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Yurii I. Samojlenko
(1932 – 2008)

The talk is devoted to the memory of Yurii Ivanovich Samojlenko.
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Studying tidal deceleration models in systems of cosmic objects,
Yu.I. Samojlenko (2006) formulated a boundary value problem the
functions u(x, y) and v(x, y) satisfying the following system of
equations:

∆2u(x, y)− ∂v(x, y)

∂x
= 0, ∆v(x, y) +

∂u(x, y)

∂x
= 0,

where ∆ := ∂2

∂x2 + ∂2

∂y2
is the two-dimensional Laplace operator.

It follows from this system that the functions u(x, y) and v(x, y)

satisfy the following equation:

∆3u(x, y) +
∂2u(x, y)

∂x2
= 0.
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An important achievement of mathematics is a description of plane
potential fields by means analytic functions of complex variable:

a potential u(x, y) and a flow function v(x, y) of plane stationary
potential solenoid field satisfy the Cauchy–Riemann conditions

∂u(x, y)

∂x
=

∂v(x, y)

∂y
,

∂u(x, y)

∂y
= −∂v(x, y)

∂x
,

and they form the complex potential
F (x+ iy) = u(x, y) + iv(x, y) being an analytic function of
complex variable x+ iy.

In turn, every analytic function F (x+ iy) satisfies
two-dimensional Laplace equation

∆2F :=
∂2F

∂x2
+

∂2F

∂y2
≡ F ′′(x+ iy)

(

12 + i2
)

= 0

owing to the equality 12 + i2 = 0 for the unit 1 and the
imaginary unit i of the algebra of complex numbers.
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Analytic function methods in C for plane potential fields inspire
searching analogous methods for spatial potential solenoid fields.

William Rowan Hamilton
(1806 – 1865)

Apparently, W. Hamilton (1843) made the first attempts to construct
an algebra associated with the three-dimensional Laplace equation

∆3u(x, y, z) :=

(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

u(x, y, z) = 0(1)

in that sense that components of hypercomlex functions satisfy Eq.
(1). However, the Hamilton’s quaternions form a noncommutative
algebra.
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Commutative harmonic algebras
Let A be a commutative associative Banach algebra of a rank n

(3 ≤ n ≤ ∞) over the field R or the field C.

{e1, e2, e3} — a part of the basis of A.
Denote ζ := xe1 + ye2 + ze3, where x, y, z ∈ R.

P.W. Ketchum (1928) discovered: if e1, e2, e3 satisfy the condition

e21 + e22 + e23 = 0 ,(2)

then for every analytic function Φ(ζ):

∆3Φ(ζ) ≡
∂2Φ

∂x2
+

∂2Φ

∂y2
+

∂2Φ

∂z2
≡ Φ′′(ζ) (e21 + e22 + e23) = 0 .

Definitions. We say that an algebra A is harmonic if in A there
exists a triad of linearly independent vectors {e1, e2, e3} satisfying
the equality (2) provided that e2k 6= 0 for k = 1, 2, 3. We say also that
such a triad {e1, e2, e3} is harmonic. Kiev, 2012 – p.6/28



Segre algebra of quaternions

Corrado Segre
(1863 – 1924)

Apparently, the first harmonic algebra was constructed by C. Segre
(1892). Indeed, in the Segre algebra of commutative quaternions
the multiplication table for the basis {1, i, j, k} is of the form:

i2 = j2 = −1 , k2 = 1 , i j = k , i k = −j , j k = −i ,

and there are harmonic triads, in particular: e1 =
√
2, e2 = i, e3 = j

for which e21 + e22 + e23 = 0. Kiev, 2012 – p.7/28



P.W. Ketchum (1928) considered the Segre algebra of
quaternions in its relations with the three-dimensional Laplace
equation: that means the satisfiability of the equalities

∆3Φ(ζ) ≡ Φ′′(ζ) (e21 + e22 + e23) = 0 , ζ = xe1 + ye2 + ze3 ,(3)

owing to the equality e21 + e22 + e23 = 0 .

I. Mel’nichenko (1975) noticed that doubly differentiable in the
sense of Gateaux functions form the largest class of functions
Φ(ζ) satisfying the identity (3).
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Differentiability in the sense of Gateaux
Denote E3 := {ζ := xe1 + ye2 + ze3 : x, y, z ∈ R}.
Definition. A function Φ : Q −→ A is differentiable in the sense

of Gateaux in every point of domain Q ⊂ E3 if for every ζ ∈ Q there

exists an element Φ′(ζ) ∈ A such that

lim
δ→0+0

[Φ(ζ + δh)− Φ(ζ)] δ−1 = Φ′(ζ)h ∀h ∈ E3 .

