
Physica A 525 (2019) 535–547

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Mean fieldmodel of a game for power
Tatiana Karataieva a, Volodymyr Koshmanenko a, Małgorzata J. Krawczyk b,
Krzysztof Kułakowski b,∗
a Institute of Mathematics of NASU, 3 Tereshchenkivska St., 01601, Kyiv, Ukraine
b AGH University of Science and Technology, Faculty of Physics and Applied Computer
Science, al. Mickiewicza 30, 30-059 Kraków, Poland

h i g h l i g h t s

• Model equations are designed to describe dynamics of the distribution of power.
• The equations capture the Matthew effect: ‘rich gets richer’.
• Unstable fixed points indicate boundaries between basins of attraction.
• The results are interpreted in terms of modeling of coercive power.
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a b s t r a c t

Our aim is to model a game for power (equivalent to total energy) as a dynamical
process, where an excess of power possessed by a player allows him to gain even more
power. Such a positive feedback is often termed as the Matthew effect. Analytical and
numerical methods allow to identify a set of stationary states, i.e. fixed points of the
model dynamics. The positions of the unstable fixed points give an insight on the basins
of attraction of the stable fixed points. The results are interpreted in terms of modeling
of coercive power.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The gap between exact sciences and social sciences gets narrow and fuzzy. On the sociological side, authors who
refer to physical ideas or apply physical methods are in minority, yet the trend is at least constant [1–3]. On the side
of statistical physics, the interest in social phenomena is growing abruptly; for a list of approaches motivated by social
sciences see [4,5]. As noted in the Editorial, this volume is devoted to Econo- and sociophysics in turbulent world. Having
this in mind, here we propose a sociological problem: a formal approach to a competition for power, where power is
understood as an ability to get more power. The approach is based on a simple but universal law of the conflict interaction
between players (see Eq. (1)), which provides more power for a stronger player on every step of the game. We explore the
dynamics of a set of variables, which represent fractions of power of the players. Another set represents their strategies,
more or less aggressive. From the mathematical point of view, the system is equivalent to a coupled map lattice.

Dynamics of coupled map lattices is of interest both for their computational flexibility and applications [6–11]. As a rule,
analytical considerations are less widespread and often resort to a global coupling or mean-field approximation [12,13],
where correlations between different variables are neglected. The latter concept is borrowed directly from statistical
physics [14,15].
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We note that while sociology is often claimed as a possible field of application of various theoretical approaches of
the coupled map lattices, often it remains merely a declaration [16–18] (see [19] for an exception). To our knowledge,
competition for power has not been modeled within this scheme.

In the next section, we refer to the Matthew effect [20] which is at the core of our interpretation of the results. Next, the
model is explained in details. Further, analytical results are presented in the form of mathematical theorems and stability
analysis of the model equations. These results are backed with numerical calculations, shown in a separate section. Last
section is devoted to the interpretation and discussion.

2. The Matthew effect

In his famous essay [20], Robert Merton has introduced the so-called Matthew effect to social sciences, when discussing
biased distribution of recognition for scientific achievements. As Merton puts it: ‘... the Matthew effect consists in
the accruing of greater increments of recognition (...) to scientists of considerable repute and the withholding of such
recognition from scientists who have not yet made their mark.’ Since then, the Matthew effect has been the subject
of research in education [21], technology [22], economy [22–24], statistics [25], and science again [26–29], to name
only a few [22,30–32]. The effect, commonly cited as ‘accumulated advantage’ or ‘rich gets richer’, can be defined as
a positive feedback between an amount of possessed goods and an ability of acquiring even more goods. Even when the
term ‘Matthew effect’ is not cited literally, the phenomenon itself is at the center of attention of historians, sociologists,
economists and political scientists [33–37].

Our interest is modeling of dynamics of power, one of central concept in sociology [38]. We accept the classical
definition by Max Weber: power is ‘the ability of an individual or group to achieve their own goals or aims when others
are trying to prevent them’ [39]. More specifically, we imagine a zero-sum game for coercive power, with the latter not
based on a social structure but rather on individual characteristics of social actors. In social simulations, the Matthew effect
is often called to interpret the assumption of preferential attachment in growing networks [40,41]. In this sense ‘rich gets
richer’ means that a node (actor) of large degree (number of neighbors) has more chances to get even more neighbors,
and therefore her/his position in the network, as measured by centrality, betweenness etc. [42], gets improved. However,
this kind of position is not equivalent with a player’s individual power, but comes from the structure of the network. In
other models which could be used to simulate conflicts [43–47], it is only the amount of actors of given orientation what
matters for the final outcome of a model dynamics. Perhaps this limitation is a legacy of statistical physics, where phase
transitions are considered of a system of identical objects.

