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DYNAMICAL SYSTEMS OF CONFLICT IN TERMS OF
STRUCTURAL MEASURES

VOLODYMYR KOSHMANENKO AND INGA VERYGINA

This paper is dedicated to Yu. M. Berezansky on his 90th birthday

Abstract. We investigate the dynamical systems modeling conflict processes be-
tween a pair of opponents. We assume that opponents are given on a common space
by distributions (probability measures) having the similar or self-similar structure.
Our main result states the existence of the controlled conflict in which one of the
opponents occupies almost whole conflicting space. Besides, we compare conflicting
effects stipulated by the rough structural approximation under controlled redistrib-
utions of starting measures.

1. Introduction

We study the emergence of space redistributions arising due to the conflict interaction
between opponents (opposite sides, players). The roles of opponents may be played by
various natural entities with alternative trends (for examples see [5, 7, 9, 11]). In turn,
the conflicting space may appear as a territory, a living resource, an ordering queue, in
general, any value admitting division (see [2, 6, 10, 16, 21]).
We begin with an observation that opponents (competing sides) of conflict processes

usually are presented in a form of a similar or self-similar structure: cells, bacterias,
trees, peoples, etc. That is why the description of opponents in many-dimensional terms
is a more adequate in comparison with single-meaning values of their mutual powers. By
this reason we propose in constructions of the conflict theory to use the non-deterministic
ideology of Quantum Mechanics. In particular, we will describe the states of opponents
in terms of distributions of probability measures. Furthermore, we will assume that these
distributions have a certain similar or self-similar geometrical structure consistent with
a preassigned division of the conflicting space.
Let us explain our approach in more details (see also [1, 4, 5, 11]–[15],[20]).
Denote by A,B a couple of opponents (alternative sides) living on a common resource

space Ω. In what follows Ω is a compact of some metric space with the Borel σ-algebra
B of its subsets. Let λ be a fixed σ-additive measure on B such that λ(Ω) = 1. In the
simplest case one can think that Ω = [0, 1] and λ denotes the usual Lebesgue measure.
We denote by M(Ω) a family of all σ-additive finite signed measures on B. The

subset of positive measures is denoted byM+(Ω). For a probability measure μ we write
μ ∈M+

1 (Ω).
We suppose that opponents A,B at the initial moment of time are presented on Ω

by a couple of different probability measures μ, ν ∈ M+
1 (Ω). The conflict interaction
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between A,B is represented by a discrete (or continuous) binary mapping � inM+
1 (Ω):

μ� ν = μ′, ν � μ = ν′,

which usually is non-commutative and nonlinear. We call each triple {Ω,M+
1 (Ω),�} the

dynamical system of conflict (DSC).
The main problem of the conflict theory is to study and describe the behavior of

trajectories of DSC in terms of couples of probability measures:

(1)
{
μ
ν

}
�,t−→

{
μ(t)
ν(t)

}
, μ, ν ∈M+

1 , t ≥ 0.

We suppose that the time evolution of DSC in the general case is governed by the system
of differential equations

(2)
dμ

dt
= μΘ− τ, dν

dt
= νΘ − τ,

where the conflict exponent Θ = Θ(μ, ν) is a positive quadratic form which describes
the power of conflict interaction at whole, and the measure-valued function τ = τ(μ, ν)
corresponds to the local confrontation between A,B. In what follows we come to the
discrete time t = N = 0, 1, . . . and use the system of difference equations

(3)
{
μN+1(E) = μN (E) + μN (E)ΘN − τN (E),
νN+1(E) = νN (E) + νN (E)ΘN − τN (E), E ∈ B,

where we omit normalization denominators.
In [18] it was proved (see also [12, 13, 19]) that each trajectory {μN , νN}, N ≥ 1

starting with any couple of probability measures μ, ν ∈ M+
1 (Ω), μ �= ν, converges in

the weak sense to a limit fixed point {μ∞, ν∞}. This point creates an equilibrium state
for the system and is a compromise in the sense that μ∞ ⊥ ν∞. Moreover, for each
dynamical system of conflict {Ω,M+

1 (Ω),�} given by (3), there exists the limit ω-set
Γ∞ [22]. It is an attractor consisting of all couples of mutually singular measures from
M+

1 (Ω). Thus,

Γ∞ = {{μ∞, ν∞} | μ∞, ν∞ ∈M+
1 (Ω), μ

∞ ⊥ ν∞}.
It was proved also that each limit state is uniquely determined by the starting couple
{μ, ν}, and moreover,

μ∞ = μ+, ν∞ = ν−,
where μ+, ν− denote the normalized components of a classic Hanh–Jordan decomposition
[3, 8, 23] of the signed measure ω = μ− ν = ω+ − ω−. Thus
(4) μ∞ =

ω+

ω+(Ω)
=: μ+, ν∞ =

ω−
ω−(Ω)

=: ν−.