So, if the elements e1, e2, e3 satisfy the condition e21 + e22 + e23 = 0,

then every doubly differentiable in the sense of Gateaux function

Φ : Q −→ A satisfies in Q the equality

∆3Φ(ζ) ≡ Φ′′(ζ) (e21 + e22 + e23) = 0 , ζ = xe1 + ye2 + ze3 .

In turn, if there exists a doubly differentiable in the sense of Gateaux
function Φ : Q −→ A satisfying the equation ∆3Φ = 0 and the
inequality Φ′′(ζ) 6= 0 at least at one point ζ := xe1 + ye2 + ze3 ∈ Q,

then in this case e21 + e22 + e23 = 0. Kiev, 2012 – p.9/28





Such algebras are constructed for the three-dimensional Laplace
equation (I. Mel’nichenko (1975, 2003)) and the two-dimensional
biharmonic equation (V. Kovalev and I. Mel’nichenko (1981),
I. Mel’nichenko (1986) — (e21 + e22)

2 = 0, e21 + e22 6= 0 ) and
some other equations.

Inasmuch as differentiable in the sense of Gateaux functions
taking values in a commutative associative Banach algebra
form a functional algebra, note that a relation between these
functions and solutions of equations with partial derivatives
facilitates effective constructing of mentioned solutions.

It is quite natural that on such a way a quantity of fulfilled operations
will be minimal in an algebra of minimal rank.
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Three-dimensional harmonic algebras

Consider the problem on finding a three-dimensional harmonic
algebra A with the unit 1, in which there exists a harmonic basis
{e1, e2, e3} satisfying the following conditions

e21 + e22 + e23 = 0 , e2k 6= 0 for k = 1, 2, 3.

This problem was solved completely by I. Mel’nichenko (1975,
2003).

Theorem 1 (I. Mel’nichenko, 1975). There does not exist a
harmonic algebra of third rank with the unit over the field R.

I. Mel’nichenko (1975) constructed a three-dimensional harmonic
algebra over the field C.
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Three-dimensional harmonic algebras

I. Mel’nichenko (2003) found all three-dimensional harmonic
algebras (there are three exactly):

1) an algebra with 3 maximal ideals;
2) an algebra with 2 maximal ideals;
3) an algebra with 1 maximal ideals.

I. Mel’nichenko developed a method for finding all harmonic bases

in these algebras.
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Harmonic algebra A3

Let A3 be a three-dimensional commutative associative Banach
algebra over the field C with the basis {1, ρ1, ρ2} and
the multiplication table: ρ1ρ2 = ρ22 = 0, ρ21 = ρ2.

A3 have the unique maximal ideal I := {λ1ρ1 + λ2ρ2 : λ1, λ2 ∈ C}.

In A3 there exists a harmonic basis {e1, e2, e3}:

e1 = 1, e2 = i+ 2iρ2, e3 = 2ρ1

satisfying the conditions e21 + e22 + e23 = 0, e2k 6= 0 for k = 1, 2, 3.
Doing calculations, one can easy change the harmonic basis
{e1, e2, e3} into the basis {1, ρ1, ρ2} and back:

1 = e1, ρ1 =
1

2
e3, ρ2 = −1

2
e1 −

1

2
ie2.
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Harmonic algebra A3

{e1, e2, e3} — a harmonic basis in the algebra A3:

e1 = 1, e2 = i+ 2iρ2, e3 = 2ρ1 .

E3 := {ζ = xe1 + ye2 + ze3 : x, y, z ∈ R} — the linear space
generated by the vectors e1, e2, e3.
For a domain Ω ⊂ R

3 consider the domain

Ωζ := {ζ = xe1 + ye2 + ze3 : (x, y, z) ∈ Ω} ⊂ E3 congruent to Ω.

6

-
�

��	

O

z

y

x

q

R
3

Ω
(x, y, z)

6

-
�

��	

ze3

ye2

xe1

q

E3 Ωζ
ζ

ζ = xe1 + ye2 + ze3
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Monogenic functions

Definition. We say that a locally bounded function Φ : Ωζ → A3 is
monogenic in Ωζ if Φ is differentiable in the sense of Gateaux in
every point of Ωζ .

