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MODEL OF A DYNAMICAL SYSTEM OF THE “FIRE–WATER” CONFLICT TYPE

T.V. Karataeva and V.D. Koshmanenko UDC 517.9

We propose a model of dynamical system generated by the conflict interaction between the alternative
elements of the “fire–water” type with systematic external replenishment of the resources and internal
mixing. The behavior of the trajectories is investigated. We establish the convergence of trajectories of
the system to ! -limit cyclic orbits.

1. Introduction

The mathematical science of conflict appeared about 100 years ago and was extensively developed. As early as
in 1944, a comprehensive presentation of this theory was proposed in the fundamental monograph by von Neumann
and Morgenstern (see the jubilee edition published in 2006 [1]) with an aim not only to order a great number of
problems from the pure game theory but also to use these problems in economic and social models. The game
theory, as an abstract theory of various types of conflicts, has been extensively developed in numerous publications
(see, e.g., [2, 3] and the references therein). We also especially mention the monograph “The Strategy of Conflict”
by Schelling [4] in which the theory of standard game situation known as the “zero-sum game” was significantly
improved.

A new stage in the development of conflict theory was connected with the investigations of complex systems in
the case where the methods of pure game theory were combined with the methods of dynamical systems [5–7] and
nonlinear dynamics [13–16]. A class of models encountered in the conflict theory was significantly enlarged and
included not only economic and social problems, but also biological (see [8]), political, religious, and ecological
problems, i.e., in fact, almost all actual problems of our civilization formulated in terms of the theory of dynamical
systems [10–12, 21]. In the conflict theory of complex systems, a final result of the process of conflict interaction,
i.e., of the “game,” is not only a fixed equilibrium state but also a cyclic orbit, the choice between the collection of
equilibrium states or cyclic orbits, and even chaos or collapse [16].

An important direction in the conflict theory is known as differential games [17–20].
For the last ten years, the methods of simulation of complex conflict systems have been enriched with new

approaches: statistical interpretation and regionalization of the space [22–27].
In the present paper, we construct and study the behavior of a maximally simplified model of complex dynam-

ical system generated by the transformations of conflict interaction between the alternative elements F and W of
the form of fire and water distributed over the sectors of a closed space. In addition, we assume that the element
F is subjected to the systematic external influence (replenishment similar to the solar radiation with simultaneous
dissipation) and the distribution of the element W is transformed according to a certain law (mixing). In the
considered model, the space of distributions of the elements F and W is a disk split into n � 2 sectors (regions)
�k; k D 1; : : : ; n: The presence of the elements F and W in the region �k is stochastically determined by
their weight coefficients. At the initial time t D 0; the elements F and W are associated with a pair of stochastic
vectors p; r 2 RnC whose coordinates pk; rk � 0; k D 1; : : : ; n; have the meaning of the probabilities of finding
F and W in a region �k :

pk WD P .F 2 �k/; rk WD P .W 2 �k/:
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Fig. 1. Schematic diagram of the model.

The evolution of the vectors p.t/; r.t/; t � 0; is described by the following system of 2n ordinary
differential equations:

dpk

dt
D Qpk.� � Qrk/;

drk

dt
D Qrk.� � Qpk/; k D 1; : : : ; n; (1)

specifying the law of conflict interaction between F and W: The influence of external replenishment and internal
mixing has the additive character (to within the normalization)

Qpk D pk C sk

zp
and Qrk D rk C hk

zr
; (2)

where sk; hk � 0 are periodic functions. The quantity �.p; r/ is the index of conflict between the elements F
and W at time t: The normalizing denominators zp and zr in (2) guarantee the stochastic nature of the vectors
at any time. An equivalent model is given by the system of equations

Ppk D pk.� � rk/C sk

zp
; Prk D rk.� � pk/C hk

zr
; k D 1; : : : ; n: (3)

The schematic diagram of the model is shown in Fig. 1.
We split the investigation of the behavior of trajectories of the model given by Eqs. (1), (2) or (3) into several

stages. In the first stage, we consider an autonomous system with pure internal conflict interaction. Then we study
a model without conflict interaction between the elements in the case where each element is subjected to a periodic
external action. Finally, we analyze the complete model given by Eqs. (1)–(3) and simulating the process of conflict
interaction between a pair of alternative subsystems (opponents) with systematic external replenishment.
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The stability of the system is guaranteed by a constant dissipation of element F (an analog of the thermal
energy) and the invariance of the total amount of element W (an analog of water) in the entire space.

