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Abstract

The non-linear diffusion eqaution, describing the vertical transfer of both heat and
moisture in the absence of solutes are considered. Lie symmetries of the equation are
obtained for some specific form of diffusion coefficient.

The group properties of diffusion equation

∂u

∂t
+

∂

∂�x

[
D(u)

∂u

∂�x

]
= 0, (1)

(where u = u(�x, t), D(u) are real functions) describing nonlinear processes of heat con-
ductivity are investigated by many authors [1–3].

In the present paper we investigate a particular case of eq.(1), where u is vector function
and D(u) is a non-singular matrix, defining the diffusive properties of the soil. Recently,
such systems have been extensively studied, from both mathematical and biological view-
points [4, 5]. It is motivated by a successful application of these models to a wide range
of developmental and ecological systems. We will analyze symmetry properties of given
models.

Let us consider non-linear diffusion equation with sources

∂ua

∂t
− ∂

∂x

[
Kab(�u)

∂ub

∂�x

]
= Ma(�u), a, b = 1, 2, . . . , n, (2)

where Kab is a n-dimensional matrix.
Classical symmetry groups for coupled non-linear diffusion equation with Ma = 0 were

found in [6].
Let us rewrite eq.(2) in the form:
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− Kab ∂2ub

∂x2
− Ma = 0. (3)

The symmetry operator Q is defined by

Q = ξ1(x, t, �u)
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The prolongation operator of eq.(3) has the form
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where

ηa
1 = ηa

t + utηu − utξ
1
t − uxξ2

t − (ut)2ξ1
u − utuxξ2
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(6)

To find the invariance condition we act by Q
2
on the eq.(3).

As a result we obtain:
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(7)

Substituting into (7) explicit forms of ηa
1 , ηa

2 , ηa
22 and equating the coefficients of the

various partial derivatives we obtain the following defining equations:
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x = 0, (8)
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It follows from (8), (9) that

ξ1 = ξ1(t), ξ2 = ξ2(x, t).

Solving of eqs.(8)–(13) is a complicated problem. We consider some particular cases which
can find applications in mathematical biology.

Choosing

K11 = D, K12 = −B(u1)u1, K21 = 0, K22 = D, Ma = 0, (14)

we reduce eq.(3) to the following system:
{

u1
t = Du1

xx − Bu1u1
xu1u2

x − Bu1
xu2

x − Bu1u
2
xx,

u2
t = Du2

xx.
(15)
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Theorem 1.* The invariance algebra of system (15) is a 5-parameter algebra Lie whose
basis elements have a following form:

Q1 = ∂t, Q2 = ∂x, Q3 = ∂u2 ,
Q4 = B(u1)∂u1 , Q5 = x∂x + 2t∂t.

(16)

Proof. Substituting (14) into determing eqs.(8)–(13) we find the general solutions of ηa,
ξa (a = 1, 2):

η1 = C1B(u1)u1, η2 = C2,
ξ1 = 2C3t + C4, ξ2 = C3x + C5.

(17)

It is easily to verify using (17) and (4) that basis elements have the form (16).
In the case

Ma = 0, K = K(x, t) (18)

we come to

Theorem 2. Eq.(3), (18) invariant under 5-parameter Lie algebra, whose operator are:

Q1 = ∂t, Q2 = ∂x, Q3 = x∂x + 2t∂t,
Q4 = (K−1)abubx∂ua − 2t∂x, Q5 = (K−1)abub∂ua ,

(19)

iff a diffusion matrix K has a specific dependence on t, x:

K = K


 γt + σ(

γ

2
x + α

)2


 , (20)

where γ, α, δ are constants.

In the conclusion we consider a cell equation of the following general form:

nt + (nut)x = 0,
ρt + (ρut)x = 0,
µuxxt + uxx +

[
τn(ρ + γρxx)

]
x
= sρu,

(21)

where µ, τ , s are constants, n = n(t, x), u = u(t, x), ρ = ρ(t, x).
Using classical Lie methods [7] we obtained that system (21) is invariant under Heisen-

berg algebra H(1).
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