality for the partial deriva-

tives ny (M—)) for t=0:
oy,
! 3\11: () _ ; ¢ [ da
Dw(‘*a*w‘i'“] = E‘;QT v R (w () dr.
Hence, by virtue of (23) and (29), we get estimate (27) for |p;| = |/|. Similarly, we obtain an estimate for ¢ < 0.

Therefore, inequality (26) is true forall |p| = 1,g.
By using estimates (11) and (21), we obtain the following inequality:

IN

“D\II;,(W)A(‘W )l apll\l!, W)IV1? + o,

IA

o, (il + ep o) Plexp{ay vipllel} + o

IA

o, KV pD UM + (o 07") P exp{ey viplle]} +

(@, Iwl"? + B exployvipllel + of},  Ipl= T, (30)

where @, = a, K(v|p]), B, = o, K(vip)oy? o "', and
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27l 2>,
K(z) =
1, ze[0;1].

By using estimates (26) and (30) and inequality (7), we can now estimate integrand (19) as follows:

IN

IVt 0, wll < K2 G m@ vl + By) exp{ag viol} + af]

x exp{-v(lt =0l + [o —1|) + aylol}

AN

K wll” + KD exp{-v(lt =l + lo =]} + (0 + oy V) [0}, €2y

where K| = K*Cmd; and K| = KzCIW/E(B1 + o). By using the lemma with 1, = o¢g + ;v and
K, = py = 0, we conclude that inequality (14) with g = 1 guarantees the uniform convergence of integral (18).

oG, (T, ¥) . —

This implies that all partial derivatives of the Green function 3 i=1,m, exist. Inequality (31) also yields
4

i
estimate (16) for |p| = 1.

Thus, we have established the statement of the theorem for g = 1. By using the method of mathematical induc-
tion, we complete the proof of the theorem. Assume that the Green function has all continuous partial derivatives up

to the order g < ||~ 1, where

m
= (... 0, =1L

i=1

Also assume that estimates (16) hold for all p such that |p| = 1,]/|— 1. Let us prove that inequality (14) with g =
| /| guarantees that G,(T, W) belongs to CI(R'") and estimate (16) holds for the indicated value of q.
By analogy with (18), we represent the derivatives of the Green function of the |!|th order as follows:

+oo

D, G (ty) = | > G 1y, Di' G0, W) D2 AW (W) D Gy (T ) ds,  (32)
—oo AR +1Ast =1

where C, ,, j, are certain arbitrary constants,
m
}\'iz(}\'il""’}"im)’ )\.1120, A‘Z]Zl’ )\.3120, |kzl= 2)\,11,
j=1

A,

Dy AW, (W) = 3. Dy AWly=y,w)
6=1

X > Cop (Dy Ws (W)™ (D Ws (W)™ ... (D} W (W) ™2, (33)

O+ 0y +...+ 0y, =6, 0 +20;+...+ A ]oy, =[%,].
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Since |A;| < |i|-1 and |A3] < [{]~1, according to the induction hypothesis, the derivatives of the Green
function in the integrand satisfy inequalities (16). By virtue of (26) and (30), we get

Aol
> [ollwll¥® + Bg) exp{oy vOlol}]

0=1

IA

D2 ACws ()l

x Y, Coo explag (@) + 20, +...+[Ay @y ) o]}

w

IN

(M, Il + 3, ) exp{Iha (o + 0y v) ol

where M, and M—kz are certain sufficiently large positive constants independent of y and ©. Since [A;| +

|A,1+]|As] = |I], taking into account the estimates for D\?,‘ G,(o,y) and Du}f G, (0, y) and the estimate proved

above with the use of the lemma for p; = |A,|&, Uy = |A &, B3 = |A31E, and & = oy + oV, we establish
the uniform convergence of the integral on the right-hand side of (32). Furthermore, by using inequality (14), we
obtain estimate (16) for the Green function for ¢ = |/|. Thus, Theorem 1 is proved.

Remark 1. Under the conditions of Theorem 1, the projection matrix C(y) belongs to the same class as
A(y).

Indeed, since C(y) = Gy(0, y), by virtue of Theorem 1, there exist all derivatives D\f; Cv), |lpl= 14.
By setting =1 =0 in inequality (16), we obtain

DL comll < K, lwlM? + K,,  |pl=T174,
whence it follows that C(y)e CI(R™).
Theorem 2. Suppose that the conditions of Theorem 1 are satisfied. If the inequality
Y> g{0p+a;v) (34)

is true, then, for any fixed vector function f(y)e CI(R™), the inhomogeneous system (5) has a unique bounded
invariant manifold x = u(\y) defined by equality (6) and, moreover, u(y)e CI(R™).