We now briefly describe the evolution of investigated model in the discrete time. In the space of pairs of
stochastic vectors p; r 2 RnC; n � 2; we consider a nonlinear mapping .p0 D p; r0 D r/

RnC �RnC 3 fpN ; rN g ¾�! fpNC1; rNC1g 2 RnC �RnC; N D 0; 1; : : : : (4)

In terms of coordinates, it is described by the formulas

pNC1
i D QpNi .1 � QrNi /

cNp
; rNC1

i D QrNi .1 � QpNi /
cNr

; i D 1; : : : ; n; (5)

where cNp and cNr are the normalizing denominators guaranteeing the stochasticity of the vectors pNC1 and
rNC1 and

QpNi D pNi C sNC1
i

zNp
; QrNi D rNi C hNi

zNr
; (6)

where sNC1
i D sNiC1 for 1 � i < n; sNC1

n D sN1 ; and sND0 D .s1; : : : ; sn/I hND0 D .h1 : : : ; hn/ are
fixed vectors from RnC: Their dependence on N obeys a certain law. According to relation (5), the mapping ¾
can be interpreted as an alternative conflict interaction between a pair of physical systems in the states pN and
rN at discrete times N D 1; 2; : : : : Moreover, every system operates under the conditions of systematic external
“replenishment” described by relations (6).

In the present paper, we study the asymptotic behavior of trajectories of the dynamical system (1). In particular,
under certain conditions imposed on the vectors s; h and p; r; we establish the existence of ! -limit periodic
trajectories. Namely, in the presence of an external source of influence (an analog of solar radiation) for one
element and a deterministic or stochastic mixing over the regions for the other element (an analog of wind), we
prove the existence of cyclic orbits such that the trajectories of the model asymptotically converge to these orbits.
This result is a multidimensional analog of the well-known Poincaré–Bendixson theorem (see, e.g., [10]) on the
existence of cycles for two-dimensional dynamical systems and a consequence of the following two facts: the
existence of a fixed ! -limit point of the dynamical system given by relations (5) with QpNi D pNi and QrNi D rNi
(see [28, 29]) and the oscillating character of uniformly bounded external replenishment and internal mixing.

Note that various methods for the construction of complex dynamical systems with internal conflict interaction
were studied in [30, 31, 34, 35]. Some preliminary results on the behavior of “fire–water” model were reported at
the conferences [36, 37].

2. Model of Pure Conflict

Consider the case of pure conflict of alternative elements without external replenishment and internal mixing,
sk D hk D 0; k D 1; : : : ; n: In this case, the system of equations (1) is simplified and takes the form

Ppk D pk.� � rk/; Prk D rk.� � pk/; k D 1; : : : ; n; (7)
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where the index of conflict

�.t/ D .p; r/ D
nX

kD1
pkrk

is the scalar product of the vectors p.t/ and r.t/: We show that, in this case, each trajectory fp.t/; r.t/g; t � 0;

of the corresponding dynamical system converges to a fixed point (compromise state).
In view of the stochasticity of the vectors p.t/ and r.t/; for any t � 0; the equalities

Pp D d

dt

 
nX

kD1
pk

!
D 0; Pr D d

dt

 
nX

kD1
rk

!
D 0

are true. Moreover, the analysis of Eqs. (1) shows that the derivatives of the coordinates pk and rk vanish with
time:

lim
t!1 Ppk.t/ D 0 D lim

t!1 Prk.t/; k D 1; 2; : : : :

This implies that all coordinates pk.t/ and rk.t/ converge to fixed limit values:

lim
t!1pk.t/ D p1

k and lim
t!1 rk.t/ D r1k :

Hence, every trajectory of the dynamical system of pure conflict converges to an ! -limit fixed point in the
space RnC �RnC :

p1 D lim
t!1pt and r1 D lim

t!1 r t :

The values of the limit coordinates can be exactly described. The following theorem is true:

Theorem 1 (on pure conflict). Every trajectory of the dynamical system fp.t/; r.t/gt�0 given in terms of

coordinates by Eq. (7) converges in the space RnC �RnC to a fixed point

fp1; r1g D lim
t!1fp.t/; r.t/g:

If, at time t D 0; the initial vectors are different, p ¤ r; then the limit vectors are orthogonal, p1 ? r1; and
their coordinates take the values

p1
i D

8
ˆ̂<

ˆ̂:

di

D
; i 2 NC;

0; i … NC;

(8)

r1k D

8
ˆ̂<

ˆ̂:

�dk
D
; k 2 N�;

0; k … N�;

(9)
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where di D pi � ri ; NC D fi jpi > rig; N� D fkjpk < rkg; and D D 1=2
X

i
jdi j: In particular, if, for any

coordinate, pl D rl ; then p
1
l

D r1
l

D 0: In the case where p D r; the limit vectors are also equal, p1 D r1;

and their coordinates are uniformly distributed over the regions, p1
k

D p1
k

D 1

m
; where m � n is the number

of nonzero coordinates of the vectors p and r:

Proof. The difference analog of this theorem was proved in [28, 29]. Here, we present the main ideas used to
prove the theorem for the model with continuous time. Assume that, at the initial time, the inequality pi > ri holds
for any pair of coordinates. Then it follows from Eqs. (7) that the function di .t/ WD pi .t/ � ri .t/ monotonically
increases. As t ! 1; the following limit exists in view of the boundedness of each coordinate:

d1
i D lim

t!1 di .t/ � 1:

Under the same condition, pi > ri ; we consider the ratio

Ri .t/ WD
pi .t/

ri .t/
:

It follows from (7) that the ratio Ri .t/ infinitely increases:

R1
i D lim

t!1Ri .t/ D 1:

This implies that the coordinate ri .t/ converges to zero. As a consequence, we obtain

p1
i D lim

t!1pi .t/ > 0:

Similarly, we establish the existence of the limit

r1k D lim
t!1 rk.t/ > 0

and the convergence of pk.t/ to zero in the case where pk < rk : The existence of these limits necessarily implies
that the index of conflict converges to zero:

�1 D lim
t!1 �.t/ D 0:

This is equivalent to the orthogonality of the limit vectors p1 ? r1 under the condition p ¤ r for the initial
vectors. In particular, this means that the limits of the identical initial coordinates pl D rl are equal to zero:
p1
l

D r1
l

D 0: The immobility of the limit state follows from the equality �1 D 0: We obtain relations (8) and
(9) for the limit values p1

i and r1
k

from the equations

p1
i

p1
i 0

D d1
i

d1
i 0

D di

di 0
; i; i 0 2 NC;

r1
k

r1
k0

D
d1
k

d1
k0

D dk

dk0
; k; k0 2 N�:
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Fig. 2. Asymptotic distributions of the limit coordinates.

Finally, the equality p1 D r1 and the uniform distribution of coordinates of these vectors over the regions
are established in the case of identical initial vectors p D r by ordering the coordinates according to their values
for every t : p1.t/ � p2.t/ � : : : � pm.t/ in view of the relation

lim
t!1Œp1.t/ � pm.t/� D 0:

Hence,

lim
t!1pj .t/ D

1

m
; j D 1; : : : ; m � n:

Theorem 1 is proved.

Example 1. The model of evolution of the dynamical system with pure internal conflict interaction in contin-
uous time.

The trajectory of the stochastic vectors p.t/ and r.t/ whose coordinates satisfy Eq. (7) converges to a fixed
point fp1; r1g 2 RnC �RnC with coordinates depicted in Fig. 2.

3. A Model of Dynamical System without Conflict Interaction

Consider the case where the conflict interaction between the elements F and W is absent but each of these
elements suffers an external periodic action. We show that this yields the existence of limit cyclic orbits.

It follows from (1) that, in the absence of conflict interaction, the system is determined by two collections of
independent equations

Ppk.t/ D
pk.t/C sk.t/

zp.t/
; Prk.t/ D

rk.t/C hk.t/

zr.t/
; k D 1; : : : ; n � 2; t � 0; (10)
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where the periodic functions sk.t/ and hk.t/ describe the external influence and the normalizing denominators
zp.t/ and zr.t/ guarantee the stochasticity of the vectors p.t/ and r.t/ at any time.

Further, we investigate the behavior of one independent vector .p.t/ or r.t//I the behavior of the other
vector is similar. We choose the vector p.t/: To distinguish it from the case of presence of the conflict interaction
between p.t/ and r.t/; we denote this vector by x.t/: Hence, our aim is to study a system of equations

Pxk.t/ D
xk.t/C sk.t/

z.t/
; k D 1; : : : ; n; t � 0: (11)

Actually, we analyze a difference version of system (11) at fixed times divisible by a certain angle ˛ :

xk.tNC1/ D
xk.tN /C sk.tN /

z.tN /
; k D 1; : : : ; n; tN D ˛ N; N D 0; 1; : : : ; (12)

under the assumption that the external action obeys the following law:

sk.tN / D s.˛ k C tN /; ˛ > 0: (13)

Here, s.t/ is a positive periodic continuous function such that s.t/ D s.˛nC t /; e.g., s.t/ D c.1Csin t /; c > 0;
˛ D 2�=n:

It is easy to see that the normalizing denominator (12) guaranteeing the stochasticity of the vector x.t/ is
independent of time and can be found in the form

z D z.tN / D 1C s; s D
nX

kD1
sk; sk D s.˛ k/: (14)

Denote

xNk WD xk.tN /; sNk WD sk.tN / D s.˛ k C tN / � skCN :

Then the system of equations (12) takes the form

xNC1
k

D
xN
k

C sN
k

1C s
; x0k � xk.t0/ D xk; k D 1; : : : ; n; N D 0; 1; : : : : (15)