Necessary and sufficient conditions (Cauchy – Riemann conditions)
for monogenety of function Φ(ζ) of the variable ζ = xe1 + ye2 + ze3

are of the form (I. Mel’nichenko, 2003):

∂Φ

∂y
=

∂Φ

∂x
e2,

∂Φ

∂z
=

∂Φ

∂x
e3.
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ζ = xe1 + ye2 + ze3

e1 = 1

e2 = i+ 2iρ2
e3 = 2ρ1

I := {λ1ρ1 + λ2ρ2 : λ1, λ2 ∈ C}

ζ = xe1 + ye2 + ze3 ∈ E3 is
noninvertible in A3 if and only
if the point (x, y, z) is located
on the axis Oz

(the straight line {ze3 : z ∈ R} is contained in the maximal ideal I ).

Let the domain Ω ⊂ R
3 be convex in the direction of the axis

Oz (i.e. Ω contains every segment parallel to the axis Oz and
connecting two points (x1, y1, z1), (x2, y2, z2) ∈ Ω).
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ζ = xe1 + ye2 + ze3

ξ := f(ζ) = x+ iy

ξ = f(ζ) = f(ζ1) = f(ζ2)

f : A3 −→ C is the linear
functional such that f(e1) = 1,
f(e2) = i, f(e3) = 0.

Φ : Ωζ −→ A3 is monogenic.
A : Φ(ζ) 7−→ F (ξ) = f(Φ(ζ)),
where ζ = xe1 + ye2 + ze3 and ξ := f(ζ) = x+ iy

(we proved that the value F (ξ) does not depend of a choice of a
point ζ, for which f(ζ) = ξ ).

Φ is a monogenic function in Ωζ =⇒ F is an analytic function in the
domain D := f(Ωζ) ⊂ C.
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Monogenic functions
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Theorem 5 (S. Plaksa and V. Shpakivskyi, 2009). Every monogenic
function Φ in Ωζ can be expressed in the form

Φ(ζ) =
1

2πi

∫

γ

(te1 − ζ)−1F (t)dt+Φ0(ζ), ζ ∈ Ωζ , Φ0(ζ) ∈ I.

Here γ is an arbitrary closed Jordan rectifiable curve in D that

embraces the point f(ζ) (the spectrum of ζ).
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Monogenic functions

Φ(ζ) =
1

2πi

∫

γ

(te1 − ζ)−1F (t)dt+Φ0(ζ), ζ ∈ Ωζ , Φ0(ζ) ∈ I.

Thus, the algebra of monogenic functions is decomposed into the
direct sum of the algebra of principal extensions of analytic
functions and the algebra of monogenic functions taking values in
the maximal ideal I.
The principal extension of analytic function F : D → C into the
infinite cylinder Πζ := {ζ ∈ E3 : f(ζ) ∈ D} was constructed explicitly
(I. Mel’nichenko and S. Plaksa, 2008).
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Πζ

Πζ is an infinite cylinder.

1

2πi

∫

γ

F (t)(t− ζ)−1dt = F (ξ) + 2zF ′(ξ)ρ1 +
(

2iyF ′(ξ) + 2z2F ′′(ξ)
)

ρ2

∀ ζ = xe1 + ye2 + ze3 ∈ Πζ , where ξ := x+ iy .
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Monogenic functions

1

2πi

∫

γ

F (t)(t− ζ)−1dt = F (ξ) + 2zF ′(ξ)ρ1 +
(

2iyF ′(ξ) + 2z2F ′′(ξ)
)

ρ2

∀ ζ = xe1 + ye2 + ze3 ∈ Πζ , where ξ := x+ iy .

We described all monogenic functions taking values in the maximal
ideal I.
Theorem 6 (S. Plaksa and V. Shpakivskyi, 2009). Every monogenic
function Φ0 : Ωζ → I can be expressed in the form

Φ0(ζ) = F1(ξ) ρ1 +
(

F2(ξ) + 2zF ′

1(ξ)
)

ρ2

∀ζ = xe1 + ye2 + ze3 ∈ Ωζ ,

where F1, F2 are analytic in D and ξ = x+ iy.
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Monogenic functions
Thus, we obtain the following representation of monogenic function
Φ(ζ) for all ζ = xe1 + ye2 + ze3 ∈ Ωζ :

Φ(ζ) = F (x+ iy) +

(

F1(x+ iy) + 2zF ′(x+ iy)

)

ρ1+

+

(

F2(x+ iy) + 2zF ′

1(x+ iy) + 2iyF ′(x+ iy) + 2z2F ′′(x+ iy)

)

ρ2.