Despite its obvious validity for conflicts, dynamics of power of individual players has been ignored in most compu-
tational models. As an exception, we note the Bonabeau model [48] (note however, that the term ‘‘Matthew effect’’ has
not been used there). In this model, when two players meet they fight; the winner gets more power and the loser —
gets less. These gains and loses are relevant for the outcome of subsequent fights. Main result of the Bonabeau model is
a transition between egalitarian and hierarchical phase of a model society, identified by means of simulations and mean
field modeling [49–51].

Our aim here is to trace consequences of an individual strategy for the player who selected it. Hence the model
dynamics includes individual characteristics of players. Each player is endowed with the willingness to commit himself
to conflicts, which stands for his strategy, and with an initial value of the power. The former remains constant in time,
while the latter is a subject of model dynamics. Taking into account the principle ‘rich gets richer’ we can expect a clear
difference between winners and losers. As will be demonstrated below, the model outcome is that ‘winner takes all’. The
problem to solve is, how the distribution of the model parameters allows to appoint the winner. Apart from the random
assignment of the parameters among actors, the model is purely deterministic.

3. The model

Let us denote the number of players by m, and the player index by i = 1, 2, . . . ,m. The power of ith player at time t
is pti , and it is kept nonnegative. The willingness of ith player to commit into conflict is denoted by ci, kept in the range
[0, 1]. The equation of motion, equivalent to the system of coupled map lattices, is (cf. with [52,53])

pt+1
i =

pti (1 − cir ti )
zt

, t = 0, 1, 2, . . . . (1)

where

r ti =

∑
k̸=i p

t
k

m − 1
≡

1 − pti
m − 1

(2)

represents a mean player other than ith one. The coupling between players is introduced via the normalization constant
1/zt , which is taken as to assure that

m∑
i=1

pt+1
i = 1, (3)
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what marks that the total amount of power remains constant. In other words, we have a zero-sum game. Due to (3) we
find, that

zt = 1 − θ t , θ t
:=

m∑
i=1

pti cir
t
i . (4)

We will refer on (1) as the formula of conflict interaction.
Note that in general the law of conflict redistribution of power is unknown. Our rather simple version of conflicting

fight presented by the system of Eq. (1) in terms of coordinated expresses the natural primitive principle: each against all.
In fact, these system of equations admit the presentation in a form of non-linear Schrödinger type equation with discrete
time,

Ψ t+1
= (H t

0 − V t )Ψ t .

Here Ψ t denotes the vector distribution of energy (power) pt = (pt1, . . . , p
t
m) along a finite number of player positions,

H t
0 stands for the Hamiltonian of free evolution, and non-positive potential V t corresponds to a perturbation which is

produced by the point singular type of repulsive interaction between players (abstract particles). We refer to [54–56] for
the complete theory of the point interaction in various physical models. The fixed points in Theorems 3.2, 3.3, 3.5 (see
below) present eigenvalues corresponding to the point spectrum of our game model complex system.

To clarify the sociological motivation for the form of conflict interaction between players given by formula (1), let us
rewrite it as follows:

pt+1
i = I ti − C t

i , I ti =
pti
zt

, C t
i = ci

pti r
t
i

zt
.

The term I ti is responsible for increasing of the ith player’s power, since always I t+1
i > I ti due to zt < 1. In turn, the term

−C t
i brings the losses caused by an interaction with whole society. These losses in general are different and depend of a

strength of competition between ith player and his conditional co-player presented by r ti (see Eq. (2)). The parameter ci
just regulates this strength. If the players do not enter to the conflict (ci = 0 for each i), they just preserve their power.
Acting with ci > 0, an ith player loses. However, other players in the conflict lose as well. The reduction of pi can be
more than compensated (via the normalization zt ) if pti is large enough. Then, each player has to decide to what extent
the conflict is fruitful.

This question has a direct counterpart in the sociological literature [29]. There we find a careful analysis of 270 conflicts
in two American universities, with several examples, where the decision – to contest or not – was determined by expected
gains and losses. To clarify this, let us quote one example from [29]: ‘‘... Aeneas had to tolerate seeing Cindy’s name go
before his on the author list of several papers he had largely written and to which Cindy had contributed virtually nothing.
But Cindy was going up for promotion to full professor, and Bruce, her senior full professor spouse and the holder of the
grant from which the publication data were generated, insisted she be placed ahead of Aeneas. The sheer injustice galled
Aeneas. But he was stuck: He needed Bruce’s data, and it was too late to switch to another major professor. He therefore
put up with what he considered to be theft of his work’’. [29]. Apparently, Aeneas decided to reduce his cA coefficient.

Simplifying this example, suppose that at time t the power of Aeneas is ptA = ε, the power of Bruce is ptB = 1−2ε, and a
third person (also of power ε) does not enter the conflict. Keeping in Eq. (1) only terms linear in ε, we get pt+1

A ≈ ε(1−cA/2)
and pt+1

B ≈ 1 − 2ε + εcA/2. In other words, while Aeneas loses with cA, Bruce gains with cA for any strategy of himself.
More generally, pt+1

i increases with pti , what activates the Matthew effect. On the other hand, the whole contribution
to pt+1

i from the conflict is negative. More precisely, pt+1
i grows, for players with cir ti < θ t , and falls, if cir ti > θ t . Our

computational problem is twofold:
– what is the strategy ci which drives a player to success?
– how this strategy depends on the actual distribution of power?