Iterating this system, we can find the coordinates xk.tN / at any time tN : Hence, Eqs. (15) determine a
dynamical system in the space RnC with discrete time:

x0 � x.t0/
T1�! x1

T2�! x2
T3�! : : :

TN�1�! xN�1 TN�! xN
TNC1�! : : : ; (16)

where T1; T2; : : : is a sequence of time-dependent transformations given by relations (15). By virtue of (13),
this sequence of transformations is periodically repeated every n steps. Hence, for any k D 1; : : : ; n; we get
Tk D TkCn D TkCNn; N D 0; 1; : : : : We are interested in the behavior of the vector xN � x.tN / as N ! 1:

It is shown that, for any initial values of the coordinates xk.t0/; the sequence of vectors x.tN / approaches a fixed
cyclic orbit with period n:
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Theorem 2. Each trajectory xN D x.tN / of the dynamical system (16) specified by the system of difference

equations (12) converges in the space RnC to the ! -set �1
invariant under an ordered sequence of transforma-

tions T1; : : : ; Tn: The set �
1

consists of n vectors

�1 D f�1
j gnjD1:

The coordinates of the vector �1
1 are determined by a collection of values s1; : : : ; sn of the source of external

influence according to the formulas

�11 D s1 C s2z C : : :C snz
n�1

zn � 1 ;

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

�1k D sk C skC1z C : : :C sk�1zn�1

zn � 1 � 1

zn � 1

n�1X

jD0
sjkCj j.modn/z

j ;

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

�1n D sn C s1z C : : :C sn�1zn�1

zn � 1 ;

where z D 1C s; s D s1 C : : :C sn: Each vector �
1
j ; j > 1; is determined by an .j � 1/ -fold cyclic shift of

the coordinates of the first vector �1
1 D .�11 ; : : : ; �

1
n / W

�11 ! �12 ; : : : ; �1k ! �1kC1; : : : ; �
1
n ! �11 :

The limit ! -set �1
is a cyclic orbit of the dynamical system (16). It does not depend on the initial point

x D x.t0/ of the trajectory x.tN / and is completely determined by the source of external influence.

Proof. The proof is based on the analysis of the behavior of the coordinates xk.tN / as N ! 1: By using
(12), we arrive at the following evolution (sequence) of values of the first coordinate:

x11 D x1 C s1

z
D x1

z
C s1

z
;

x21 D x11 C s2

z
D x1

z2
C s1

z2
C s2

z
;

x31 D x21 C s3

z
D x1

z3
C s1

z3
C s2

z2
C s3

z
; (17)

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

xN1 D xN�1
1 C sN

z
D x1

zN
C s1

zN
C s2

zN�1 C : : :C sN

z
;

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
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The second coordinate has a similar evolution:

x12 D x2 C s2

z
;

x22 D x2

z2
C s2

z2
C s3

z
;

x32 D x2

z3
C s2

z3
C s3

z2
C s4

z
; (18)

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

xN�1
2 D x2

zN�1 C s2

zN�1 C : : :C sN

z
;

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

where, both in the first and second cases, the sequence sN cyclically repeats its values s1; : : : ; sn so that snCl D
sl ; l D 1; : : : ; n: Comparing (17) and (18), we conclude that, for any N;

xN1 � xN�1
2 D x1

zN
C s1

zN
� x2

zN�1 :

Since z > 1; we conclude that

lim
N!1

�
xN1 � xN�1

2

�
D 0:

Similarly, for all k < n;

lim
N!1

�
xNk � xN�1

kC1
�
D 0:

For k D n; in exactly the same way, we get

lim
N!1

�
xNn � xN�1

1

�
D 0:

Hence, for �1
k

WD xND1
k

; we obtain the following system of equations as N ! 1 W

�11 C s1

z
D �12 ; : : : ;

�1
k

C sk

z
D �1kC1; : : : ;

�1n C sn

z
D �11 :

One can easily get a solution of this system of equations

�11 D s1 C s2z C : : :C snz
n�1

zn � 1 ;

�12 D s2 C s3z C : : :C snz
n�2 C s1z

n�1

zn � 1 ;
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: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

�1k D sk C skC1z C : : :C sk�1zn�1

zn � 1 ;

�1n D sn C s1z C : : :C sn�1zn�1

zn � 1 :

We introduce a vector �1
1 D .�11 ; : : : ; �

1
n /: By using the explicit form of transformations T1; : : : ; Tn given

by Eqs. (12), we directly show that

.T 1�1
1 /k D

�1
k

C sk

z
D �1kC1; k < n:

Thus, for k D 1; we get

.T1�
1
1 /1 D

�11 C s1

z
D s1 C s2z C : : :C snz

n�1

.zn � 1/z C s1

z

D s1 C s2z C : : :C snz
n�1 C s1.z

n � 1/
.zn � 1/z D s2z C : : :C snz

n�1 C s1z
n

.zn � 1/z D �12 :

In particular, for k D n; we find

.T1�
1
1 /n D �1n C sn

z
D �1nC1 D �11 :

Hence, we have shown that T1�1
1 D �1

2 ; where

�1
2 WD .�12 ; : : : ; �

1
n ; �

1
1 /:

Similarly, T2�1
2 D �1

3 ; where the vector �
1
3 is formed by a single cyclic shift of the coordinates of the

vector �1
2 to the left. Further, we apply the transformation T3 to the vector �1

3 and successively continue these
actions. By construction, we return to the vector �1

1 D T n�1
n at the n th step.

Theorem 2 is proved.

The established result can be reformulated in the form of a different theorem with simpler proof by introducing
another dynamical system generated by a time-independent transformation. To this end, in the space RnC; we
construct a time-independent transformation T generating a dynamical system equivalent to (16) but in the other
coordinate system. For N D 0; we denote y0 D x0; y0

k
D x0

k
; k D 1; 2; : : : ; n; and, for N D 1; we define a

transformation T by the formulas

.Ty/k � y1k D
y0
kC1 C sk

1C s
; sk D s.˛ k/; k D 1; : : : ; n; (19)



MODEL OF A DYNAMICAL SYSTEM OF THE “FIRE–WATER” CONFLICT TYPE 561

where we set

y0nC1 D y01 for k D n:

By analogy with (19), for any N � 1; the coordinates of the vector yN are given by the formulas

.TNy/k � yNk D
yN�1
kC1 C sk

1C s
; yN�1

nC1 D yN�1
1 ; k D 1; : : : ; n: (20)

It turns out that, for any initial values of the coordinates y0
k
D x0

k
; a sequence of vectors yN converges to a

unique fixed point in the space RnC:

Theorem 3. Every trajectory fyN g1ND0 of the dynamical system generated by the transformation T ac-

cording to relations (19) and (20) converges in the space RnC to a fixed point specified by the vector

y1 D lim
N!1

TNy 8y 2 Rn

whose coordinates are determined solely by the collection of values s1; : : : ; sn of the source of external influence:

y1k D sk C skC1z C : : :C sk�1zn�1

zn � 1 � 1

zn � 1

n�1X

jD0
s.kCj /.modn/z

j ; k D 1; : : : ; n; (21)

where z D 1C s [see (14)]. In particular,

y11 D s1 C s2z C : : :C snz
n�1

zn � 1 ; y1n D sn C s1z C : : :C sn�1zn�1

zn � 1 :

Proof. By using relations (20), we conclude that, for large N; each coordinate yN
k

can be rewritten in the
form of the sum of two terms. The first term has the form y0

l
z�N ; l D 1; : : : ; n; and depends only on k and

N: It is clear that this term converges to zero because all jy0
l
j � 1 and z > 1: The second term is the sum of N

terms of the geometric progression with common ratio q D 1

zn
and the first term

ak D snz
�n C snC1z�nC1 C : : :C sk�1z�1;

where s0 D sn and snC1 D s1: As N ! 1; for yN
k
; we get a value from collection (21).

Theorem 3 is proved.

Example 2. Model of evolution of a dynamical systemwith cyclic replenishment and mixing (without conflict
interaction).

The trajectory of each vector p.tN /; r.tN / of the dynamical system (16) for any p.0/; r.0/ 2 RnC �
RnC converges to the cyclic orbit f�1; ‰1g with period n (see Fig 3). Here, ‰1 denotes the limit orbit for
fr.tN /g1ND0; which exists by virtue of Theorem 2.
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Fig. 3. Evolution and the limit cycle for any pair of coordinates in the phase space.

4. Existence of Cyclic Orbits in the General Case

In the general case, the evolution of the dynamical system (4) occurs under the influence of simultaneous
interactions of various nature: internal conflict interaction between the elements F and W; interaction with
an external source of influence upon the element F in the form of periodic replenishment, and the process of
migration described in terms of internal mixing of the distributions of element W over the regions. It turns out
that, in this case, almost all trajectories of the dynamical system asymptotically approach fixed cyclic orbits.

