Textbooks/Monographs

1.           Pilipenko, A. (2014): An introduction to stochastic differential equations with reflection. Potsdam: Universitätsverlag, 2014. – ix, 75 S. graph. Darst. (Lectures in pure and applied mathematics 1);  ISSN (print) 2199-4951; ISSN (online) 2199-496X ISBN 978-3-86956-297-1.

2.           Gusak, D., Kukush, A., Kulik, A., Mishura, Y. and Pilipenko A. (2009): Theory of Stochastic Processes with Applications to Financial Mathematics and Risk Theory Series: Problem Books in Mathematics, Springer, 375 p. 6 illus., Hardcover ISBN: 978-0-387-87861-4.

3.           Nischenko, I. and Pilipenko, A. (2009): Probability theory and Mathematical Statistics.   Collection of problems for students of Kiev Polytechnic Institute, Kiev, “Polytechnika”. – 80p. (in Ukrainian).

4.           Gusak, D., Kukush, A., Kulik, A., Mishura, Y. and Pilipenko, A. (2008): Collection of problems on Theory of Stochastic Processes and its Applications, Kiev, VPC “Kiev University”, 398 p. (in Ukrainian).

5.           Gusak, D., Kulik, A., Mishura, Y. and Pilipenko, A. (2008): Collection of problems on Theory of Stochastic Processes and its Applications in Financial Mathematics and Risk Theory,   Kiev, VPC “Kiev University”, 287 p. (in Ukrainian).

6.           Globa, L.S., Dyadenko, O.M., Pilipenko, A, and Skulysh, M.A. Mathematical methods of analysis and control of telecommunication networks. Kiev, “Polytechnika”. – 284p. (Ukrainian),  2017.

 Eds.

A.A. Dorogovtsev, A. Kulik, A. Pilipenko, M.I. Portenko, A.N. Shiryaev. (Eds.) Selected works of Anatolii V. Skorokhod, 2016, Springer International Publishing, 391 p., ISBN : 9783319285078.

 

Articles in journals/contributions to books

1.             Kindermann S., Pereverzyev Jr S., Pilipenko A. (2018) The quasi-optimality criterion in the linear functional strategy. Inverse Problems.   – Vol. 34. –No. 7. – 075001, p. 1-24.

2.             Pilipenko, A. and Proske, F.N. (2018) On perturbations of an ODE with non-Lipschitz coefficients by a small self-similar noise. Statistics & Probability Letters. Volume 132, January 2018, 62-73.

3.             Pilipenko, A. and Proske, F.N. (2018) On a Selection Problem for Small Noise Perturbation in the Multidimensional Case.  Stochastics and Dynamics, v.18, no.6, 23 pages, doi 10.1142/S0219493718500454

4.             Iksanov, A., Pilipenko, A. and Samoilenko, I. (2017) Functional limit theorems for the maxima of perturbed random walks and divergent perpetuities in the M1 topology.   Extremes. September 2017, Volume 20, Issue 3,  567–583.

5.             Pilipenko, A. (2017) A functional limit theorem for excited random walks. Electronic Communications in Probability, vol. 22, paper no. 39, 9 pp.

6.             Pilipenko, A. and Khomenko, V.  (2017) On a limit behavior of a random walk with modifications upon each visit to zero. Theory of Stochastic Processes, vol. 22(38), no.1, 71-80.

7.             Aryasova, O. and Pilipenko, A. (2017) A representation for the derivative with respect to the initial data of the solution of an SDE with a non-regular drift. North-Western European Journal of Mathematics, vol 3, 1-40.  

8.             Mandrekar, V. and Pilipenko, A.  (2016) On a Brownian motion with a hard membrane. Statistics and Probability Letters, 113,   62-70.

9.             Bogachev, V.I. and Pilipenko, A. (2016) Strong solutions to stochastic equations with a Levy noise and a non-constant diffusion coefficient, Doklady Mathematics, 94 (1), 438 – 440.

10.         Pilipenko, A., Tantsiura, M. (2016) A limit theorem for countable systems of stochastic differential equations. Ukrainian Math. Journ., vol. 68, ¹ 10, 1380 – 1402.

11.         Iksanov, A. and Pilipenko, A. (2016) A functional limit theorem for locally perturbed random walks. Probability and Math. Stat. Vol. 36, No.2, 353-368.

12.         Pilipenko, A., Prykhodko, Yu. (2016) A limit theorem for singular stochastic differential equations. Modern Stochastics: Theory and Applications. Vol. 3, No. 3, 223-235.

13.         Bogachev, V.I. and Pilipenko, A. (2015): Strong solutions to stochastic equations with Lévy noise and a discontinuous drift coefficient, Doklady Mathematics, 92 (1), 471 – 475.

14.         Pilipenko, A. and Sakhanenko, L. (2015) On a limit behavior of one-dimensional random walk with non-integrable impurity.  Theory of Stochastic Processes, vol. 20(36), no.2, 97 – 104.

15.         Pilipenko, A. and Prykhodko, Yu. (2015): On a limit behavior of a sequence of Markov processes perturbed in a neighborhood of a singular point, Ukrainian mathematical journal, vol.67, No.4, 564583.