To answer, we need a more deep mathematical analysis.

4. Analytical results

4.1. Short analysis of the conflict formula

At first let us put ci = 1 for all i = 1, . . . ,m. Then using (2) we can rewrite (1) in terms of coordinates of vector
pt = (pt1, . . . , p

t
m) from (m − 1)-dimensional simplex Sm−1

+ as follows

pt+1
i = pti ·

m − 2 + pti
m − 2 + Lt

, (5)

where Lt denotes the square norm of pt , i.e.,

Lt ≡ ∥pt∥2
:=

m∑
k=1

(ptk)
2. (6)
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Thus

pt+1
i = pti · kti , kti :=

m − 2 + pti
m − 2 + Lt

. (7)

Now we observe that if pti > Lt , then kti > 1 and therefore pt+1
i increases. pt+1

i will decrease, if pti < Lt .
Thus, the value Lt may be considered as a threshold which divides the conflicting society into three classes of players:

I t
−

:= {i : pti < Lt}, I t0 := {i : pti = Lt}, I t
+

:= {i : pti > Lt}. (8)

It is easy to check that in general both subsets I t
−

and I t
+
, t ≥ 0 are always non-empty. In the excluding case, when

pt=0
i = 1/m, i = 1, . . . ,m, Lt = 1/m too, and the set I t0 = m for all t ≥ ∞. In all other cases I t0 is non-empty only

temporarily.

4.2. A single winner is generic

For further manipulations in situation ci = 1 for all i we rewrite (1) in a form

pt+1
i = pti

(
1 +

pti − Lt

m − 2 + Lt

)
= (1 + δti ) · pti , (9)

where

δti :=
pti − Lt

m − 2 + Lt
. (10)

Three next propositions follows directly from (5) and (10).
Let us fix some initial distribution of power between players, i.e., we fix p ≡ pt=0

∈ Sm−1
+ , a stochastic vector from the

positive simplex.

Proposition 3.1. If some couple of initial coordinates satisfies pt=0
i = pt=0

k , i ̸= k, then pti = ptk for all t = 1, 2, . . . Moreover,
if pt=0

i < pt=0
k , then pti < ptk for all t ≥ 1.

Thus,

pti ≤ ptk H⇒ pt+1
i ≤ pt+1

k , t = 0, 1, . . . (11)

It means that the conflict interaction does not change the initial ordering of players on their power:

0 ≤ pt=0
i1 ≤ pt=0

i2 ≤ · · · pt=0
im ≤ 1 H⇒ 0 ≤ pti1 ≤ pti2 ≤ · · · ptim ≤ 1, t = 1, 2, . . . (12)

In fact a sign of the difference pti − Lt in (9) defines whether pti grows or falls on t + 1-step.

Proposition 3.2. If pti < Lt , then

pt+1
i < pti , (13)

and if pti > Lt , then

pt+1
i > pti . (14)

Proposition 3.3. The sequence Lt converges to a bounded limit:

0 < lim
t→∞

Lt = b ≤ 1. (15)

Proof. Obviously 0 < Lt ≤ 1, since Lt = ∥pt∥2 and all vectors pt are stochastic. We have to show that the sequence Lt is
monotonically growing,

Lt+1
− Lt > 0, t ≥ 0. (16)

With this aim we use the decomposition (8). If i′ ∈ I t
−
, then pti′ − Lt < 0, δti′ < 0. Therefore due to (9) the difference

pt+1
i′ −pti′ = δti ·p

t
i is negative. Denote it by −dti′ with dti′ > 0. In the case i′′ ∈ I t

+
the opposite inequality is fulfilled, δti′′ > 0.

Then pt+1
i′′ − pti′′ =: dti′′ > 0.

Since both pt and pt+1 are stochastic there exist 0 < s < m such that

0 =

m∑
k=1

pt+1
k −

m∑
k=1

ptk =

s∑
i′=1

(ps+1
i′ − psi′ ) +

m−s∑
i′′=1

(ps+1
i′′ − psi′′ ) = −

s∑
i′=1

dti′ +

m−s∑
i′′=1

dti′′ .
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By this
m−s∑
i′′=1

dti′′ −

s∑
i′=1

dti′ = 0. (17)

Consider now the difference Lt+1
− Lt ≡ ∥pt+1

∥
2
−∥pt∥2. Since pt+1

i′ = pti′ − dti′ and pt+1
i′′ = pti′′ + dti′′ , using the inequalities

pti′′ > ∥pt∥2 (i′′ ∈ I t
+
) and pti′ < ∥pt∥2 (i′ ∈ I t

−
) we obtain

∥pt+1
∥
2
− ∥pt∥2 > 2Lt (

m−s∑
i′′=1

dti′′ −

s∑
i′=1

dti′ ) +

s∑
i′=1

dti′
2
+

m−s∑
i′′=1

dti′′
2

> 0.