In the simplest situation the dynamical system of conflict can be written in terms of
coordinates of stochastic vectors p, r ∈ R

n
+, n ≥ 2 corresponding to opponent sides,

pN+1
i = 1/zN(pN

i Θ
N − τN

i ), rN+1
i = 1/zN(rN

i Θ
N − τN

i ), i = 1, . . . , n.

Here we set ΘN = (pN , rN ) to be the inner product between the vectors pN , rN and
τN
i = pN

i r
N
i . It was proved in [12, 13] that each trajectory {pN , rN}∞N=0 starting with

a couple of stochastic vectors {p0 = p, r0 = r}, p �= r converges with N → ∞ to a
fixed point {p∞, r∞} which creates a compromise state, p∞ ⊥ r∞. This state is uniquely
determined by the starting couple {p, r} and has an explicit coordinate representation

(5)
p∞i =

di

D
> 0, i ∈ N+, r∞k = −dk

D
> 0, k ∈ N−, D = 1/2

n∑
i=1

|di|,

p∞i = 0, i /∈ N+, r∞k = 0, k /∈ N−,
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where di = pi − ri and N+ = {i : di > 0}, N− = {k : dk < 0}. In [11, 15, 17, 16] we ge-
neralized the above constructions to cases of piece-wise uniformly distributed measures,
self-similar, and similar structure measures.
In the present paper we study more specific questions connected with the property of

similar structure measures μ, ν to have the weak approximation in terms of piece-wise
uniformly distributed measures

μ = lim
k→∞

μk, ν = lim
k→∞

νk.

We analyze the effects which are produced by the rough structural approximation and
controlled redistribution (see below) of the starting measures. In other words we are
interesting in all possible spatial and valued changes of the limit measures when μk, νk

are subject to the structural redistributions, μk → μ̃k, νk → ν̃k, so that the limits

μ̃∞ = lim
k→∞

μ̃∞k , ν̃∞ = lim
k→∞

ν̃∞k

become essentially different from μ∞, ν∞.
Our main result (it is hypothetical in the general case) reads as follows.
Given a couple of similar structure measures μ, ν ∈Mss(Ω) with suppμ = Ω = suppν,

for any 0 < ε < 1 there exists a controlled structural redistribution of the measure μ
such that on 1 ≤ k < ∞ step of the rough approximation, μk → μ̃k, The limit conflict
state {μ̃∞k , ν∞k } obeys the properties

λ(suppμ̃∞k ) ≥ 1− ε, μ̃∞k ⊥ ν∞k .

It means that the controlled conflict under an appropriate strategy may lead to an
expansion over most part of the territory.
In the paper we prove only a simplest version of this observation (see Theorem 4).
The paper consists of five sections. In Section 2 we briefly recall a general picture of

DSC in terms of probability measures, in Section 3 the notions of similar and self-similar
structure measures are presented, Section 4 contains the main results, and finally, in
the last section we discuss the interpretation of the obtained results and their possible
applications.

2. On dynamical systems of conflict in terms of abstract measures

Let us recall a general scheme of our approach to the conflict theory in terms of
abstract measures (for more details, see [18, 19]). We will deal with dynamical systems
{Ω,M+

1,ac(Ω),�} of natural conflict (hereM+
1,ac denotes a class of absolutely continuous

measures). The term ”natural” means that a conflict composition � is defined by some
fixed law of the conflict interaction between opponents and their strategies do not change
during the time evolution. In Sec. 4 we will discuss the dynamical systems with rough
approximations and controlled redistributions when � is subjected to the strategical
changes.
Let us consider an abstract variant of DSC with the discrete time

μN+1 = μN
� νN , νN+1 = νN

� μN , N = 0, 1, . . .

Their state trajectories

(6)
{
μN

νN

}
�−→

{
μN+1

νN+1

}
, N = 0, 1, . . .

are governed by the following law of conflict dynamic:

(7)
{
μN+1(E) = 1

zN [μN (E)
(
ΘN + 1

)− τN (E)],
νN+1(E) = 1

zN [νN (E)
(
ΘN + 1

)− τN (E)], E ∈ B,
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where the measures μ0 = μ, ν0 = ν correspond to the initial state. The conflict exponent
ΘN in (7) is defined as

ΘN =
∫

Ω

∫
Ω

K(x, y)ϕN (x)ψN (y) dxdy,

where K(x, y) denotes the kernel of some positive bounded operator K in L2(Ω, dλ) and