This result can be qualitatively explained as follows: According to Theorem 1, the presence of pure conflict
interaction between F and W guarantees the existence of the fixed limit values p1

k
and r1

k
for each pair of

coordinates pN
k
; rN

k
; k D 1; : : : ; n: The periodic external replenishment for F and the process of mixing for

W; which is also periodic, lead to fixed periodic shifts of the prelimiting values of these coordinates. In this case,
it is worth noting that the increments of these coordinates, in view of the repulsive conflict interaction between F
and W; are negligible as compared with the external influence and internal mixing. Hence, as a rule, all pairs of
coordinates pN

k
; rN

k
; k D 1; : : : ; n approach, as N ! 1; the same cyclic orbit obtained as a perturbation of

the ! -limit set f�1; ‰1g in Theorem 2.
For the exact formulation of this result, we consider a dynamical system

fpN ; rN g ¾�! fpNC1; rNC1g; p0; r0 2 RnC; N D 0; 1; : : : ; (22)

where the mapping ¾ is given by a collection of difference equations formulated in terms of the coordinates

pNC1
k

D
pN
k
.�N C 1 � rN

k
/C skCN

zp
;

(23)

rNC1
k

D
rN
k
.�N C 1 � pN

k
/C hkCN

zr
; k D 1; : : : ; n;
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with zp D 1C s and zr D 1Ch; where the sequences skCN and hkCN are periodic functions of discrete time:
sNCn D sN and hNCn D hN :

The computer simulation of numerous specific examples shows that every trajectory of the dynamical system
(22) given by mapping (23) approaches a certain limit cyclic orbit. Moreover, the projections of this orbit onto
the phase spaces of each pair of coordinates fpk; rk; k D 1; : : : ; ng have the same form. The theorem presented
below seems to be plausible but, most likely, hypothetical because, at present, its proof is, in fact, schematic.

Theorem 4. If all pairs of coordinates fpN
k
; rN
k
g; k D 1; : : : ; n; converge to the same cyclic orbit in a

plane, then the limit ! -set f�;‰g of the dynamical system (22) consists of a collection of 2n vectors: � D
f�j gnjD1; ‰ D f‰j gnjD1; �j ; ‰j 2 RnC: The coordinates of the first pair of vectors �1 D .�1; : : : ; �n/; ‰1 D
. 1; : : : ;  n/ are solutions of the system of 2n algebraic equations

�kC1 D
�k.� C 1 �  k/C sk

1C s
;

(24)

 kC1 D
 k.� C 1 � �k/C hk

1C h
; k D 1; : : : ; n;

where �nC1 D �1;  nC1 D  n; and � D †n
kD1�k k : Each pair of vectors �j ; ‰j ; 1 < j � n; is formed

by a cyclic shift of the coordinates of the first pair of vectors �1 and ‰1 by j � 1 steps to the left. Moreover, a

one-time shift of the coordinates of the vectors �n and ‰n gives �1 and ‰1; respectively.

Proof. The direct iteration of the coordinates pN
k

and rN
k

according to relations (23) shows that, for N D
MnC l; l D 1; : : : ; n; M D 1; 2; : : : ; each of these coordinates (in what follows, only pN

k
is investigated in

detail) can be represented in the form of two groups of terms with different types of behavior:

pNk D INk C…Nk ;

where

INk D
FN
k
.p; r/

zNp
; …Nk D

nX

jD1
SNkj ;

FN
k
.p; r/ is a polynomial of coordinates of the vectors p and r and, by virtue of the periodic properties of the

sequences sN and hN ; the quantity …N
k

is decomposed in a combination of partial sums SN
kj

of geometric
progressions with the same common ratio (that does not exceed one) and different first terms expressed via si and
hi ; i D 1; : : : ; n: It is easy to see that the values of FN

k
are uniformly bounded because all coordinates pk;

rk � 1: Hence,

lim
N!1

INk D 0; k D 1; : : : ; n;

because zp D 1C s > 1: In view of the fact that all geometric progressions used to form SN
kj

are convergent, we
conclude that the following limits exist:

�k D lim
M!1

…Mn
k ; k D 1; : : : ; n:
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A comprehensive analysis of the structure of the terms SN
kj

performed with regard for relations (23) gives the
following formulas for the terms …N

k
:

…N1 D …NC1
n ; …Nk D …NC1

k�1 ; k > 1: (25)

Hence, as Mn D N ! 1; by the assumption of the theorem, the limit values �k differ from the limit values
�1
k

in Theorem 2 by relatively small quantities called shifts and denoted by d�
k
: They are also sums of convergent

geometric progressions whose first terms are given by the products sk � hk and the products of initial coordinates
pk � rk : Similarly, we show that the limits

� lk D lim
M!1

…MnCl
k

; l D 1; : : : ; n � 1;

exist. Moreover, in view of (25), these limits cyclically depend on l: Hence, we conclude that the dependences of
the shifts d�

k
on the index l are also cyclic and

d
�

k
.l/ D d

�

kCl ; d
�
nC1 D d

�
1 : (26)