Finally due to (17) we have:

Lt+1
− Lt =

s∑
i′=1

dti′
2
+

m−s∑
i′′=1

dti′′
2

> 0.

Thus (16) is proved. This shows that Lt is a growing bounded sequence. Therefore (15) is true.
Let us denote

ptmax := max
1≤i≤m

{pti }.

Now we will prove one of the main results of the paper.

Theorem 3.1. Assume for a vector p ≡ pt=0
∈ Sm−1

+ , m > 2 all its coordinates are non-zero and mutually different,

pi ̸= pj, i ̸= j. (18)

Then

lim
t→∞

pti = 0, pi ̸= pmax. (19)

and

p∞

max := lim
t→∞

ptmax = 1, (20)

Proof. From obvious inequalities

min
k

{ptk} ≤ ∥pt∥2
≡ Lt ≤ max

k
{ptk} (21)

and Propositions 3.2, 3.3 it follows that the sequence ptmax grows with t → ∞. Since it is bounded, there exists a limit
a = limN→∞ ptmax ≤ 1. Due to condition (18) without loss of generality we can assert that coordinates of vectors pt are
ordered in such a manner that

0 < pt1 < pt2 < · · · < ptm < 1. (22)

This order does not depend from t (see Proposition 3.1). By this the latter coordinate is maximal for all times ptmax = ptm.
Thus, the following estimate holds:

0 < a := lim
t→∞

ptm = p∞

m ≤ 1.

Let us prove that a = 1. At first we show that a = b, where b = L∞
:= limt→∞ Lt . Indeed, from existence of the limits for

ptm and Lt we have:

a = p∞

m = k∞

m · p∞

m =
m − 2 + p∞

m

m − 2 + L∞
· p∞

m =
m − 2 + a
m − 2 + b

· p∞

m . (23)

By this k∞
m = 1. It means that a = b. In fact both, a and b are equal to one. This consequence one can draw from analysis

of behavior of the lasting coordinate ptm−1. Indeed, due to (22) and Proposition 3.1, the inequality ptm−1 < ptm holds for
all t . Therefore the ratio ptm/ptm−1 exceeds one and grows. In particular, ptm−1 < a always. It means that this ratio goes to
infinity and therefore lim ptm−1 = 0. If we assume the contrary, then by (7) we have the equality lim ptm−1 = L∞

= b = a,
that is a contradiction. Similarly one can assert that all other coordinates converge to zero, lim pti = 0, i ̸= m. Thus, a = 1.
The theorem is proved.

Fig. 1 illustrates the above result.
By this theorem if all initial coordinates pt=0

i are different, then

|I t
−
| −→ m − 1, |I t

+
| −→ 1, t −→ ∞,

where |I tsign| denotes a cardinality of a set.
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Fig. 1. The winner is determined by the maximal initial value of social power. m = 10, ci = 1 for all i = 1, 10. The initial values are :
p1 = 0.05, p2 = 0.01, p3 = 0.01, p4 = 0.02, p5 = 0.053, p6 = 0.08, p7 = 0.06, p8 = 0.07, p9 = 0.062, p10 = 0.011. Bold line shows the growth of Lt .

Thus we proved that if the society joints players with nonzero and different values of power, there exist a single winner
which is determined by the maximal initial power. In other terms this means that the richest player becomes richer and
captures with time the whole wealth, all other agents do not get anything.

Let P∗ denotes the set of fixed points for the nonlinear map generated by formula (1). By construction, all limit points
in Theorem 3.1 are fixed points, write p∞

= p∗
∈ P∗

1 , where index 1 means that p∗ has only one nonzero coordinate
equals to 1.

Theorem 3.2. Under condition (18) there exist m fixed points

p∗

j = (0, 0, . . . , 0, pji, 0, . . . , 0), pji = δji, j, i = 1, . . . ,m, (24)

where δji stands for the Kronecker symbol. All these points are stable.

Proof. We have only to show the stability of the fixed points p∞

j = p∗

j , j = 1, . . . ,m. It follows from the fact that any
ε-perturbation of the vector p∗

j = (0, 0, . . . , 0, δji, 0, . . . , 0) preserves for its j-coordinate to have the maximal value. And
by Theorem 3.1 the limits on t for all other coordinates are zero.

Consider the exotic situation when initial vector p ∈ Sm−1
+ has 1 < k < m equal coordinates with the maximal value.

Obviously the set of such vectors has zero (m−1)-dimensional Lebesgue measure. By slightly modified argumentations as
above one can prove that all non-maximal coordinates pti̸=max converge to zero, as t → ∞, and coordinates with maximal
value come to 1/k. Thus, the limiting set of fixed points, denote it by P∗

k , contains the family of Cm
k vectors {p∗

≡ p∞
}

whose k nonzero coordinates are equal to 1/k.