ϕN (x) =
√
ρN (x), ψN (x) =

√
σN (x),

where ρN (x), σN (x) are the Radon-Nikodym derivatives of μN , νN with respect to λ.
Thus,

ΘN = (KϕN , ψN )L2(Ω, dλ),

Further, τN in (7) stands for the occupation measure. Its values characterize the presence
of opponents on opposite territories. By definition,

(8) τN (E) = νN (E+) + μN (E−), E+ = E
⋂

Ω+, E− = E
⋂

Ω−,

where Ω = Ω−
⋃
Ω+ corresponds to the Hahn–Jordan decomposition (see [8, 23]) of the

starting signed measure ω = μ−ν. Finally, the normalizing denominator in (7) is defined
as

zN = ΘN + 1−WN , WN = μN (Ω−) + νN (Ω+).

It is easy to see that all measures μN , νN , N ≥ 1 in (7) are absolutely continuous and
probability, i.e., μN , νN ∈M+

1,ac(Ω).
The DSC defined by (7) has two separate sets of fixed points. The first set contains all

couples of identical measures fromM+
1,ac(Ω). Indeed, if μ = ν, then ΘN is a constant for

all N and μN (E) = μ(E) = νN (E) = ν(E) for each E ∈ B. The second set is composed
of measures μ, ν ∈ M+

1,ac(Ω) which are orthogonal, μ ⊥ ν. In this case τN = 0 = WN

and ΘN + 1 = zN for all N . Due to (7) we find that μN = μ, νN = ν.
In all other cases, when the starting measures are different, μ �= ν, and mutually

non-singular the following theorem is true.

Theorem 1. Let {Ω,M+
1,ac(Ω),�} be a DSC generated by the system of difference equa-

tions (7). Then each its trajectory (6) starting with a couple of probability measures
μ0 = μ, ν0 = ν ∈ M+

1,ac(Ω), μ �= ν converges to a fixed point corresponding to a limit
state {μ∞, ν∞} with

(9) μ∞(E) = lim
N→∞

μN (E), ν∞(E) = lim
N→∞

νN (E), E ∈ B,

where

(10) μ∞(E) =
μ(E+)− ν(E+)

D
= μ+(E), ν∞(E) = −μ(E−)− ν(E−)

D
= ν−(E)

with μ+, ν− defined by (4).

In (10) D = 1/2
∫
Ω
|ρ(x) − σ(x)|dx stands for the total difference between measures

μ, ν.
If Ω is a finite set and μ, ν are stochastic vectors p, r ∈ R

n
+,1, then coordinates of the

limit states {p∞, r∞} are described by (5). We refer to [12, 13, 18]) for the proof of this
theorem.
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3. The similar and self-simillar structure measures

Let Ω be a compact set of some metric space and let λ be a fixed σ-additive measure
on the Borel algebra of subsets. We suppose that λ(Ω) = 1. Consider a specific class of
measures as follows.
Fix n > 1, assume Ω is consecutively divided onto non-empty subsets (regions) on

each kth level

(11) Ω =
n⋃

i1=1

Ωi1 =
n⋃

i1,i2=1

Ωi1i2 =
n⋃

i1,i2,...,ik=1

Ωi1i2...ik
= · · · , k = 1, 2, . . .

such that all ratios

(12) qkik
:=

λ(Ωi1i2...ik
)

λ(Ωi1i2...ik−1)
, k ≥ 1

are independent of indices i1, i2, . . ., ik−1, where Ωi0 = Ω. Besides we suppose that

inf
k,ik

{qkik
} > 0 and

n∑
ik=1

qkik
= 1.

In what follows we fix some division of Ω with above properties.
We say that a probability measure μ from M+

1 (Ω) belongs to the class of similar
structure measures, write μ ∈Mss(Ω), if, besides (12), all ratios

(13) pkik
:=

μ(Ωi1...ik
)

μ(Ωi1...ik−1)
, k ≥ 1

with μ(Ωi1...ik−1) �= 0 are independent of the indices i1, i2, . . ., ik−1. We recall that
μ(Ωi0) = μ(Ω) = 1. By this definition,

pkik
≥ 0,

n∑
ik=1

pkik
= 1, k ≥ 1.

In the particular case, where qkik
and pkik

in (12) and (13) do not depend on k, we
say that the measure μ has the self-similar structure, write μ ∈ Msss(Ω). Clearly
Msss(Ω) ⊂Mss(Ω).
We say that a measure μ has the partly similar structure, write μ ∈ Mpss(Ω), if

conditions (13) hold only up to some finite k < ∞. Inside the subsets Ωi1...ik
, these

measures have arbitrary distributions.

