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Numerous papers [1-11] dealt with the study of invariant tori of dynamical systems. The intro-
duction [6] of the Green function Gy(7,¢) of the problem on an invariant torus allowed exposing
perturbation theory for differentiable and continuous invariant manifolds in a unified manner and
necessitated studying the smoothness properties of that function [7-11]. The present paper also
deals with this problem.

We consider the system of differential equations

do/dt = a(p),  dz/dt = A(p)z + f(p), (1)
where z € R", ¢ € 7, 7, is the m-dimensional torus, a(p), A(¢), f(¢) € C° (f ), and C° (7,
is the space of functlons Jomtly continuous in ¢ and 27-periodic in each ¢;, j = 1,...,m. By (¢
one usually denotes the solution of the Cauchy problem
do/dt = a(p),  ¢le=o =, (2)
and Q£ (p) stands for the Cauchy matrix of the linear system
dze/dt = A(p:(0)) 2 3)

normalized at the point ¢t = 7 by the condition Q7(y) = I,,, where I, is the n X n identity matrix.
We also introduce the following notation: C?(.7,) C C° (.7 ), g > 1, is the subspace of functions
F(p) with continuous partial derivatives D2F (i), |p| = Yi2; P, |p| =1,...,¢; C'(Inja) C
C° (F,,) is the subspace of functions F'(y) such that the composition F' (¢:()) treated as a function
of the variable ¢ is continuously differentiable and dF (p;()) /dt|,_, := F(p) € C°(F); for an
n x n matrix B(p), we set || Bllo = max e, |B(¢)|l and || Bl| = maxzy=1 || Bz|l; here [lyl| = (y,v),
where (z,y) = i, ;y; is the inner product in R".

Suppose that system (1) has an invariant torus = u(yp) or a Green function. Then we can
naturally ask how continuous these functions are with respect to ¢ depending on the continuity of
the matrix function A(p) and the vector functions a{p) and f g ). The dependence is by no means
obvious. For example, even if the right-hand sides of system (1) are continuously differentiable, the
invariant torus need not satisfy the Lipschitz condition with respect to ¢. It also turns out that
the Green function Go(T, ) has better continuity properties than the invariant torus.

In the present paper, we study the behavior of the moduli of continuity for higher-order deriva-
tives of the Green function and the invariant torus of system (1) and obtain estimates and conver-
gence conditions for these derivatives.

According to [6], the homogeneous system
do/dt = a(p), dz/dt=A(p)r, <z€R", e, (4)

corresponding to (1) has a Green function of the invariant torus problem if there exists an n x n
matrix function C(yp) € C°(9,) such that the function

Qp)C (p-()) for 7<0,
Golr,0) = {9°(</>) [C(pr(p)) = I;] for 7>0 (5)
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MODULI OF CONTINUITY OF THE DERIVATIVES OF INVARIANT TORI 121

satisfies the estimate
|Go(T, )| < K exp{—~Irl}, (6)

where K and v are positive constants independent of ¢ € .7, and t € R. The function Go(T, ¢)
is called the Green function of the invariant torus problem for system (4). The existence of
this function implies the existence of an invariant torus of system (1) for each vector function

f(p) € C°(F,); the invariant torus is given by

+o0
2=u(p) = [ Golr, ) (g (@) U
Recall that a relation of the form z = u(yp) determines an invariant torus of system (1) if

u(p) € €' (Im;a) and u(p) = A(p)u(p) + f(p) for all ¢ € R™.
Note that the estimate (6) for the Green function (5) is equivalent to the estimate

IGe(r, o)l < K exp{—[t — [} (8)

for the function G,(7, ) = Qb(p)Go(7, ). This follows from the identity Q¢ (po(y)) = QL1 (p),
which holds for the Cauchy matrix of system (3) for any ¢,7,0 € R.
Let ®(p) € C°(.Z,) be a matrix or vector function. The scalar function

w(@i0)= sup |2(p) -2 (P)]

le—ell<

is called the modulus of continuity of ®. If ®(p) € C(%,), ¢ > 1, then we set

wy (D3 2) = {max {w (Dg@;z) ,Lq_1(<I))z} for |p| =g,
Ly (®)z for |p|=1,...,¢-1,
where L,(®) = maxy—o,.. p Li{®) and L;(®) is the Lipschitz constant of the corresponding |i|th-
order partial derivative of ®(yp), i.e., a constant such that ”DZ,@(QD) -D.® ((,5)“ < Li(®) |l — &l -
We also write wy(A4; z) = w(A4; 2), wo(f; 2) = w(f;2), and wy(a;2) = 0.
For an arbitrary function ®(y) in the above-mentioned class, we set