16.         Pilipenko, A. and Tantsiura M. (2014): On the strong existence and uniqueness to a solution of a countable system of SDEs with measurable drift, Theory of Stochastic Processes, vol. 19(35), no.2, 52 – 63.

17.         Aryasova, O. and Pilipenko, A. (2014): On differentiability of stochastic flow for à multidimensional SDE with discontinuous drift.  Electron. Commun. Probab., 19, No. 45, 1 – 17.

18.         Fang, S. and Pilipenko, A. (2014): Additive functionals and push forward measures under Veretennikov's flow. In: Festschrift Masatoshi Fukushima: In Honor of Masatoshi Fukushima's Sanju (Interdisciplinary Mathematical Sciences), World Scientific,163 – 178.

19.         Bogachev V., Pilipenko, A. and Shaposhnikov A. (2014): Sobolev functions on infinite-dimensional domains, Journal of Mathematical Analysis and Applications, Volume 419, Issue 2, 15 November, 1023 – 1044.

20.         Iksanov A. and Pilipenko, A. (2014): On the maximum of a perturbed random walk, Statistics & Probability Letters, Volume 92, September 2014, 168 – 172.

21.         Aryasova, O. and Pilipenko, A. (2014): On differentiability with respect to the initial data of a solution of an SDE with Lévy noise and discontinuous coefficients. Stochastics An International Journal of Probability and Stochastic Processes: formerly Stochastics and Stochastics Reports,  86(4), 643 – 654.

22.         Pilipenko, A. and Prykhodko, Yu. (2014): Limit behavior of a simple random walk with non-integrable jump from a barrier, Theory of Stochastic Processes. 19(35), no.1, 52 – 61.

23.         Bogachev, V., Pilipenko, A. and Rebrova, E. (2013): Classes of functions of bounded variation on infinite-dimensional domains. Dokl. Russian Acad. Sci. Vol. 451, No. 2, 127 – 131.

24.         Pilipenko, A. (2013): On differentiability of stochastic reflecting flow with respect to starting point, Communications on Stochastic Analysis, vol. 7, No. 1, 17 – 37.

25.         Pilipenko, A. and Cherdyntseva, V. (2013) Analysis of the Buffer’s Increment for the Billing. Bulletin of V.Karazin Kharkiv National University, series «Mathematical modeling. Information technology. Automated control systems», No. 1063, issue 22, 137-143.

26.         Pilipenko, A., Uryvskyi, L. and Trach, B. (2013): Asymptotic properties of self-similar traffic models based on discrete-time and continuous-time martingales, Telecommunication Sciences, ¹ 2, 19 – 21.

27.         Pilipenko, A. (2012): On existence and properties of strong solutions of one-dimensional stochastic equations with an additive Levy noise. Theory of Stochastic Processes, 18(34), no.2, 77 – 82.

28.         Dolzhenko M.N., Nosenko N.M., Globa L.S., Pilipenko, A., Prykhodko O.O. and Rudenko S.A. (2012): Patients’ prognosis after coronary artery bypass grafting. Medicines in Ukraine , ¹ 1 – 2 (9 - 10). – p. 33–39. (in Ukrainian)

29.         Aryasova, O. and Pilipenko, A. (2012): On properties of a flow generated by an SDE with discontinuous drift. Electronic Journal of Probability, v. 17, article 106, 1 – 20.

30.         Aryasova, O. and Pilipenko, A. (2011): On the strong uniqueness of a solution to singular stochastic differential equations. Theory of Stochastic Processes, vol.17(33), N 2, 1 – 15.

31.         Pilipenko, A. (2011): On properties of Brownian reflecting flow in a wedge, Theory of Stochastic Processes.17(33), no.1, 79 – 89.

32.         Pilipenko, A. and Prykhodko, Yu. (2011): On a limit behavior of symmetric random walks with membranes, Teor. Imovir. Mat. Stat. No. 85, 84 – 94 (Ukrainian); translation in Theory Probab. Math. Statist. No. 85 (2012).

33.         Pilipenko, A. (2011): On the Skorokhod mapping for equations with reflection and possible jump-like exit from a boundary, Ukrainian mathematical journal, Volume 63, Issue 9, 1415 – 1432.

34.         Bogachev, V., Korolev, A. and Pilipenko, A. (2010): Non uniform averaging in the ergodic theorem for stochastic flows, Doklady Mathematics, vol. 81, no. 3, 422 – 425.

35.         Aryasova, O. and Pilipenko, A. (2009): On simultaneous hitting of membrane by two skew Brownian motions. Theory of Stochastic Processes, vol. 15(31), N 1, 1 – 7.

36.         Aryasova, O. and Pilipenko, A. (2009): On Brownian motion on the plane with membranes on rays with a common endpoint. Random Oper. and Stoch. Equ., Vol. 17, No. 2, 137 – 156.

37.         Pilipenko, A. (2007): Liouville theorem and its generalizations, Mathematics today (Matematika Segodnya), vol. 13, 47 – 77 (in Russian).