Lemma 1. Each similar structure measure μ ∈ Mss(Ω) is uniquely associated with a
matrix

P = {pk}∞k=1 = {pkik
}n,∞

ik=1,k=1, pk ∈ R
n
+,1,

such that all vectors pk = (pk1, pk2, . . . , pkn), k ≥ 1 are stochastic, i.e.,

pkik
≥ 0, pk1 + pk2 + · · ·+ pkn = 1.

In particular, if there exists k0 such that all pk, k ≥ k0, coincide with some fixed vector
p ∈ R

n
+,1, then μ ∈Msss(Ω).

Each partly similar structural measure μ ∈ Mpss(Ω) is uniquely associated with the
finite matrix

Pk0 = {pk}k0
k=1 = {pkik

}n,k0
ik=1,k=1, pk ∈ R

n
+,1, k0 <∞.

Proof. Given P define the measure μk for each 1 ≤ k <∞ as follows:

μk(Ωi1...il
) := p1i1 . . . plil

≡ pi1...il
, 1 ≤ l ≤ k,
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and put μk uniformly distributed inside subsets Ωi1...ik
. By this construction,

μk(Ωi1...il
)

μk(Ωi1...il−1)
=

pi1...il

pi1...il−1

= plil
, 1 ≤ l ≤ k

and therefore μk ∈ Mpss(Ω). Thus, μk is a piece-wise uniformly distributed measure and
one can write for any Borel set E ∈ B:

μk(E) =
n∑

i1,...,ik=1

ρi1...ik
λi1...ik

(E),

where

ρi1...ik
:=

pi1...ik

qi1...ik

, qi1...ik
:= λ(Ωi1...ik

) = q1i1 . . . qkik
, λi1...ik

= λ � Ωi1...ik
.

We put μ(Ωi1...il
) := μk(Ωi1...il

), 1 ≤ l ≤ k and for an arbitrary E define μ by the weak
limit

μ(E) = lim
k→∞

μk(E), E ∈ B.
By this construction,

μ(Ωi1...ik−1) = μk(Ωi1...ik−1 ) =
n∑

ik=1

μk(Ωi1...ik
) = pi1...ii−1

n∑
ik=1

pkik
, k ≥ 1

and therefore μ ∈ Mss(Ω).
Vice versa, if μ ∈ Mss(Ω), then elements pk,ik

(see (13)) define the matrix P with
above properties. �

In what follows we will consider a couple of measures μ, ν ∈ Mss(Ω) associated with
the matrices

(14) P = {pk}∞k=1 = {pkik
}∞,n

k,ik=1 and R = {rk}∞k=1 = {rkik
}∞,n

k,ik=1.

In the case where Ω = [0, 1], the above measures μk have densities ρk(x) which are
the simple functions:

ρk(x) = pi1...ik
χΩi1...ik

(x), x ∈ [0, 1],
where χΩi1...ik

(x) denotes the characteristic function of subsets Ωi1...ik
. The correspond-

ing distribution functions Fk(x) of μk are continuous piece-wise linear ones increasing
from zero to 1. Obviously, the sequence Fk(x), k = 1, 2, . . . is point-wise convergent, i.e.,
there exists a left continuous function

F (x) = lim
k→∞

Fk(x)

which defines the distribution function of the measure μ on [0, 1]. Moreover, for contin-
uous μ this convergence is uniform, since all Fk(x) are uniformly bounded.

4. The rough controlled conflicts

Here we consider several variants of the rough and controlled conflict interaction in
terms of the structural measures. Theorem 1 gives a general result of the mathematical
theory of natural (non-controlled) conflict. However, conflict confrontations in the real
situation occur usually with various deformations of the starting data. So, rather often
the conflict actions are based on rather rough estimates of mutual forces, their approx-
imate distributions, and relations. That is why there appear rough redistributions of
opponents positions. We are aimed to study different effects arising from these reasons
and describe a more adequate picture produced by the approximation method in terms
of the rough controlled conflict. The language of the similar structure measures provides
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the excellent tool for this aim. Simultaneously, some kind of notion of the controlled
conflict appears naturally in this way.
We begin with a short review of the abstract mathematical scheme of the conflict the-

ory. Let at the initial moment of time opponents A,B are distributed along the resource
conflicting space Ω in according with probability measures μ, ν ∈ M+

1 (Ω). Assume the
law of conflict interaction is fixed by equations (7). Thus, there appears the dynamical
system of conflict

{
Ω,M+

1 (Ω),�
}
. Note that in general it is not easy to find explicitly

the limit distributions μ∞, ν∞ described by Theorem 1. The reason is that the Hanh–
Jordan decomposition Ω = Ω+