+00
1@p;2) = [ exp{-violhw, @ F(FE) +loD)do, bl =0,...q,
where v is an arbitrary positive constant and F(z) = [w(a;2)~'do, n = const > 0.
n

Using the above-introduced notation, we estimate the difference between the values of a deriva-
tive of the solution of the Cauchy problem (2) at points ¢, ¢ € .7, ¢ # @.

Lemma. Ifa(p) € C?' (%), ¢ > 1, then

|DE0u() - D2 ()| < My exp{(alpl + V)t (@pslle = @), Ipl=1,...q,  (9)

for an arbitrary positive constant v, where the M, are positive constants and a is determined by
the inequality o > max g1 ||(0a/0p)E||.

Proof. Since a(yp) is a periodic solution, it follows that w(a;o) = w(a;n) for sufficiently large
o and 7. Let us represent the difference of solutions of the Cauchy problem (2) for ¢ > 0 in the

integral form () — ¢; (@) = ¢ — @+ 7 (a (p.(9)) — a(¢s (@))) do. Then this difference admits
the estimate [|.(¢) ~ ¢ (@) < llo — @l + f5 w (a3 llvs () — @5 (P)I]) do, and so

llee(p) — o (@) < FHE (ke = 2ll) + lol), (10)
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122 SAMOILENKO et al.

where F~! is the inverse function of F. In a similar way, we can show that the estimate (10)
remains valid for ¢t < 0.

We substitute the solution of system (2) for different ¢, ¢ € .7, into the system itself and write

out the difference
(d/dt) (pi() — ¢: (@) = a(pe(¥)) — a (e (P)) - (11)

Since a(yp) € C7(.F,), it follows that the solution of this system also belongs to this class for any
t € R; therefore, we can differentiate identity (11) g times with respect to any of the variables ¢;,
i =1,...,m. In particular, we obtain

3 («M(«p) _ Oy (@)) _ 9a(e) I¢pi(p)  a(y) 0p: (9)
dt \ 9 O 00 lompute) O 0P lompiip) O (12
_ (Ba(so) _ da(yp) ) i) (3a(<P) ) (3%(@ _ O (95))_

0P lpmpier 99 lompuip)) O 09 lp—pur) \ 0% 9

Treating system (12) as a system of linear nonhomogeneous equations for the difference of
derivatives of solutions of problem (2), we have

Opi(p) _ 9¢:(9) _ (&m(w) _ 9 (@))
Op; O Op; Op;

t
da\ ( da(p
t —
* / % (6<p> ( Oy
0
for t > 0, where Q% (8a/dy) is the Cauchy matrix of the system dy/dt = (8a(p)/0¢|o=p:(s)) ¥,

y € R™.
Next, using the estimate [7, p. 190]

t=0

da(y) (13)

Op

) 0, (P)
o=@ (p) 3801,

= ()

|D209)|| < Crexplalpl 1}, Il =1,..,0, (14)

where the C,, are some positive constants, we obtain

l O¢:(p) _ O (P)
Op; Op;

| < [ crexpfalt — ol (g—; lee(#) = 0 (@) explalol)do
2 / da -1 _
< Clexplaltl [ explu(itl ~ oDk (55 P~ (Plllo — ol + o)) explalol}ds (19
400
< 3Gt ewpl(a+ it} [ exp{-vloltu (@ F (F (o - @l) + lo)) do-

We have thereby proved the assertion of the lemma for |p| = 1. Further, we assume that the
estimate (9) is valid for all p with |p| < |I| and prove it for p such that |p| = |I| + 1. Let us
differentiate identity (11) |I| times with respect to arbitrary variables ¢;, i = 1,...,m, assuming

that |I| + 1 < q. We have
d [ th(w)) o (3% (@)))
dt (D‘°( dp; Dy dp;

-0 (50) o (50 [ 50 1 (5

+ Ry (pe()) — Ri (et (#))

() 0 (P)
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MODULI OF CONTINUITY OF THE DERIVATIVES OF INVARIANT TORI 123

where

Rty = 0t [Pl 20A]  22(A L0 (i (2209)).