Using this representation, one can construct all monogenic

functions Φ : Ωζ → A3 by means arithmetic operations with arbitrary

complex-valued analytic functions F , F1, F2 given in the domain

D ⊂ C.
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We can write the following integral representation of monogenic
function Φ : Ωζ → A3 (Ω is convex in the direction of the axis Oz):

Φ(ζ) =
1

2πi

∫

γ

(

F (t) + ρ1F1(t) + ρ2F2(t)
)

(t− ζ)−1dt ,(5)

where the curve γ is the same as in the principal extension of F .
Using the integral representation (5), we obtain the following
expression for the Gateaux n-th derivative Φ(n):

Φ(n)(ζ) =
n!

2πi

∫

γ

(

F (t) + ρ1F1(t) + ρ2F2(t)
)(

(t− ζ)−1
)n+1

dt ∀ζ ∈ Ωζ .

The following statement is true for monogenic functions in an
arbitrary domain Ωζ .

Theorem 8 (S. Plaksa and V. Shpakivskyi, 2009). For every
monogenic function Φ : Ωζ → A3 in an arbitrary domain Ωζ , the
Gateaux n-th derivatives Φ(n) are monogenic in Ωζ for any n. Every
monogenic function Φ : Ωζ → A3 is differentiable in the sense of
Lorch. Kiev, 2012 – p.24/28



Differentiable functions
Comparison. A function Φ : Ωζ → A3 (where Ωζ ⊂ E3 ) is:

differentiable in the sense of Lorch if for every ζ ∈ Ωζ there
exists Φ′(ζ) ∈ A3 such that for every ε > 0 there exists
δ(ε) > 0 such that for all w with 0 < ‖w‖ < δ(ε):

∥

∥

∥

∥

Φ(ζ + w)− Φ(ζ)

‖w‖ − w

‖w‖Φ
′(ζ)

∥

∥

∥

∥

≤ ε ;

differentiable in the sense of Gateaux if for every ζ ∈ Ωζ there
exists Φ′(ζ) ∈ A3 such that for every ε > 0 and for every

h ∈ E3 there exists δ(ε, h) > 0 such that for all δ ∈
(

0, δ(ε, h)
)

:
∥

∥

∥

∥

Φ(ζ + δh)− Φ(ζ)

δ
− hΦ′(ζ)

∥

∥

∥

∥

≤ ε .

Φ is differentiable in the sense of Lorch =⇒ Φ is differentiable in the
sense of Gateaux.
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Cauchy integral formula

6

q

q

E3

e3

Ωζ ζ γζ

Theorem 9 (S. Plaksa and V. Shpakivskyi, 2009). Let Ω be a domain
convex in the direction of the axis Oz, and a function Φ : Ωζ → A3 is
monogenic in Ωζ . Then for every interior point ζ ∈ Ωζ the following
formula is true:

Φ(ζ) =
1

2πi

∫

γζ

Φ(τ) (τ − ζ)−1 dτ,

where γζ is an arbitrary closed Jordan rectifiable curve in Ωζ , which
once around the straight line {η = ζ + ze3 : z ∈ R}.
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Equivalent definitions of monogenic functions
For monogenic functions Φ(ζ) taking values in the algebra A3, we
proved analogs of Cauchy theorems for surface integral and
curvilinear integral. An analog of the Cauchy formula yields the
Taylor expansion of monogenic function in the usual way. An analog
of Morera theorem is also established.

Thus, as in the complex plane, for a continuous function Φ(ζ),
ζ = xe1 + ye2 + ze3 ∈ Ωζ ⊂ E3, the statements are equivalent:

Φ is a monogenic (differentiable in the sense of Gateaux)
function;

Cauchy – Riemann conditions
∂Φ

∂y
=

∂Φ

∂x
e2,

∂Φ

∂z
=

∂Φ

∂x
e3

are satisfied;

Φ is an analytic function (expanded into a power series);
∮

Φ(ζ) dζ = 0.
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The End
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