⋃
Ω− is non-constructive. It appears as a result of some

approximate procedure (see [8]).
Nevertheless, if the conflict space Ω is divided into a finite set of regions (see (11)),

one can fulfill the rough conflict ”program” using firstly only one step of division: Ω =⋃n
i1=1Ωi1 and changing the starting measures μ, ν into piece-wise uniformly distributed

ones μ1, ν1. Then one can come to the second more deep step of the rough ”program”,
and so on. Importantly, the just described way of the rough approximation of the conflict
interaction is often realized in applications.
Let us describe this approach in more detail. Let μ, ν ∈ Mss(Ω), μ �= ν. Let us

consider at the first step of the rough approximation the piece-wise uniformly distributed
measures μ1, ν1 defined as follows:

(15) μ1(Ωi1) = μ(Ωi1 ) = p1i1 , ν1(Ωi1) = ν(Ωi1 ) = r1i1 , ii = 1, 2, . . . , n,

where p1i1 , r1i1 are coordinates of the vectors p1, r1 (see (14)). The Hahn–Jordan de-
composition Ω = Ω+,1

⋃
Ω−,1 corresponding to the signed measure ω1 = μ1− ν1 has the

form
Ω+,1 =

⋃
i1∈N+,1

Ωi1 , Ω−,1 =
⋃

i1∈N−,1

Ωi1 ,

where
N+,1 = {i1 | μ(Ωi1 ) > ν(Ωi1), N−,1 = {i1 | μ(Ωi1 ) < ν(Ωi1)}}.

We assume for simplicity that the regions Ωi1 with μ(Ωi1 ) = ν(Ωi1) are absent. Thus,
due to Theorem 1 we have

(16) μ∞1 (Ωi1) =
{ p1i1−r1i1

D1
, i1 ∈ N+,1

0, i1 /∈ N+,1
, ν∞1 (Ωi1) =

{
0, i1 /∈ N−,1

− p1i1−r1i1
D1

, i1 ∈ N−,1
,

where D1 = 1/2
∑

i1
|p1i1 − r1i1 |.

Let μ1(Ωs) > 0 for some i1 = s such that s ∈ N−,1. Then μ∞1 (Ωs) = 0. Thus, the
region Ωs is played over for the opponent A if the conflict game occurred at the level of
the first rough approximation. This zero distribution for μ∞1 on Ωs appears due to the
starting inequality

μ1(Ωs) < ν1(Ωs), s ∈ N−,1.

Nevertheless, possibly there exists a subset Ω̃s ⊂ Ωs with the opposite inequality

μ1(Ω̃s > ν1(Ω̃s).

We are interested in the folowing question. What is the maximal Lebesgue measure
of such a subset Ω̃s ? This subset can be saved for the opponent A under the next
steps of approximation with a more thin division of the conflict space or under using
the controlled redistribution (for the definition see below) of the μ1 inside Ωs. More
precisely, we are interested in the following question. What is the biggest (in the sense of
Lebesgue measure) subset Ω̃s ⊂ Ωs such that at the second step of approximation, when
Ωs is subjected to the division Ωs = Ω̃s

⋃
Ω̃c

s, for the controlled redistribution μ2 → μ̃2,
the inequality

μ̃2(Ω̃s) > ν(Ω̃s)
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holds?
We define the procedure of the controlled redistribution as follows. We say that a

measure μ ∈ M+
1 (Ω) is subjected to a controlled redistribution along a set Ωs ⊂ Ω, if it

is replaced by the measure μ̃ ∈ M+
1 (Ω) which differs from μ only inside Ωs.

One of the effects under the rough approximation with the consequent controlled
redistributions we formulate as follows.

Theorem 2. Let μ, ν ∈ Mss(Ω) and μ1, ν1 be defined by (15) at the first step of the
rough structural approximation. Assume that

0 < μ1(Ωs) < ν1(Ωs), s = i1 ∈ N−,1

and therefore μ∞1 (Ωs) = 0, ν∞1 (Ωs) > 0. Let for the division

(17) Ωs = Ω̃s

⋃
Ω̃c

s,

μ̃2, ν2 = ν1 denote the measures at the second step of the rough structural approximation
with the controlled redistribution of μ2 obeying the inequalities

(18) μ1(Ωs) ≥ μ̃2(Ω̃s) > ν2(Ω̃s).

Then
μ̃∞2 (Ω̃s) > 0, ν∞2 (Ω̃s) = 0

and moreover

(19) λ(Ω̃s) ≤ σs(μ, ν)λ(Ωs) with σs(μ, ν) =
μ1(Ωs)
ν1(Ωs)

.

In the extremal case, where the value λ(Ω̃s) is maximal, both limiting distributions on Ω̃s

for opponents A,B are zero,

μ̃∞2 (Ω̃s) = ν∞2 (Ω̃s) = 0.