Since R; (p:()) is a differential expression containing the terms

[1=31
da (pe(p)) G —j G- i [ Ope()
0 G . (D9 J [ R
> ey 32 O (Do) (D3ule)) - (D) (%22).
l7l=0,...,]i - 1], s=1,...,m,
with constant coefficients, where (1 + (2 + -+ {—; = |8 and 1 + 2 + -+ + |l = j|G—; = [l — 4],
we can estimate the difference of (I + 1)st-order partial derivatives of the solutions of the Cauchy
problem (2), use an argument similar to (13), and take into account the relations [Dggot(tp)] .t—O =0

() G

< 0+/ ( 30) [66 (po(p))  Oaleps (w))] D, ()

¢, () 0, (@)
. (Oa _ .
o (52) | 1R (9u0) ~ R (g (@) do = Ty + 1.

for |p| = 2,...,q, thus obtaining

”ijl‘Pt(@) - DqlpHSOt (‘ﬁ)” = ’

do

Just as in (15), using inequality (14), we estimate the first integral as follows:
I< / Crexplalt — ol (553 192(9) = 90 (D)) Cuas explall + Dlol}do
< (J)exp{alt]} / explallol}e (a; ™ (lo] + F (Ilp — 1)) do
< (¢ exp{(l + V)alt]} / exp{([t] = o) }wr (a5 F~* (lo] + F (o — #I)) do
< (exp{(all + 1) + )t} /ooexp{—VIal}wz+1 (@ F~* (lo] + F (llp — 41)) do-

Here and in the following, the symbols (c) and (K) stand for various positive constants.
Let us estimate the second integral:
o (%50 |
£\ 9,

s (00(%(@)) _pis (3a ¢s () )” ‘
i 905(0) _ 1i 0po (P)

d¢q 0p,
()
v Op, ¢ 6908 ? Oy,
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124 SAMOILENKO et al.
For the integrand of J;, we have
1057 (80 (02 (9)) /804 (¢)) — DL (Ba (. (8)) /8¢, (5))
< (K) [HD", (90 (25(9)) /0, (9)) — D, (3a (4 (7)) /8¢ (7))

& ”41-1'

< IDsa (@) [ D200 ()| || P00 )
+ D8, (Bates (7)) /00.)

X [“Dwﬁoa(@) — s ()| '(Di ((po,((p))c’> . (D(lp—j (‘Pa(‘P))Q—j)

Daenle) (D) 77| (D e0) - (P00 ()

+...

J=»

"

Since

|(D20000)" - (D02 (2)°

<G (max{|D2er ). D200 @})"|

and |6| varies from 1 to |l — j|, we have

(16)
D2, () - D2 ()]

I3
D < (K)exp{alf] |o]} D ws (a; F~* (lo] + F (llo = @) exp { (11 = 4] = &) lo]}

g=1

< (K) exp{afl = jl ol}wi-; (a; F~ (F (llp — @I) + lo])) -

Therefore,

7 < (K) [ explalt = ol + 1l = 3l loD}wi—s (@ F~* (F (ke = #l) + o) [| D500 (0)] do

+-co
< exp{(a(l +1) +v)[t]} / exp{~vo}wiss (& F7 (F (llp — @) + |ol)) do.
Finally, since |j| + 1 < |!|, it follows that

B < [explalt - o} [ D5 0ae) - D, (7)) do

t +oo
< (K) /exp{alt —o|+(a(j +1) +v)lol]} / exp{—v|r|}wji1 (s F " (o] + F (llo — @lI))) dr do

< (Kyexplaltl) [ exp{(ag +)lol} [ expivirihuse (& F (F (o = ¢l) + IrD) dr do

+00
< (K)exp{(a(t+ 1) + )t} [ expl-virlhwt (@ F~" (F (lp - o) +Ir)) ar

Therefore, we have proved the estimate (9) for |p| = |l| + 1 as well. The case t < 0 can be
considered in a similar way. This completes the proof of the lemma.