Theorem 3.3. Every fixed point from family P∗

k , 1 < k ≤ m is unstable.

Proof. Obviously, a general ε-perturbation of a vector p∗
∈ P∗

k does not preserve the condition that k ≥ 2 coordinates are
equal and have the maximal value. Therefore by Theorem 3.1 the limiting vector will not belong to p∗

∈ P∗

k .

4.3. An arbitrary conflict activity

Consider the general situation when 0 ≤ ci ≤ 1 are arbitrary.
In this case the conflict formula (1) after using (2) has a view

pt+1
i = pti ·

m − 1 − ci(1 − pti )
m − 1 − Ltc

= pti · kti,c (25)

where

kti,c :=
m − 1 − ci(1 − pti )

m − 1 − Ltc
(26)

and

Ltc :=

m∑
k=1

ckptk(1 − ptk). (27)

Obviously now the value 0 ≤ Ltc ≤ 1 has more complex non-linear dependence from pti , in particular, it changes
non-monotonically with time.
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In a slightly other form the conflict formula views as follows:

pt+1
i = pti

(
1 +

Ltc − ci(1 − pti )
m − 1 − Ltc

)
= pti (1 + δti,c), (28)

where

δti,c :=
Ltc − ci(1 − pti )
m − 1 − Ltc

. (29)

From (25) and (28) we see that pti increases under the following condition

Ltc > ci(1 − pti ). (30)

Let

Lti,c :=

∑
k̸=i

ckptk(1 − ptk), (31)

then (30) has a form

Lti,c
ci

> (1 − pti )
2. (32)

Unfortunately, in general, no one of both conditions (30), (32) guarantee the global increasing for pti , but only the local
behavior. Nevertheless, we are able to get some strategic characteristic of the relative behaviors for players in terms of
their ratios

Rt
ik :=

pti
ptk

, i, k = 1, . . . ,m.

Since due to (25)

Rt+1
ik = Rt

ik ·
m − 1 − ci(1 − pti )
m − 1 − ck(1 − ptk)

, (33)

we obtain

Proposition 3.4. The ratio Rt
ik grows with t → ∞, iff

ci(1 − pti ) < ck(1 − ptk). (34)

Theorem 3.4. Assume

ci(1 − pti ) < Ltc < ck(1 − ptk). (35)

hold for a single i = i1 and all k ̸= i1. Then

p∞

i1 = lim
t→∞

pti1 = 1, p∞

k̸=i1 = lim
t→∞

ptk = 0. (36)

All these limit points are stable.

Proof. By the left part of (35), pt+1
i1

grows (see (28)). Obviously Rt+1
i1k

> 1 since due to (35), we have

ci1 (1 − pti1 ) < ck(1 − ptk). (37)

and therefore the inequalities

ci1 (1 − pt+1
i1

) < ck(1 − pt+1
k ) (38)

are also true. They, in general, do not guarantee that pt+1
i1

grows quicker than each pt+1
k . But thanks to the right part of

(35), all pt+1
k in fact decrease. Since (35) are fulfilled for each t we get (36). Clearly, the limit points are fixed.

To prove its stability we will consider without of loss generality the case p∞
≡ p∗

= (1, 0, 0, . . . , 0) and show this
vector attracts all vectors of type p∗,ε

= (1 − ε1, ε2, . . . , εm), ε1 =
∑

k̸=1 εk with ε1 small enough. In fact, we have to
check the inequality (p∗,ε

1 )t=1 > p∗,ε
1 = 1 − ε1 only for the first coordinate. It is equivalent (see (35)) to

c1(1 − p∗,ε
1 ) < Lc,ε, Lc,ε =

∑
k

ckεk(1 − εk).

In turn, the equivalent inequality has a form c1ε2
1 <

∑
k̸=1 ckεk(1−εk), or

∑
k ckε

2
k <

∑
k̸=1 ckεk. Clearly, the last inequality

is fulfilled for all εk small enough, since the left side is constituted with square of εk.
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Fig. 2. The second player becomes winner due to conditions (39) from Proposition 3.5. m = 3, p1 = 0.4065, p2 = 0.2513, p3 = 0.3421,
c1 = 0.4588, c2 = 0.41967, c3 = 0.2896.

Proposition 3.5. Assume ci1 < ck and for some t the inequalities

ci(1 − pti ) < Ltc < ck(1 − ptk), ptk < 1/2 (39)

hold for a single i = i1 and all k ̸= i1. Then these inequalities are true for all t + n, n ≥ 1.

Proof. Obviously Rt+1
i1k

> 1 since due to (39) we have (37) for i = i1 and all k ̸= i1 Therefore the inequalities (38) hold
too. To show ci1 (1 − pt+1

i1
) < Lt+1

c one can consider the ratio

Lt+1
c

ci1 (1 − pt+1
i1

)
=

ci1p
t+1
i1

(1 − pt+1
i1

)

ci1 (1 − pt+1
i1

)
+

∑
k̸=i1

ckpt+1
k (1 − pt+1

k )

ci1 (1 − pt+1
i1

)
.