This means that the limit values � l
k
; k D 1; : : : ; n; l D 1; : : : ; n � 1; can be obtained by cyclic shifts of the

coordinates �k by l steps to the left

.�1; : : : ; �n/! .�l ; : : : ; �n; : : : ; �1; : : : ; �l�1/:

Note that relations (26), together with similar relations for the shifts d 
k
; form the exact mathematical for-

mulation of the assumption of the theorem on the unique form of orbit for each pair of coordinates. Thus, under
condition (26), the sequence pN1 converges, as N ! 1; to the limit ! -set, which forms a vector �1 with
coordinates .�1; : : : ; �n/; and the sequence pN

l
; 1 < l � n; converges to a similar limit ! -set, which forms a

vector �l with coordinates .�l ; : : : ; �n; : : : ; �1; : : : ; �l�1/:
By using similar reasoning and statements for the iteration of the coordinates rN

l
; we arrive at a system of

vectors ‰l ; which can be obtained, for 1 < l � n; by successive shifts of the coordinates of the first vector
‰1 D . 1; : : : ;  n/:

Thus, in terms of the limit vectors, one step of the transformation specified by Eqs. (23) yields the equality

T1�1 D �2;

where

.T1�1/k D .�2/k D �k.� C 1 � �k/C sk

1C s
; k D 1; : : : ; n:

Moreover, the coordinates of the vector �2 are formed by shifting the coordinates of the vector �1 to the left:

.�2/k D �kC1;

where �nC1 D �1: The coordinates .T1‰1/k satisfy a similar equality

.T1‰1/k D .‰2/k D  kC1:
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Fig. 4. Comparison of the evolutions and limit orbits.

In the second step, we get the vectors �3 and ‰3 . In the j th step, we find �j D Tj ı : : :ıT1�1 or, in terms
of the coordinates,

.Tj ı : : : ı T1�1/k D �kCj ; .Tj ı : : : ı T1‰1/k D  kCj ; j < n:

For j D n; we obtain

Tn ı : : : ı T1�1 D �1

or, in terms of coordinates,

.Tn ı : : : ı T1�1/k D �k; .Tn ı : : : ı T1‰1/k D  k :

Thus, we have proved that, as N ! 1; the vectors pN and rN approach a cyclic orbit with period equal
to the dimension of the space RnC W

f�1; ‰1g
T1! f�2; ‰2g

T2! : : :
Tn�1! f�n; ‰ng

Tn! f�1; ‰1g:

It is worth noting that the scalar product .�j ; ‰j / is independent of the index j D 1; : : : ; n: Hence, the index of
conflict � is a constant depending, generally speaking, on the initial pair of vectors fp; rg:

The fact that the coordinates of the limit vectors satisfy Eq. (24) directly follows from the explicit form of the
conflict mapping �:

Theorem 4 is proved.

Thus, in the general case where the dynamical system is defined by the mappings given by relations (23) and
condition (26) is satisfied, every trajectory fpN ; rN g converges in the space RnC to an ! -set formed by the cyclic
orbit f�;‰g: The invariance of this set under the generator � of the dynamical system follows from relations (24).
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Fig. 5. Typical form of the limit orbit.

Example 3. A model of dynamical system whose generator includes conflict interaction, cyclic replenish-
ment, and mixing.

For dynamical systems of conflict with external replenishment and internal mixing, fixed equilibrium states do
not exist. Every trajectory of this system approaches a cyclic orbit.

The influence of conflict interaction leads to the deformation of cyclic orbit in Example 2. In Fig. 4, we show
the trajectory of evolution and the limit orbit of the dynamical system with conflict interaction, cyclic replenish-
ment, and mixing (at the bottom) and compare it with the trajectory and the limit orbit of the dynamical system
without conflict interaction (at the top).

5. Computer Analysis

If the directions of replenishment and mixing are identical, then each pair of coordinates pN
k
; rN

k
; k D

1; : : : ; n; approaches the same fixed cyclic orbit (see Fig. 5). According to relations (24), the exact form of the
orbit depends on the quantities sk and hk .

A decrease in hk is accompanied by the deformation of orbits in some regions (see Fig. 6). Significant
deformation of orbits appears as a consequence of predominance of the conflict interaction.

In the case of the opposite directions of oscillations of replenishment and mixing, every pair of coordinates
pN
k

and rN
k

approaches its individual cyclic orbit (see Fig. 7). Moreover, the form of the orbit in each specific
region depends on the nonlocal conflict interaction.

A similar effect occurs in the case of constant (nonperiodic) mixing. Moreover, we can encounter the coordi-
nates r1j D 0 (see Fig. 8). The coordinate rNj approaches zero as a result of the minimization of mixing.