By analyzing the moduli of continuity of the Green function of system (4), one can obtain the
following assertion.
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MODULI OF CONTINUITY OF THE DERIVATIVES OF INVARIANT TORI 125

Theorem 1. Let a(p), A(p) € C7(.%,), and let system (4) have a unique Green function (5)
satisfying the estimate (6) for the invariant torus problem. If

2v > ag, (17)

then there exist all partial derivatives of order < q of the function G(T, ) with respect to ¢, and

|D2G(r,¢) - D2G. (7, 8)|

< exp{—7lt — 7| + (alp| + v) max{[t], |7[}} (K, J, (a;p; llo — @) + K, (405 o = 2I1))
Ipl :O""7q7

for each v € (0,2 — alp|), where K, and K, are some positive constants.

Proof. As was mentioned above, the existence of a Green function (5) satisfying the estimate (6)
provides the existence of G;(T, ) and the validity of the estimate (8). By {7, p. 126], the difference
of values of this function at points ¢ # @ admits the representation

Gir,9) = Gi(r. @) = [ Guo,9) [Alpo(9)) = A (00 (D)IGo (1, @) do (18)

Moreover, it was shown in [11] that inequality (17) guarantees the gth-order differentiability of the
Green function and the validity of the estimates

|D2Gu(7,0)| < Kpexp{—vlt - | + alp| max{lt], [7[}},  IpI=1,...,q, (19)

where the K, are positive constants. Therefore, we can differentiate both sides of inequality (18).

Since condltlon (17 prov1des the convergence of the integral occurring on the right-hand side in
the representation (32) in [11], we have

DiGi(r, ) — D5 (7, )
+00
= [ Y CunnDlGio9) [DEAWe() - D} (¢, (9) D*G, (r,9)] do,

Zoo  IMlt+Rel+lAs|=lp|

(20)

where the C,\h,\ma are some constants, Ay = (Mg, .-, Aim), Ay = 0, Agj > 1, X3; > 0, |\| =

Em /\z]a

JA2]
DR A(pi(p)) = >, DA 90)'

181=1

Coo (Do) (D2eul))” -+ (D2eu(@)) ™, (21)

sasO()

o1t ot +o=10], 01+ 20+ -+ X ox, = |l
In the following, we estimate the difference of derivatives of the unique Green function on the
basis of the representation (20).

We can readily see that

—(t—ol+lo—7]) < 2ol +[|t+7] Vi T1,0€R, (22)
[t — 7|+ [t + 7| = max{|¢], ||} vt,7 € R, (23)

and
—y(t—ol+lo—7)) < —(v =)t = 7| = (|t — o] + [0 — 7]) (24)
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126 SAMOILENKO et al.

for any t,7,0 € R and 4, & such that v > § > 0. Using (22)—(24), for each 8 € (0,2y — v) we can

write out the chain of inequalities

=t —ol+lo—7)+Blo| < =(v= W+ B8)/2)t — 7| = (v + B)/2)(|t — 7| + |o — 7]) + Blo]
S=(r—=(w+B)/2t -7 = ((v+8)/2)2lo] - [t + 7|) + Blo|
= —qlt =]+ (v +B)/2)(|t — 7| + |t + 7]) — (v — B)lo| + Blo]
= —q|t — 7|+ (v + B) max{]¢|, ||} — vlo].

(25)

Therefore, for any positive constants v, 3, B2, 03, and v such that 2y > §; + 2 + 3 + v and for
any t, 7,0 € R, we have

=t = o + |o = 7]) + Bilo| + B2 max{]t}, |o|} + Bs max{|7], |o|}

< —ft = 1| + (81 + Ba + Ba+ ) max{lt [} - vlo]. 9
Further, using inequality (25) and the representation (18), we write out the estimate
+o0
[Gi(r, ) = Gi (1,0)|| < K* / exp{—7(|t — o| + |o = 7)) }w (4; 0o (#) — @0 (P)]) do
- (27)

400
< K?exp{—9t — 7| + v max{t], |7|}} / exp{~vlo|}w (4 F 7 (F (llo — @l) + lo1)) do.