Using (38) we find that Lt+1
c /ci1 (1−pt+1

i1
) >

∑m
i=1 p

t+1
i = 1. Therefore pt+1

i1
grows. The proof of validity Lt+1

c < ck(1−pt+1
k )

requires more deep observations. At (t + 1)th step the value of Ltc changes due to two reasons. At first, it falls since all
pt+1
k falls due to assumption ptk < 1/2 and by inequalities Ltc < ck(1 − ptk) (see (28) with i = k). At second, it grows since

ci1 (1− pti1 ) < Ltc (see also (28) with i = i1). We assert that inequalities Lt+1
c > ck(1− pt+1

k ) could not fulfilled if ci1 < ck for
all k ̸= i1. The proof is purely geometrical. To show this fact one need to compare the graphics of functions ci1p

t
i1
(1− pti1 )

and ckptk(1 − ptk) for k with maximal value of ptk. By induction we continue our argumentations for any n > 1.
Thus, (36) is also true under conditions of Proposition 3.5 (see Fig. 2).
Denote by P∗

k,c the set of fixed points for the general case 0 ≤ ci ≤ 1, where 1 ≤ k ≤ m means a number of nonzero
coordinates.

Theorem 3.5. Each fixed point p∗
∈ P∗

k,c, k > 1 is unstable.

Proof. Consider any p∗
∈ P∗

k,c, k > 2 and a couple of it nonzero coordinates p∗

i1
, p∗

i2
. They have to satisfy the equality

ci1 (1 − p∗

i1 ) = L∗

c = ci2 (1 − p∗

i2 ).

Assume p∗

i1
≥ p∗

i2
and replace p∗

i1
on p∗

i1,ε = p∗

i1
+ ε and p∗

i2
on p∗

i2,ε = p∗

i1
− ε, ε > 0. Then we easily check that for any

small ε, the above equalities transform into inequalities

ci1 (1 − p∗

i1,ε) < L∗

c,ε < Lc < ci2 (1 − p∗

i2,ε).

Since now p∗

i2,ε < 1/2 due to k > 2, we can use Proposition 3.5. Thus, (p∗

i1,ε)
t increases and (p∗

i2,ε)
t falls. For the case k = 2

see next subsection.

4.4. Structure of fixed points

For clarity our assertion in more details, first we consider the case m = 2; although very simple, it provides a good
starting point. The set of Eqs. (1) reduce to only one

pt+1
=

pt (1 − c1 + c1pt )
1 − (c1 + c2)pt (1 − pt )

. (40)

with three fixed points: p∗
= 0, p∗

= 1 and p∗
= c1/(c1 + c2). To state their stability, we need to compare |∂pt+1/∂pt |,

calculated at the fixed point, with one [57]. This expression is equal to 1−c1 and 1−c2 for p∗
= 0 and p∗

= 1, respectively.
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Hence, both these fixed points are stable except the cases ci = 0, where the stability is marginal. At the third fixed point
the derivative is |∂pt+1/∂pt | = (c1 + c2)/(c1 + c2 − c1c2) > 1, hence this fixed point is unstable. This is an illustration of
the above-given general theorem, that all fixed points different than {p∗

i } = {0, 0, . . . , 0, 1, 0, . . . , 0} are unstable.
It is easy to see that the attraction basin for the fixed point p∗ = 1 (p∗ = 0) is interval (c1/(c1+c2), 1] ([0, c1/(c1+c2)).

Indeed, since now Lc = (c1+c2)p(1−p) from (28) it follows that pt grows to 1 only if c1(1−p) < Lc , i.e., if p > c1/(c1+c2).
Otherwise, i.e., if p < c1/(c1 + c2), that is equivalent to c1(1 − p) > Lc , the value pt goes to zero. The unstable fixed point
c1/(c1 + c2) has its basin empty.

One can put the inverse question (some kind of the two players problem). Given 0 < p < 1 and 0 < c2 ≤ 1 what c1
guarantees p∗ = 1? From (28) we find solution c1 < c2p/(1 − p). In particular, if c2 = 1 the first player with any initial
p > 0 wins if he take c1 < p/(1 − p).