Proof. To prove inequality (19) we will apply the geometrical reasoning using the uniform
distribution of ν2 on Ωs. It is easy to see that there exists a non-unique division (17) such
that ν2(Ω̃s) ≡ ν1(Ω̃s) < μ̃2(Ω̃s) = μ1(Ωs), where we produce a controlled redistribution
μ1 → μ̃2 such that μ̃2(Ω̃c

s) = 0 and μ̃2(Ω̃s) = μ1(Ωs). Now the estimate (19) appears by
the linear geometrical interpolation. Indeed, take any subset Ω̃s ⊂ Ωs such that ν1(Ω̃s) ≤
μ1(Ω̃s) and put μ̃2(Ω̃s) = μ1(Ωs), μ̃2(Ω̃c

s) = 0. Denote σs = σs(ν, λ) := ν1(Ωs)/λ(Ωs).
Then obviously

ν2(Ω̃s) = ν1(Ω̃s) = σsλ(Ω̃s) ≤ μ̃(Ω̃s) = μ1(Ωs).
Therefore

λ(Ω̃s) ≤ μ(Ωs)/σs =
μ1(Ωs)
ν1(Ωs)

λ(Ωs).

This proves (19).
Clearly, in (19) we have the equality iff ν2(Ω̃s) = μ(Ωs) = μ̃2(Ω̃s). In this extremal

case

(20) supλ(Ω̃s) =
μ1(Ωs)
ν1(Ωs)

λ(Ωs),

where the supremum is taken over all divisions (17) satisfying conditions (18). Then
both sequences μ̃N

2 (Ω̃s), νN
1 (Ω̃s), N = 1, 2, ... converge to zero due to (16) (see the

vector version of Theorem 1). �

Therefore, if the opponent A associated with a measure μ at the first step of the
structural approximation looses some region Ωs, i.e., μ∞1 (Ωs) = 0, then at the second
step of structural approximation (under an additional division of Ωs) using the controlled
redistribution inside Ωs it can return a part Ω̃s of this region. The size of the returned
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subset (in the sense Lebesgue measure is estimated by (19)). In turn, the opponent B
wins the whole region Ωs at the first step, however at the second step it gets zero inside
Ω̃s since it does not produce any preserving actions: ν∞2 (Ω̃s) = 0, μ̃∞2 (Ω̃s) > 0.
It is not easy to generalize Theorem 2 to the case of arbitrary similar structure mea-

sures since the local densities σi1...ik
:= ν(Ωi1...ik

)/λ(Ωi1...ik
) take in general any values.

That is why it is so hard to predict in applications the evolution of space redistributions
when both opponents use different individual strategies under the controlled conflict
interactions.
Let us consider a couple of examples.

Example 1. From losses to gains, or an expansion on a new territory.

Let Ω =
⋃3

i=1Ω1i , λ(Ω1i) = 1/3. Let us put in correspondence to opponents A,B
the measures μ1, ν1 such that vectors p1 = {μ1(Ωi1 )}, r1 = {ν1(Ωi1)} from R

3
+,1 have the

following coordinates:

pi1 = 1/3, i1 = 1, 2, 3, r1 = (2− ε)/9, r2 = (1 + ε)/3, r3 = 4/9, ε > 0.

Then, by using Theorem 1, we find by direct calculation that

Ω− = Ω3, ν∞1 (Ω−) = 1, λ(Ω−) = 1/3.

In particular, the opponent A has a priority for two regions Ω+ = Ω1

⋃
Ω2 with λ(Ω+) =

2/3. However, at the second step of partition, Ω =
⋃3

i1,i2=1Ωi1i2 , the measures μ2, ν2
have new, different signs of their priorities and therefore the Hanh–Jordan decomposition
is changed

Ω− = Ω22

⋃
Ω23

⋃
Ω32

⋃
Ω33, λ(Ω−) = 4/9.

Thus, ν∞2 (Ω−) = 1 and the area of priority for the opponent B becomes larger. We can
go to the next step of approximation and put

r1 = (9− 3ε)/27, r2 = (9 + ε)/27, r3 = (9 + 2ε)/27.

It leads to a greater extension of the area of priority for B.
This example shows that the strategy of the directed priority: r1 < r2 < r3 in com-

parison with the strategy of uniform distribution pi = 1/3 leads to an extension of
the occupation area under the conflict interaction on the way of increasing steps of the
structural approximation.

Example 2. Spectral gaps as a result of conflict interactions.

Let μ, ν ∈ Msss(Ω). Assume that at the first step of the rough approximation the
measures μ1, ν1 are presented by vectors p1, r1 ∈ R

n
+,1, n ≥ 3 with the coordinates

pi1 = 1/n, i1 = 1, . . . , n, rs = (n− 1)/n, ri1 �=s = 1/(n(n− 1)), 1 ≤ s ≤ n.