The norm of the difference of the values of the function (21) at different points ¢ can be estimated
with the help of inequality (16) and the assertion of the lemma as follows:

|k A(eo(0)) - D Ale. (@)
si Zcog[
><— (Disoa(tp))“ (Di%(cp))m s (DY, ()"
+|0sae)] _ | (10ses(e)” - Do (217

x || (D20, ()" -+ (DYoo) || + -+ (28)

+ | Do (9) -+ (D1, (@))”’"" \](DQ’%(LP))% - (Dye, @) )}
|A2] [X2]

+oo |22}
<3 3 [ICexp i@l +v) |a|}[;pegllDzA(so>H [ expi-viol} Y MieC??
=1 ¢ =1 S i=1

DA - D¢
LA _, . — DiA)

P=¢s(P)

[0

x wi (a5 F* (Jul + F (Il = @11)) du+ exp{~vlol}e (D 4: F* (F (o — &) + |o|>)].

By a lemma in [11], the validity of the inequality 2y > p, where p = py + p2 + 3, provides the
convergence of the integral

+00
J(r,t,p) = / exp {—y(|t — o] + |o — 7)) + pulo| + pz max{jo], |7} + pz max{jo], [t]}} do

—00

with respect to the parameters ¢,7 € R, where v, y; are positive constants, and ps, p3 are non-
negative constants, and the validity of the estimate J(7,t, u) < K exp{—v|t — 7| + pmax{|t|, |7]}},
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MODULI OF CONTINUITY OF THE DERIVATIVES OF INVARIANT TORI 127

where K = 2(2v + max{vy,u})/ (1#11(2y — p)). Using this inequality and relations (19) and (26),
for the derivatives of the Green function (20) we obtain

|D2Gi(r,0) - DG (7,0
+00

<Ky KS, [ exp{=2(lt = ol +1o = 7l) + A max{|th o1} + Xs max{|o], [}

— 00

x||D3 A (¢ (#)) - DY A, (9))|do

Az +o00
SEKLK el TG [exp{vlt — 7|+ (alpl + v)} max{|t], [} / exp{—vlol}

po p=1

xw (DR 4 F(F (o - @l) + o)) do

IAzl +o0o
+3 M0 max D4 [ exp{=x(t ol +|o =)+ (alpl + v)lol}
e

-0

x [ expl=violwy (@ P~ (ful + F (o = #I))) du do]

oo B
< exp{—1[t — 7| + (alp| + v) max{[¢], |[}} (Kp / exp{~vlol}w, (a; F7* (F (llo — @l) + |o])) do

+o00
+ &, [ expl-viollw, (45 (F (lp = o) + lol) da)

with some sufficiently large constants K, and K,,. This completes the proof of the theorem.

Remark 1. Under the assumptions of Theorem 1, the projection matrix C(yp) occurring in the
definition of the Green function and the derivatives of C(y) satisfy the estimates

|D2C(0) - DEC (9)|| < Koo (@imslle = @) + Koo (Aimillo =2, 1ol =0, 0.

Remark 2. To investigate the moduli of continuity of a nonunique Green function of system (4),
one can use Theorem 1 and the method of extending weakly regular systems to regular ones
[7, p. 137].

As was shown in [11], the smoothness conditions for the function determining an invariant torus
of system (1) are more restrictive than the smoothness conditions for the corresponding Green
function. Therefore, the continuity properties of the invariant torus with respect to ¢ are worse
than those of the Green function of system (4).

Theorem 2. If the condition
v > aq (29)

is imposed under the assumptions of Theorem 1, then for any v € (0, — a|p|) and for each vector
function f(p) € C1(F,), there exists a unique invariant torus x = u(p) with all partial derivatives
of order < q, and

|D2u(e) — D2u (@) < N (@i1 llo = 1) + Ny (4373 o — 1) a0
+N L (fiplle—al),  Ipl=0,...,q,

where Ny, N,,, and N ,, are positive constants.
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Proof. The existence and uniqueness of the invariant torus follow from the assumption on
the existence and uniqueness of the Green function. Let us prove the estimates (30). Using the
representation (7), we can write out the relation