We note, in the case of three players the similar question (see below) requires essentially more effort.
For m = 3, the normalization condition reduces the number of equations to two. For simplicity, let us use variables

x, y, 1− x−y instead of p1, p2, p3, and primes instead of time index t +1; the time index t will be omitted. Then we have

x′
=

x(1 − c1 + c1x)
1 − c1x(1 − x) − c2y(1 − y) − c3(x + y)(1 − x − y)

(41)

y′
=

y(1 − c2 + c2y)
1 − c1x(1 − x) − c2y(1 − y) − c3(x + y)(1 − x − y)

Basically, there are seven fixed points: (x∗, y∗) = (i) (1, 0), (ii) (0, 1), (iii) (0, 0), (iv) (c1/(c1 + c2), c2/(c1 + c2)), (v)
(c1/(c1 + c3), 0), (vii) (0, c2/(c2 + c3)), and (vii)( c1(c2 + c3) − c2c3

c1c2 + c2c3 + c3c1
,
c2(c3 + c1) − c1c3
c1c2 + c2c3 + c3c1

)
(42)

However, the coordinates of the last fixed point are not necessarily positive. To keep all coordinates (x∗, y∗, 1 − x∗
− y∗)

nonnegative, three conditions should be fulfilled:

c1 > c2c3/(c2 + c3)
c2 > c3c1/(c3 + c1) (43)
c3 > c1c2/(c1 + c2)

Now suppose that with the coefficient c3 we are at the limit case, i.e. c3(c1 + c2) = c1c2. After some simple algebra we get
x + y = 1, hence for the seventh fixed point given by Eq. (42) we get p∗

3 = 0. Also, its first coordinate x∗
= c1/(c1 + c2),

what means that the two fixed points (iv) and (vii) collide. When c3 decreases further, the seventh fixed point leaves the
simplex where {pi > 0}.

As we know from the preceding subsection, the only stable fixed points appear at the corners of the m-cube, where
one player got the whole power (p∗

i = 1). We can check the stability of such fixed points, taking x = 1 as an example.
There, the eigenvalues of the Jacobian are (1 − c3/2, 1 − c2/2), what is nicely consistent with the case m = 2.

The question about the attraction basins for stable fixed points is more complex and here we present only particular
numerical results.

Consider the case (i), two next cases, (ii), (iii) are analogical.
Let c1 < c2, c3. If p1 > p2, p3, then, due to (33), the both inequalities c1(1 − p1) < c2(1 − p2), c3(1 − p3) become

with time stricter. This means that p′

2, p
′

3 fall and hence x∗
= 1. It is only a part of the attractive basin for point x∗

= 1.
Conditions p1 = p2 > p3, p1 = p3 > p2 give, by same argumentation, else two parts. Moreover, for enough small c1 the
attractive basin of x∗ contains points p1, p2, p3 with p1 < p2, p3. It follows from the fact that if c1 = 0, then x∗ attracts all
points with p1 ̸= 0 since in this case both ratios Rt

1,2, R
t
1,3 grows (see (33)). Fig. 3 demonstrates above phenomenon for

p1 with minimal value in a general case (m = 10).
The fixed points (iv), (v), (vi) are highly unstable. Any small perturbation of points x*, y* violates the balance

c1(1 − x∗)/c2(1 − y∗) = 1 which, due to (33), goes far from 1 with time.
In the general case of unlimited number m of players and ci > 0 ∀i, we have m ‘corner’ fixed points and m(m − 1)/2

‘edge’ fixed points where p∗

i = 0 for all but two players. As we have seen for m = 3, more fixed points are possible if the
coefficients ci fulfill appropriate conditions. Accordingly, the maximal number of the fixed points is

m∑
k=1

(
m
k

)
= 2m

− 1. (44)

The actual number of fixed points can be less, if some of them fall out of the area where ∀i, pi > 0.
The positions of the unstable fixed points can give hints on the boundaries of the basins of attraction of the stable

fixed points. This advantage is demonstrated numerically in the next section.
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Fig. 3. The player with smallest initial social energy (power) becomes the winner. m = 10, ck = 0, pk = mini{pi}, ci = 1 for all i = 1, 10, i̸=k. The
initial values are: p1 = 0.0182, p2 = 0.0364, p3 = 0.1309, p4 = 0.0290, p5 = 0.1164, p6 = 0.1018, p7 = 0.1455, p8 = 0.0873, p9 = 0.16, p10 =

0.1745..

Fig. 4. For close values of conflict activities, c1 = 0.5, c2 = 0.49, c3 = 0.51, basins of attraction divide the 2-dimensional simplex into three parts
of similar size. The unstable fixed points, marked here by stars, lie at the boundaries between the basins, marked by continuous black lines. Red
trajectories tend to (1, 0, 0) (bottom right), blue trajectories tend to (0, 1, 0) (bottom left), and green trajectories tend to (0, 0, 1) (top).

Fig. 5. The fixed point p∗
= (1, 0, 0) (bottom right) which represents the player with the smallest conflict activity (c1 = 0.24, c2 = 0.4, c3 = 0.6,)

has the largest basin of attraction. Here the central (seventh) fixed point collides with one of the edge fixed points..