By this assumption, all pi1 > ri1 , i1 �= s, and ps < rs. Thus, D1 = rs − ps = (n− 2)/n
and

p∞i1 = 1/(n− 1), r∞i1 = 0, if i1 �= s, and ps = 0, rs = 1.
Therefore, the opponent A loses the region Ωs and B wins this region with probability
1. The spectral support of μ∞ coincides with Ωc

s = Ω\Ωs.
Let us come to the second step of the structural approximation. Then we get

pi1i2 = 1/n2 for all i1, i2 = 1, . . . , n

and
ri1i2 = 1/(n− 1)n, if both i1, i2 �= s,

ri1i2 = 1/n2, if only one i1 or i2 �= s,

rss = ((n− 1)/n)2.
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Now D2 = D1 = 1− 2/n, p∞i1i2
= 1/(n− 1)2, r∞ss = 1, and r∞i1i2

= 0, for the rest i1, i2.
In particular,

p∞i1s = p∞si2 = r∞si2 = r∞i1s = 0, i1 �= s �= i2.

Thus, at the second step of the rough approximation we observe gaps in the regions
Ωi1s,Ωsi2 ⊂ Ωi1 , i1 �= s for the opponent A and gaps for the opponent B in the regions
Ωsi2 ⊂ Ωs, i2 �= s. If we will continue the rough approximation to the third step, similar
gaps appear for the opponent B in regions Ωssi3 ⊂ Ωss, i3 �= s. And so on.
The general result in this direction reads as follows.

Theorem 3. Let μ, ν ∈Msss(Ω). Assume μ �= ν and let Ωs be such that

0 < μ1(Ωs) < ν1(Ωs), s ∈ N−,1,

and therefore μ∞1 (Ωs) = 0, ν∞1 (Ωs) > 0. Then with necessity there exist subsets Ωsi2...ik
⊂

Ωs such that the opposite inequality holds

μk(Ωsi2...ik
) > νk(Ωsi2...ik

) ≥ 0, si2 . . . ik ∈ N+,k

and therefore μ∞k (Ωsi2...ik
) > 0, ν∞k (Ωsi2...ik

) = 0, where

N+,k := {i1i2 . . . ik|pi1i2...ik
> ri1i2...ik

}.
Proof. Since μ �= ν and 0 < ps < rs there exists m �= s such that pm > rm ≥ 0. If
rm = 0, then psm = ps · pm > rsm = rs · rm = 0. Therefore μ2(Ωsm) > ν2(Ωsm) and
μ∞2 (Ωsm) > 0, ν∞2 (Ωsm) = 0. In this case the theorem is proved.
If pm > rm ≥ 0 and rm �= 0, then pm/rm > 1 and (pm/rm)k → ∞, with k → ∞.

Thus (pm/rm)k > ps/rs and ps · (pm)k > rs · (rm)k for some finite k. Therefore, if for
all i2 = m, . . . , ik = m the conditions psi2...ik

> rsi1...ik
> 0 hold, then si2 . . . ik ∈ N+,k,

and by Theorem 1 we get

p∞sm...m = μ∞k (Ωsi2...ik
) > 0, r∞sm...m = ν∞k (Ωsi2...ik

) = 0, i2 = m, . . . , ik = m.

�

We are able to estimate the maximal value of μ∞k (Ωsi2...ik
) > 0 in Theorem 3.

Proposition 1.

max
k

μ∞k (Ωsi2...ik
) ≤ ps.

Proof. By Theorem 1,

μ∞k (Ωsi2...ik
) = 1/Dk

∑
si2...ik∈N+,k

(psi2...ik
− rsi2...ik

)

= 1/Dk

∑
si2...ik∈N+,k

(ps(pi2 · · · pik
− ri2 · · · rik

)− (rs − ps) · ri2 · · · rik
)

≤ ps/Dk

∑
i2...ik∈N+,k−1

(pi2...ik
− ri2...ik

) ≤ ps/Dk ·Dk−1 ≤ ps,

where we used the following lemma. �

Lemma 2. For any couple of measures μ, ν ∈ Mss(Ω), μ �= ν the variation distance
Dk = D(μk, νk) between their kth structural approximated variants μk, νk creates a non-
decreasing sequence

Dk ≤ Dk+1, k ≥ 1.
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Proof. By definition, Dk = 1/2
n∑

i1i2...ik=1

|pi1i2...ik
− ri1i2...ik

|. Since

1 = p(k+1)i1 + · · ·+ p(k+1)in
= r(k+1)i1 + · · ·+ r(k+1)in

we have

Dk = 1/2
n∑

i1...ik=1

|pi1...ik
(p(k+1)i1 + · · ·+ p(k+1)in

)− ri1...ik
(r(k+1)i1 + · · ·+ r(k+1)in

)|

≤ 1/2
n∑

i1...ik+1=1

|pi1...ik+1 − ri1...ik+1 | = Dk+1

�

Theorem 4. Given a couple of the similar structure measures μ, ν ∈ Mss(Ω) assume
Ωi1...ik

= (1/n)k, ∀k and

(21) suppμ = Ω = suppν.