38.         Pilipenko, A. (2006): On the generalized differentiability with initial data of a flow generated by a stochastic equation with reflection. (Ukrainian) Teor. Imovir. Mat. Stat. No. 75 (2006), 127—139; translation in Theory Probab. Math. Statist. No. 75 (2007), 147 – 160.

39.         Pilipenko, A. (2006): Transformation of Gaussian measure by infinite-dimensional stochastic flow, Random Oper. and Stoch. Equ., vol.14, No 3, 275 – 290.

40.         Pilipenko, A.  (2006): Functional central limit theorem for flows generated by stochastic equations with reflection, Nonlinear Oscillations, vol.9, ¹ 1, 85 – 97.

41.         Pilipenko, A. (2006):  Propagation of absolute continuity by a flow generated by stochastic equation with reflection, Ukrainian mathematical journal, vol.58, ¹ 12, 1663 – 1673.

42.         Pilipenko, A. (2006): Support theorem on stochastic flows with interaction, Theory of Stochastic Processes, vol. 12(28), No.1-2, 127 – 141.

43.         Pilipenko, A. (2006): Measure-Valued Diffusions and Corresponding Evolutionary Flows, Doklady Mathematics, vol. 73, No. 2, 245–247.

44.         Pilipenko, A. (2005): Measure-valued diffusions and continual systems of interacting particles in random media, Ukrainian mathematical journal, 57(9), 1507 – 1521.

45.         Pilipenko, A. (2005): Properties of the flows generated by stochastic equations with reflection, Ukrainian mathematical journal, ¹8, p.1069-1078.

46.         Pilipenko, A. (2005): Stochastic reflecting flows, Dopovidi Nats. Akad. Nauk Ukraini, ¹10, 23 – 29 (in Russian). (English translation available at arXiv:0810.4644)

47.         Mohammed, S. and Pilipenko, A. (2005): Absolute continuity of stationary measure-valued processes generated by stochastic equations with interaction, Theory of Stochastic Processes, vol.11(27), issue 1-2,   96 – 111.

48.         Pilipenko, A. (2004): Flows generated by stochastic equations with reflection, Random Oper. and Stoch. Equ., Vol. 12, No. 4,  389 – 396.

49.         Pilipenko, A. (2003): Transformation of measures in infinite-dimensional spaces by the flow induced by a stochastic dierential equation, Sbornik: Mathematics,  194:4, 551–573, (Matematicheski˘ı Sbornik 194:4 85–106).

50.         Pilipenko, A. (2003): Approximation theorem for stochastic differential equations with interaction. Random Oper. and Stoch. Equ., Vol. 11, No.3, 213 – 228.

51.         Pilipenko, A. (2002): Stroock and Varadhan theorem for flows generated by stochastic differential equations with interaction, Ukrainian mathematical journal, vol. 54, ¹2, 280 – 291.

52.         Pilipenko, A. (2001): Smoothness of distribution for solutions of SDE's with interaction, Theory of Stochastic Processes, vol.7(23), no. 3-4, 113 – 117.

53.         Pilipenko, A. (2001): Stationary measure-valued processes generated by a flow of interacted particles, Ukrainian Mathematical Congress, Proceedings, 123 – 130.

54.         Kulik, A. and Pilipenko, A. (2000): Nonlinear transformations of smooth measures on infinite-dimensional spaces, Ukrainian mathematical journal, v.52, no.9, 1403 – 1431.

55.         Pilipenko, A. (1999): The evolution of a system of particles and measure-valued processes, Theory of Stochastic Processes, vol. 5(21), no.3-4, 188 – 197.

56.         Alexandrova, D., Bogachev, V. and Pilipenko, A. (1999): On the convergence in the variation norm for the images of measures under differentiable mappings - C.R.Acad.Sci.Paris, t.328, Seria 1, 1055 – 1060.

57.         Alexandrova, D., Bogachev, V. and Pilipenko, A. (1999): On the convergence of induced measures in variation, Sbornik: Mathematics, vol.190, no.9, 1229 – 1245.

58.         Pilipenko, A. (1998): Convergence of random vectors distributions in variation.- Theory of Stochastic Processes, vol. 4(20), no.1-2,  238 – 251.

59.         Pilipenko, A. (1997): On existence and uniqueness for a solution of linear stochastic differential equation with respect to a logarithmic process, Ukrainian mathematical journal, v.49, no.6,  863 – 871.

60.         Pilipenko, A. (1997): Anticipative analogues of diffusion processes, Theory of Stochastic Processes, vol. 3(19), no.3-4, 363 – 372.

61.         Pilipenko, A. (1996): About properties of stochastic differential operator constructed by a group, Ukrainian mathematical journal, vol. 48, no.4, 563 – 568.

62.         Pilipenko, A. (1995): On locality of operators defined on the spaces of square integrated functions, Mathematics today (Matematika Segodnya), vol. 10, 26 – 41 (in Russian).

63.         Pilipenko, A. (1995): On local operators which are diagonal with respect to Hermite polynomial system, Ukrainian mathematical journal, vol. 47, no.4, 555 – 561.

64.         Pilipenko, A. (1995): On locality of the closure of differential operators, Theory of Stochastic Processes, vol. 1(17), no.1, 95 – 101 (in Russian).