5. Basins of attraction: m = 3 and beyond

In Figs. 4 , 5 , 6, three simplexes are shown for m = 3 and various sets of the coefficients ci. In Fig. 4, the coefficients ci
are approximately equal: c1 = 0.5, c2 = 0.49, and c3 = 0.51. The seventh internal unstable fixed point is placed almost in
the middle of the simplex, and the basins of attraction are almost of the same size. In Fig. 5, the coefficients ci (c1 = 0.24,
c2 = 0.4, c3 = 0.6) are set as to assure the internal fixed point at the same position as the edge fixed point; hence these
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Fig. 6. For activity values c1 = 0.5, c2 = 0.3, c3 = 0.1, y = p3 the central (seventh) fixed point is arranged out of the simplex and the basins of
attraction are subjected to a strong deformation..

two fixed points, both unstable, collide. In Fig. 6, the coefficients ci (c1 = 0.5, c2 = 0.3, c3 = 0.1) are chosen as to make
the seventh fixed point out of the simplex. As we see, the pictures in Figs. 5 and 6 are qualitatively the same, except the
order of the coefficients ci. All the unstable fixed points are placed at the boundaries between the basins of attraction.

We conjecture that the same rules apply for higher dimensions of the system. Consider the case of a given m. Having
fixed m − 3 coordinates of a fixed point equal zero, we are left with a three-dimensional system described above in this
subsection. The same rule should apply to any dimensionality m and k. This is a consequence of the model equations
(Eq. (1)): each subspace W where pi = 0 for some subset of actors i ∈ W is invariant, and the mere existence of these
actors does not influence the system behavior.

6. Discussion

The structure of the fixed points, described above, allows to summarize the results as follows. Generic trajectories end
up at one of the fixed points where pi = 1 for one player i, pj = 0 for all other j-s. Which one of such points is selected,
depends on the set of the coefficients ci and on the initial values of pi’s. The latter dependence can be expressed in the
form of basins of attraction of the stable fixed points. As a rule, the unstable fixed points are placed at the boundaries
of the basins, hence they provide valuable information on these boundaries. Accordingly, for m = 2 there are three fixed
points, two stable (0, 1) and (1, 0), and third unstable at the edge between the stable ones. For m = 3 there are three
stable fixed points at the corners of the simplex, and three unstable fixed points at the edges of the triangle. Out of the
coordinates of the latter, one is equal to zero. It is also possible that there is a seventh fixed point, either within the
triangle surface or at the edge; in the latter case it coincides with one of fixed points at the edge. This seventh point
is also unstable. For higher m, a classification is possible along the same rules. For m = 4 there are four stable fixed
points (three coordinates of each equal to zero), and 6 unstable ‘edge’ fixed points with two coordinates equal to zero.
Four further ‘surface’ fixed points can also appear, in the analogy to the case m = 3. Finally, one unstable fixed point can
appear within the volume of the simplex. If the latter happens to be at the surface, it coincides with the existing one at
the same surface. In this way, the structure of all but the last of the fixed points for m + 1-dimensional simplex can be
reconstructed from the structure for m-dimensional one by adding coordinates equal zero to the existing fixed points.

There are some interesting analogies of these model results and the social reality. First is that basically, the winner is
this player who engages minimally in the conflict. The winning strategy is to withdraw from the conflict, what can be
carried out by setting ci = 0. If this strategy is accepted by all players, i.e. ci = 0 for each i, there is no conflict at all, and
everybody stays with her/his initial power pi. This is a kind of the Nash equilibrium [58]; whoever enters into conflict,
loses. However, we know that people enter into conflict for various reasons, which are out of scope of the paradigm of
rational players. Our results indicate that even the most aggressive player (with the largest value of ci) can win, if his
initial power pi is large enough. In this sense, the Matthew effect is reproduced here. We note that a similar problem
has been considered recently [59] from the perspective of voting dynamics and competition between political campaigns.
A series of interesting examples of numerical solutions of model differential equations, presented there, is a convincing
demonstration that a lot of questions in the field remain open.

We can add that our main point — the condensation of power in hands of one agent (cf Theorem 3.1) has some
analogies also in physical systems. When our variable pi is interpreted as the probability of state i, Eq. (1) is equivalent
to a nonlinear master equation. Analysis of master equations for nonlinear kinetics [60] has been shown to lead to the
regime of abnormal diffusion that exhibits the Matthew effect [61]. We note that this formulation allows to observe a
regime dependent on initial mass distribution [62], similarly to our case, as shown in Figs. 4–6. On the other hand, the
time variation of incomes, where the Matthew effect has been identified, has been shown to be describable in terms of
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Boltzmann thermodynamics [63]. Last but not least, the network science entered to statistical physics with the idea of
preferential attachment [64], which is also an example of the Matthew effect. A casual reference to the Matthew effect is
found even in a literature on quantum dots, where the effect is a consequence of asymmetric RKKY interaction [65]. This
remote voice nicely confirms our statement in the first section.

Summarizing, a model of conflict is proposed and explored, which takes into account the dependence of strategy on
the actual power of a player. The structure of state space of model variables, controlled by nonlinear difference equations,
reveals interesting phenomena as collisions of unstable fixed points. Further extensions of the model will include coalitions
and state dependent strategies.
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