+o00

u(p) —u(p) = / ([Go(r,0) = Go (1, §)] £ (01(9)) + Go (1, 0) [f (:(9)) — f (o (P))]) dr,  (31)

—00

which, together with (27), yields

400
lu(p) —u (@) < / {Kz exp{(=y +V)Ir[}, (4;0; llp — 2ll) max || £ (#)l]

—00

+ K exp{—|r|}w (f; F~* (F (lo — @ll) + I7])) |dr

< 2Kl

Y-V

Ju (4;0; lo — @) + KJy (£ 05 llo — &ll) -

By Theorem 2 in [11], inequality (29) provides the existence of continuous partial derivatives
Dbu(y), |p| = 1,...,q. Therefore, we can differentiate relation (31) ¢ times, and condition (29)
provides the uniform convergence of the integral occurring on the right-hand side. We have

400

Dgu(cp)—DZU(@):/ > Cu[(DeGo(r,0) — D3Go (1,8)) Dy f (0r()) 2
Zoo  lsltirl=lpl

+ D3Go (1, @) (D f (0 (9)) = Dy f (0 (9))) | do,

where C,. = const, 8 = (sy,...,8y) and 7 = (ry,...,7y,) are multiindices such that s; > 0 and
r; > 0, and

m m
sl =28 Irl=2_m
=1 =1

fr| ) .
Dyf () = 3 DL (i) I Coc (Duie (@) (D2()” -+ (Dierl))
<

10]=1
G+G+--+¢ =10, G+206+ -+ 6 =Irl.

By analogy with the estimate (28), for the difference of derivatives of the function f (¢.(p)) we
can write

il |7]

Dyf (pr(9)) = Dyf (o @) <X 3 [T Crexp{(alr] +w)lrl}
0=1 ¢ k=1

oo Irl
x [ max |D3£()| [ exp{-virl} > MGO i (@i F " (€l + F o - g dg (39
+exp{~virlw (D F~ (F (o~ o) + |r|>)].

Further, taking account of the choice of the constant v and using (19), (32), (33), and the assertion
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of Theorem 1, we obtain the chain of inequalities

|P2ute) - D2 () |}< )y Cw[ max | D}£(o)| ] exp{(~y + als| + v) |} / exp{-vlo]}
isl+Irl=|p|

x (Kpwp (a; F7H (F (llp = @lI) + lo])) + Kpwp (45 F 7 (F(llw—wll)ﬂal)))dadf

o Ir|
+f K3 3 Il el 7+a(lsl+lr|))lfl}[ max || D31 (¢)]| exp{vlo]} / exp{~v[¢l}
s k=1

Ir|
x Y MGC w0 P (6] + F (o — @) déw (DS F~ (F (o — @) + ""))M

i=1
Ir| |7l
LFE Y HCkMeceCe“)
0=1 ¢ k=1

2
< Cyr| ———— (| K, DL f
- |s|+%I:=!pl [7 —als| —v (( 7 oS H

+cc

X / exp{~vlo|}wi (a; F~* (lo] + F (o — @) do

—00

+o0
+ Rymax D31, [ exp{=violkr (4P~ (lol + F (o = #1)) da)

400
+ [ exp{(—y-+alpDirlw: (£ F* (F (o = ) +I7) dr}

< Npdy (a;p; lle — 1) + Moo, (4;ps llp = @I) + N o, (i mi e — 1)
This completes the proof of the theorem.

Suppose that a(p), A(p), f(p) € C°(F,). Then we can ask whether the Green functions
Gi(7,¢) and the invariant torus u(y) are continuous with respect to the variables ¢. It follows
from (27) that for the continuity of the Green function with respect to ¢ it is sufficient that
Jy (A;0; )l — @|]) — 0 as @ — ¢, and for the continuity of the invariant torus we must additionally
requlre that J, (f;0;]l¢ — @ll) = 0 as @ — ¢ (see Theorem 2). By Theorems 1 and 2, to investigate
the continuity of derivatives of Gi(7, ) and u(p), we must impose similar conditions on J,(-;p;").
Hence finding a criterion for the convergence of the functions J, to zero is quite important.