6. Open Questions

The aim of the present paper is to show that, in the elementary statement, the behavior of the trajectories of a
complex model used to describe the conflict interaction between abstract alternative elements F and W subjected
to the action of an external source of replenishment for F and a fixed law of internal mixing (migration) for W
is similar to the physical picture of redistribution of the thermal energy and moisture over the surface of a planet.
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Fig. 6. Effect of deformation of limit orbits.

To propose the law of conflict interaction, we assume that the heat (element F / and moisture (element W /
have, in a certain sense, the opposite alternative properties. This leads to a confrontational redistribution of their
initial weight factors in different regions of the common space. Nevertheless, this is only one of the causes of
formation of the dynamical picture. In the analyzed mathematical model, we also take into account the action of an
external energy source, which systematically replenishes the amount of heat in each conflict region according to a
certain law. Moreover, the total amount of thermal energy in the entire space remains constant in the mean due to
natural dissipation. Mathematically, this is guaranteed by the normalization in each step of conflict transformation.

It is worth noting that the source of external action disturbs possible compromise equilibrium between the
alternative elements and, in particular, leads to the moisture transfer from high-temperature regions into colder
regions. In the model, this is maintained by the procedure of internal mixing.

In the constructed model, the general mathematical mechanism of conflict interaction [see (5)] between the
analogs of the thermal energy (element F / and water ( element W / is, in fact, described in terms of conditional
probabilities of the presence of these elements in each region of the closed space (disk). Moreover, we take into
account only some most important (in our opinion) causes of redistribution of the alternative elements over different
regions. Clearly, the main “engine” of the evolution of dynamical picture is the external energy source acting upon
the element F: However, without additional mechanism of internal mixing (migration) for the element W; e.g.,
due to the wind, the evolution of the system becomes fairly primitive, e.g., it is possible that the entire amount of
W is concentrated in a single region.

The above-mentioned causes of redistribution are taken into account in three stages. Thus, in Sec. 2, we study
a simple abstract version of dynamical system with pure conflict interaction of the “minus–minus” type. We prove
the theorem on the evolution behavior of the system and the existence of limit equilibrium state for each trajectory.
The exact values of compromise distributions are described in terms of initial states.

In Sec. 3, we investigate the model of two independent subsystems without conflict interaction but with peri-
odic external action. It is shown that every trajectory of this system asymptotically approaches a fixed cyclic orbit
independent of the initial point. The limit orbit is completely determined by the source of external action, and only
the presence of conflict interaction between the subsystems affects its limit behavior.
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Fig. 7. Different forms of the limit orbits.

In Sec. 4, we show that the existence of cyclic orbits and the fact that the trajectories of a dynamical system
approach these orbits remains true in the general case, where all three causes of redistribution of the elements F
and W over different regions are taken into account. Clearly, in this case, the limit orbits depend on the initial
point (they are not attractors) and are sensitive to the ratio of intensities of the external actions upon F and W: In
particular, we observe the appearance of regions with specific behaviors untypical for the most regions. In the case
where the replenishment of the element F acts in the direction opposite to the migration mixing of the element
W; in almost all regions, we observe their specific limit cyclic orbits. To establish the exact characteristics of these
effects, it is necessary to perform additional investigations.

It is possible that the existence of cyclic orbits in Theorems 3 and 4 is a consequence of an abstract statement
of the theory of dynamical systems presented in our paper without proof. If the trajectories of dynamical systems
generated by the generators T1 and T2 in the same space converge to fixed limit states or cyclic orbits, then the
trajectories of the dynamical system generated by the generator T3 D T1 ı T2 also converge to a fixed state or to
a cyclic orbit.

We now recall the history of the problem of existence of cyclic orbits for dynamical systems in the plane

Px D f .x; y/; Py D g.x; y/:

It is connected with the 16th Hilbert problem, which has not been completely solved yet. In this direction, the
Poincaré–Bendixson theorem is of especial interest. This theorem guarantees the existence of cyclic orbits for
continuously differentiable functions f and g if the coordinates x.t/ and y.t/ are bounded and the equilibrium
point is absent.

Theorem 4 can be regarded as a generalization of the Poincaré–Bendixson theorem in the space RnC � RnC;
n � 2: Indeed, under additional conditions, Theorem 4 is reduced to the Poincaré–Bendixson theorem. Assume
that Eq. (23) has a unique solution for each pair of initial vectors p; r 2 RnC: Then, according to the implicit-
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Fig. 8. Forms of the orbits in the case of constant mixing.

function theorem, for each pair pi .t/; ri .t/; there exist functions fi .p; r/ and gi .p; r/ such that Eq. (23) can
be rewritten in the form

Ppi D fi .p; r/; Pri D gi .p; r/:

Under an additional assumption that these functions are differentiable, we conclude that closed cyclic orbits
exist.
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