Proof. 1t is obvious that if inequality (34) holds, then inequality (14) is also satisfied. Then, by virtue of The-
orem 1, G,(t,y)e CYR™) and inequalities (16) hold forall p suchthat |p| = 1,q. Taking into account that
the vector function belongs to the class CJ (R™), we obtain the estimate

I1DF, oy F QU oD < LG HWIMP + L) exp{ey vipllel},  te R, Ipl= 17, 35)

with certain positive constants L(;) and L(pz) independent of y and ¢
As mentioned above, the existence of the unique Green function (3), (4) of system (1) guarantees the existence
of a unique bounded invariant manifold of the form (6) for system (5) for every f(w)e CJ(R™). Let us show that

u(y)e CI(R™). Differentiating the integrand in (6) |p| times with respect to the parameters W, ..., V,,, we
obtain
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D\Q’; Go (T, W) fly(w) = Z Csr D\sy Go (T, ¥) D\L fly(y)) := Np (v w), (36)
Ist+1r| =14}
where C;, are certain positive constants, and the vector indices s = (s;,...,$,) and r = (r, ..., r,) are such

that

m m
S,-ZO, erO, |Sl= Zsi’ lrl: er

i=1 j=
In (36), we have

irl

Dy, f(y,(y) = eZ DS fWe (W) Y, Coo(Dy We (W) (Dy W (W)™ ... (D W (W)™
=1 [61]

with the indices of summation
O+ WOy +.+ @, =86, O +20,+...+|rla, =]r|
Taking (26) and (35) into account, we obtain the estimate

10§, f(w )l < (TNl + TP) expllri (o + V) [T}, teR, (37

where
. I o, .
= Y19y G, [TV i=1L2
0=1 o n=t

Taking estimates (4), (16), and (37) into account, we can conclude that inequality (34) guarantees the uniform con-
vergence of the integrals

[ Nymwdt, Ipl=Tq (38)

in Wy e D in every bounded domain D € R™. This implies that all partial derivatives of the bounded invariant
manifold x = u(y) exist. Furthermore, estimating (38), we get

IDZuewll < BIwIMP + B, Ipl = 19,
where

BP= kP Y c, 19, i=172,
Is|+irl=1p]

ie., u(y)e CI(R™). The theorem is proved.

Imposing stronger conditions on the vector function a(y) and weaker conditions on A(y) and f(y), we can
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also obtain certain results concerning the smoothness of G,(t,y), u(y), and C(y). We introduce the class
Cg,B (R™), 0<B <1, of matrix or vector functions F(wy)e CY(R™) satisfying the conditions

IDg Fewll < Lyexp{v|plllwll' P} + L, (39)

where o, v, L,, and L;, are positive constants, and

m
p=pi....pm) lpl= 2 P, peN.
i=1

Theorem 3. Suppose that there exists a unique Green function of the problem of bounded invariant mani-
folds, A(y)e Cg»B (R™), and a function a(y)e CU(R™) satisfies the condition

latwll < arllvll®, 0<B<1, (40)
and inequality (13). Then the inequality
2y > q(og+ oy v(1-6)) (41)

is a sufficient condition for the validity of the inclusions G,(T, )€ CHR™)and C(y)e C\‘f’B (R™) and the

estimate
IDEG, (v wll < (W, exp{viplltwll'*} + W,)

x exp{-v(lt -1l + |pl (@ + oy vA =B max{le].Jel}},  fpl=T4q. (42

Proof. By virtue of the uniqueness of the Green function G, (t, ), we can write the difference of the values

of this function for different values of the parameter  in the form (17) and verify that G (1, y)e C 0(R'") (see
the proof of Theorem 1). Then we can write the formal equality (18) and prove that, under the conditions of Theo-
rem 3, the integral on the right-hand side of this equality is uniformly convergent in ¥ in every bounded domain
D c R™. By virtue of condition (13), we obtain estimate (26) for D{,’, v, (y)-

Writing the integral representation (20) of the unique solution of system (2) for #2 0 and using (40), we obtain
the inequality

.l < lhwll + | lvs )il do.
0

By solving this integral inequality (see Theorem 1.12 in [7]), we get

vl S (el + ey =By V4P,

Analogously, we establish that the last estimate is also true for 7<0. Thus, with regard for (39), we write
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IDE, gy AW, (W < L, exp{viplllw, (wIl' P} + L;

IA

L, exp{vIpl (Wl + o, A =PIt} + L}

IA

(L, exp{VIplIWIIPY + L) explog v -B)pl . Ipl=Tq.
Therefore, we can estimate the integrand in (18) as follows:

IV (5, T, 0.wll < K2 Cm (L, exp{vllvll' P} + Lp)
x exp{-y(lt—o| +[o—1]) + (ag + o, v(1-P)) o]}

Inequality (41) enables us to use Lemma 1 and thus prove the uniform convergence of integral (18) in y and estab-
lish estimate (42) for g = 1. Hence, G,(t,y)e C'(R™).