Theorem 3. Let a(p) € C°(F) and ®(p) € CU(F,). The integrals J, (2;p;lle — &l),
lpl = .,q, converge to zero as ¢ — ¢ if and only zf F(z) is a divergent integral, i.e.,
111110 F(z) = —oo. (34)

Proof. Let condition (34) be satisfied. Since ®{yp) is a periodic function, it follows that the
modulus of continuity has the following property: w (D”(D'cr) =w (Dp <I>'17), lpl =0,...,q, are

constant for all o > 7, where 7 is a sufficiently large number (for example, n = 2ry/m ). Hence we
write out the integral J, (®;p; |l¢ — @||) as a sum of integrals, in the first of which we perform the
change of variables F~!(o + F(z)) = £ and set z = || — @||. We have

+00
/ exp{—vl|o|}w, (B; F'(F(2) + |0])) do
- —F(z2) +00
=2 / exp{—volw, (®; F (o + F(z))) do + / exp{—vo}w,(®;n)do (35)
0 ~F(2)

= 2exp{vF(z)} (ﬁa(—?@- + J,,(z)) )

DIFFERENTIAL EQUATIONS Vol. 36 No.1 2000



130 SAMOILENKO et al.

wy(P;0)

(@) do. Suppose that

where J,(z) = / exp{—vF(o)}

lim J,(2) =C < .

z—4-0

Then it follows from condition (34) that

zl_ig_xg exp{vF(z)} (M + J,,(z)) = (“ﬁ%’:_ﬂ) + C) zl_ig}ﬂ exp{vF(2)} =0.

If
INRACRE

then, using ’'Hopital’s rule, we obtain

lim J,,(<I>;p; z)= lim ((M+Ju(z)) /exp{—VF(z)})

hm ( exp{— yF(z)}wp(<I) Z)/( (—v)exp{—vF(2)} w(a; z)))

1
- ; zl_l}EQW,,(‘D Z)

Let us show that the convergence of any of the integrals J, (®;p; ||<p <p||) lp| =0,...,q, to zero
leads to the validity of condition (34). Indeed, if this is not the case, i.e., (||go <p||) —c> —©
(where c is a positive constant), then

Jo (@;p; llo = @) 2 2exp{—cv} (wp(®;m) /v + Ju(2)) 2 (20p(®; 1) /v) exp{—cv},

which contradicts the convergence of the integral J, (®;p; ||¢ — @|) to zero as @ — ¢ and completes
the proof of the theorem.

Note that condition (34) provides the uniqueness of the solution of the Cauchy problem (2)
(the well-known Osgood theorem). In particular, the functions Lo, Lo|lno|, Lojlneo|ln|lngi, ...,
where L is a positive constant, satisfy this condition.

Let us consider the case in which the right-hand sides of (4) satisfy the Lipschitz condition, i.e.,
a(¢), A(p) € Crip (F). Then

. v_ [ Lo for o€[0,n), . v_ Lo for o€[0,n),
w(a,a)—{Ln for o € [n,00), w(A’a)_{Ln for o € [n,0),

and the function F(z) has the form

Yn(z/n) for z€[0,7n),
FO={ Gy () o 2 € b

Therefore, with regard for (25), we obtain

v A bt 4
J(4;0;2) = 22 /L( n"/z) 7 / /Lda)

for z € [0, 7], since we are interested only in z close to 0. The integral J, (A;0;2) converges to zero
as z — +0.
Since, by (27), the unique Green function satisfies the inequality

[Go(r, ) = Go (1, @)l < 2K 2 exp{(— +v)|r{} i¢ — &l

n

p|wdn L / ~v/L

7 + I o " do
llo—ell
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for any v € (0,7), it follows that the condition a(p),A(p) € Cuip () is sufficient for

Gi(t,¢) € C°(F,). Moreover, choosing v € (0,min{L,~}), we find that under the above as-
sumptions the Green function satisfies the Holder condition

IGo(,0) = Go (P < K lle—@lI°, »,¢€ T,

with exponent 8 = v/L and constant K independent of ¢ € .7,. In a similar way, using the esti-
mates established in Theorem 2, we find that the invariant torus also satisfies the Holder condition
with the same exponent § if, in addition to the above-mentioned conditions, we require that the
vector function f(y) also belongs to the class CLi, (.Fn).
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