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P , T , C properties of the Poincaré invariant
equations for massive particles

W.I. FUSHCHYCH

Recently [1] we have shown that for free particles and antiparticles with mass
m > 0 and arbitrary spin s > 0, in the framework of the Poincaré group P (1, 3), there
exist three types of nonequivalent equations. In the present paper we study the P , T ,
C properties of these equations.

It will be convinient to investigate these properties in the canonical representation
where the Hamiltonian is diagonal (as matrix) and other operators (position operator
and spin operator) have adequate physical interpretation. For the transformation to
this representation let us make unitary transformation [2]

U
(

p, s =
1
2

)
= exp

[
π

4
Γ0H(8)

E

]
=

1√
2

(
1 +

Γ0H(8)

E

)
,

H(8) ≡ Γ0Γkpk, p4 ≡ m, k = 1, 2, 3, 4,

(1)

over the eight-component equation of the Dirac type

i
∂Ψ(8)(t,x)

∂t
= H(8)Ψ(8)(t,x). (2)

Equation (2) after the transformation (1) transfers into

i
∂Φ(8)(t,x)

∂t
= HcΦ(8)(t,x), Hc = Γ0E, Φ(8) = UΨ(8). (3)

In the canonical representation the generators of the P (1, 3) group have the form [2]

P0 = Hc = Γ0E, Pa = pa = −i
∂

∂xa
, a = 1, 2, 3,

Jab = Mab + Sab, Mab = xapb − xbpa,

J0a = x0pa − 1
2
[xa,Hc]+ − Γ0

Sabpb + S04m

E
, x0 ≡ t,

(4)

where Sab, S04 matrices are generators of the SO4 ∼ SU2 ⊗ SU2 group. On the
solutions {Φ(8)} of eq.(2) thhese matrices have form

Skl = S
(8)
kl =

i

4
(ΓkΓl − ΓlΓk), k, l = 1, 2, 3, 4.

The representation for the generators P (1, 3) in the form (4) differs from the Foldy–
Shirokov [3, 4] representation. In the form (4) it is explicity distinguished the fact that
in the space where a representation of the P (1, 3) group is given, also a representation
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of SO4 ∼ SU2⊗SU2 is realized. This follows, in particular, from the fact [Hc, Skl]− =
0, i.e. it means that the matrices

Sa =
1
2

(
1
2
εabcSbc + S4a

)
, Ta =

1
2

(
1
2
εabcSbc − S4a

)
,

commute with the Hamiltonian*. In other words this means that the space, where the
representation of P (1, 3) group is realized, must be characterized (besides the mass
m and the sign of the energy) by pair of indices s and τ

S2
aΦ = s(s + 1)Φ, T 2

a Φ = τ(τ + 1)Φ, s, τ =
1
2
, 1,

3
2
, . . . .

we shall denote by D±(s, 0) and D±(0, τ) the irreducible representation of P (1, 3)
group. For futher understanding it should be noted that the irreducible representations
D(s, 0) and D(s, 0) of SO4 group are indistinguishable with respect to the matrices
Sab from the SO3 algebra.

From the canonical eight-component equation (3) we can obtain the following
three types of nonequivalent four-component equations

i
∂Φa(t,x)

∂t
= HaΦa(t,x), a = 1, 2, 3, (5)

H1 = H2 = εγ0E, H3 = εE, ε = ±1, (6)

where γ0 is the hermitian and diagonal 4 × 4 matrix**. Under a transformation of
the P (1, 3) group the four-component wave functions Φ1, Φ2, Φ3 transform on the
representations (for the sake of brevity we consider only case ε = +1)

D+(s, 0) ⊕ D−(0, τ), s = τ =
1
2
, (7)

D+(s, 0) ⊕ D−(s, 0), s =
1
2
, τ = 0, (8)

D+(s, 0) ⊕ D+(0, τ), s = τ =
1
2
. (9)

On the manifolds {Φ1}, {Φ2}, {Φ3} the generators Pµ, Jαβ have the forms

P
(1)
0 = H1, P (1)

a = pa, J
(1)
ab = Mab + Sab,

J
(1)
0a = x0pa − 1

2
[xa,H1]+ − γ0

Sabpb + Sa4m

E
;

(10)

P
(2)
0 = H2, P (2)

a = pa, J
(2)
ab = Mab + Sab,

J
(2)
0a = x0pa − 1

2
[xa,H2]+ − γ0

Sabpb + 1
2εabcSbcm

E
;

(11)

*In fact, eq.(2) or (3) is invariant with respect to SO6 ⊃ SO4 group [2]. A relativistic equation of
motion for particle with spin 3

2
is invariant also with respect to the SO6 group.