Then for any 0 < ε < 1 there exist controlled structural redistributions of the starting
measure μ such that on kth step, 1 ≤ k < ∞, of the rough controlled approximations
μk → μ̃k, νk → νk the limit conflict state {μ̃∞k , ν∞k } obeys the properties

(22) suppμ̃∞k = Ωk,+, λ(Ωk,+) ≥ 1− ε, suppν∞k = Ωk,−, λ(Ωk,−) ≤ ε,

where
Ω = Ωk,+

⋃
Ωk,−

denotes the Hahn–Jordan decomposition corresponding to the signed measure ω̃k = μ̃k −
νk.

Proof. Without loss of generality we put qki = 1/n for all k, i and assume that all
pkik

�= 0 �= rkik
. Moreover, we can assume that for some single 1 ≤ s ≤ n

(23) pks < rks and pkik
> rkik

, ik �= s, ∀k ≥ 1.

Then at the first step of the rough approximation we have

suppμ∞1 = Ω1,+ =
⋃

i1 �=s

Ωi1 , λ(Ωi1 ) = 1− 1/n.

So, the theorem is proved if 1/n < ε. Assume (1/n)2 < ε < 1/n. Show that (22) may
be reached at the second step of the rough controlled approximation. Indeed, replace all
p1i1 , ii �= s with p̃1i1 = r1i1 + δ/(n− 1) where δ is chosen so that p̃1s = r1s − δ satisfies
the conditions

(n− 1)n−1r1s < p̃1s < r1s

and
p̃1sp̃2i2 > r1sr2i2 , i2 �= s, p̃1sp̃2s < r1sr2s.

Then for the controlled conflict with the division

Ω =
⋃

i1 �=s

Ωi1

n⋃
i2=1

Ωsi2

for μ̃2, ν2 we obtain

supp(μ̃∞2 ) = Ω2,+ =
⋃

i1 �=s

Ωi1

⋃
i2 �=s

Ωsi2 , λ(Ω2,+) = 1− (1/n)2 > 1− ε,

supp(ν∞2 ) = Ω2,− = Ωss, λ(Ωss) = (1/n)2 < ε.

If (1/n)3 < ε < (1/n)2, then one can reach (22) at k = 3 step of the rough controlled
approximation with an appropriate δ. And so on. �
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5. Discussion

Let us discuss some interpretation of the above results from the point of view of
possible applications.
We recall that for models of DSC which describe natural conflicts its trajectories are

governed by some law of conflict interaction which is independent of the time. In this case
each limit state {μ∞, ν∞} of the system is a fixed point (an equilibrium state) defined
by the starting couple of measures μ, ν ∈ M+

1 (Ω) (see Theorems 1).
In other situation when the law of conflict interaction may be changed at any moment

of time, we deal with the controlled conflict. In other words, such changes mean the choice
of the local strategies. In the present paper we discussed only the simplest versions of
models with the controlled conflict. They were reduced to redistributions of the starting
measures μ, ν ∈Mss(Ω) at kth steps of their structural approximations and mean changes
of the vectors pl, l ≤ k in the matrix P (see Lemma 1) to other vectors p̃l ∈ R

n
+,1. These

changes where aimed to get the new limit states {μ̃∞, ν̃∞} different from the ones in the
case of natural conflict.
In Section 4 it was shown that the limit result of the natural conflict may be essentially

changed. So, in the situation of complete defeat for the opponent A in a region Ωs, when
from the condition 0 < μ(Ωs) < ν(Ωs) it follows that μ∞(Ωs) = 0, i.e., there appears
a limit gap, one can produce some redistribution of μ inside Ωs in such a way that
after the controlled conflict interaction, A reaches a victory in a subregion Ω̃ ⊂ Ωs, i.e.,
μ̃∞(Ω̃) > 0. Moreover, in Theorem 2 we got estimates both for the value of μ̃∞(Ω̃) and
for the size of area with a limit priority, i.e., for λ(Ω̃). Clearly, these estimates depend on
the structure of divisions (11) and the values of redistributions. Theorem 4 shows that
under an appropriate redistribution for one of the starting measure, the limit result of
the controlled conflict might be very successful for one opponent and extremely bad for
the other (it looses almost whole territory, see (22)).
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