Further, by using the method of mathematical induction, we prove the theorem for any g. Assuming that the
statement of the theorem is true for all

m
lgl = Lld-1, il = Y & =2,
i=1

we prove that it is also true for g =|/]. We write the |/ fth-order partial derivatives of the function G,(t, ¥) in the
form of the formal equality (32). According to (33), we get

[A,]
1D ACws (Il < 3 (L, exp{v8 lll'™P} + L} ) exp{oy, vO(1 - B) o]}
0=1
0y,
XY Cou I (Cp)Vexp{ag (@) + @y +...+ @y, )lol}
® n=1
< (S, exp{vIA | Il + 5, 1) exp{(ap + oy vA=B) Ay o]},

where SM and 3'_;\2 are certain positive constants. According to the induction hypothesis, estimates (42) hold for
the derivatives of the Green function in the integrand in (32). Therefore, by virtue of Lemma 1, inequality (41) im-
plies that integral (32) is uniformly convergent and estimate (42) holds for ¢ = |!/|.

By setting t =1 =0 in estimate (42), we establish that C(y)e C\‘/],B (R™). The theorem is proved.

Theorem 4. Suppose that system (1) has the unique Green function (3) satisfying estimate (4), A(y)e
cl B (R™), and inequalities (40) and (13) hold for the vector function a(\y). If the inequality

Y > q(og+a,v(1-p)) (43)

is true, then, for a fixed vector function f(y)e C\‘f’B (R™), system (5) has a unique bounded invariant manifold

x=u(\), which also belongs to the class ngﬁ (R™).
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Proof. Since condition (43) is stronger than (41), by virtue of Theorem 3, we can write estimates (42) for the
derivatives of the Green function G,(t, y). By analogy with Theorem 2, we estimate the integrand of (38), taking

into account that f(y) e C\‘f’B(R”‘). This yields

IN,ewll < Y Co(Wexp{visllvll'™® + W}
Ist+irl={p

x exp{=v|t] + Is| (0g + o, v = B)) ||}
Irl

x Y. (L, exp{v0 [lyll'P} + L) exp{oy vO (1= B) [}
6=1

x Y Cow [T (CMexplagIrllcly < (Qpexp{viplllvli P} + )

n=1
x exp{-vlt| + {pl(otg +oy vA=BN}. |pl= 19, (44)
where @, and Q;, > 0. Therefore, condition (41) guarantees the uniform convergence of integral (38) in ,

which implies that there exist all partial derivatives of the bounded invarnant manifold u( W) up to order g inclu-
sive. Estimate (44) also implies that u(y) e C\‘/I,B (R™). The theorem is proved.

Remark 2. Consider a linear extension of a dynamical system to an m-dimensional torus, i.e., the case where
vy =@e 7, insystem (1). Itis obvious that, under the conditions of Theorems 1-4, we have v =0 and, therefore,

IDZ G,z o)ll < K, exp{-y(lt=1| + oplplmax{lel.|c}}. Ipl=Tgq, 1,1eR.
By setting ¢ =0, we obtain known estimates for the derivatives of the Green function Gy(t, ¢) [4].

Remark 3. It turns out that the validity of inequalities (14) and (41) under the conditions of Theorem 2 and
Theorem 4, respectively, is insufficient for the bounded invariant manifold to belong to the class CHR™), i.e., if
the inequalities

Y< g(og+ogv) <2y

and, correspondingly (Theorem 4),
Y < q(ag+a,v(l-B)) < 2y

are satisfied, then the Green function G,(T, ) necessarily belongs to the class CYR™) whereas the invariant
manifold u(y) may not belong to this class.
Let us illustrate this statement by the following example:

Example 1. Consider the system
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d 2si
_\_u_ = tanh w’ d_{ = x + _M s
ar dr cosh™ y

where ¥, xe€ R, for which ay=1 and v =0. This system has a unique Green function Gy(t,y) with the ma-
rix C(y) = 0 and index y=1; according to (3), this function has the form

0, 1<0,

- Y, 1>0.

GO(TvW) = {

The invariant manifold is defined by the expression

j (2)e  simhye (y) o _ 2J _sinhye™®

dt = sinhy Intanh?v.
5 cosh® y (W) ¢ 2% + sinh? y M v

In the case considered, we have 2y > ag+ ;v = v, and ¢ = 1, i.e., the conditions of Theorem 1 are satisfied,

whereas the conditions of Theorem 2 are not satisfied. Although the Green function belongs to the space c! (R)
(moreover, it is analytic in ), the invariant manifold u(y) does not have a finite derivative at the point y = 0:

lim du(y) = lim (coshwy lntanhz\p + 2cosh™ly) = -
y—0 d\V y—0

this means that u(y) does not belongto C : (R).
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