**The fact that the H1 and H2 have identical forms in two eqs.(5) must not lead into confusion since the
equation of motion is defined completly if only we determine both the Hamiltonian and the representation
of P (1, 3) group.
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P
(3)
0 = H3 = E, P (3)

a = pa, J
(3)
ab = Mab + Sab,

J
(3)
0a = x0pa − 1

2
[xa, E]+ − Sabpb + Sa4m

E
≡ x0pa − xaE + S0a

H
E

,
(12)

where

H = γ0γkpk, Sµν =
i

4
(γµγν − γνγµ), µ = 0, 1, 2, 3, 4.

It should be noted that only in the last representation (12) the Hamiltonian H3 = E
is the positive-definite operator. If we add to the algebra (12) an operator of the
change Q = γ0, then such algebra (in the quantum mechanics framework) has the
same properties as the corresponding Poincaré algebra, obtained by the procedure of
the Dirac equation quantization.

It is well known [3] that there exist two nonequivalent definitions of the space-
reflection operator P :

P (1)Φ(t,x,m) = r1Φ(t,−x,m),
(
P (1)

)2

∼ 1, (13)

P (2)Φ(t,x,m) = r2Φ∗(t,−x,m),
(
P (2)

)2

∼ 1, (14)

[P (1), P0]− = 0 = [P (1), Jab]−, [P (1), Pa]+ = 0 = [P (1), J0a]+, (15)

[P (2), P0]+ = 0 = [P (2), Jab]+, [P (2), Pa]− = 0 = [P (2), J0a]−. (16)

Also there exist two nonequivalent definitions of the time-reflection T :

T (1)Φ(t,x,m) = t1Φ(−t,x,m),
(
T (1)

)2

∼ 1, (17)

T (2)Φ(t,x,m) = t2Φ∗(−t,x,m),
(
T (2)

)2

∼ 1, (18)

[T (1), P0]+ = 0 = [T (1), J0a]+, [T (1), Pa]− = 0 = [T (1), Jab]−, (19)

[T (2), P0]− = 0 = [T (2), J0a]−, [T (2), Pa]+ = 0 = [T (2), Jab]+. (20)

Besides these conditions usually imposed on the discrete operators P and T we
shall require also the subsidiary conditions

[X̂a, P (1)]+ = 0 = [P (2), X̂a]+, (21)

[T (1), X̂a]− = 0 = [T (2), X̂a]− (22)

to be satisfied where X̂a is a position operator. The conditions (21) and (22) guarantee
that quantities r1, r2, t1, t2 are the matrices which do not depend on the momentum.
If the conditions (21), (22) are not imposed, then the operators P and T may be
nonlocal (in this case the quantities depend on the momentum).

In addition to the discrete operators P and T we shall introduce some more discrete
operators:

MΦ(t,x,m) = rmΦ(t,x,−m), M2 ∼ 1, (23)
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MtΦ(t,x,m) = mtΦ(−t,x,−m), M2
t ∼ 1, (24)

MxΦ(t,x,m) = mxΦ(t,−x,−m), M2
x ∼ 1, (25)

[M,Pµ]− = 0 = [M,Jµν ]−, µ, ν = 0, 1, 2, 3, (26)

[Mt, P0]+ = 0 = [Mt, J0a]+, [Mt, Pa]− = 0 = [Mt, Jab]−, (27)

[Mx, P0]− = 0 = [Mx, Jab]−, [Mx, Pa]+ = 0 = [Mx, J0a]+, (28)

where rm, mt, mx are the 4 × 4 matrices.
There is no need to define specially the operator of the charge conjugation C since

it is equal to the operator T (1) · T (2) (or P (1) · P (2)).
If we use the explicit forms (10)–(28) for the generators Pµ and Jαβ and carrying

out the analysis of the conditions (13)–(28) we come to the following results:

1) Equation (5) for the function Φ1 (taking into consideration the representa-
tion (10)) is C, Mx, Mt, P (1)T (2) invariant, but P (1), P (2), T (2), M noni-
nvariant;

2) Equation (5) for the function Φ2 (taking into consideration the representa-
tion (11)) is P (2), T (1), Mx, P (1)T (2) invariant, but P (1), T (2), C, M , Mt

noninvariant*;
3) Equation (5) for the function Φ3 (taking into consideration the representa-

tion (12)) is P (1), T (2), M , Mx, P (1)T (2) invariant, but T (1), C, P (2), Mt

noninvariant.

These assertions may be proved also starting from eight-component equation (2)
(or (3)) in which constraints have been imposed on the wave function [1]. To establish
this it is necessary to analyse the commutation relations between the discrete opera-
tors and the projections P±

1 , P±
2 , P±

3 .

Note 1. It can be easily checked that

P (1)Sa = TaP (1), MSa = TaM, T (1)Sa = SaT (1). (29)

The transformation connecting the cannonical representations (10)–(12) and the Fol-
dy–Shirokov representation has the form

U1 =
m + E + γ4γapa

{2E(E + m)}1/2
. (30)

Note 2. If we put m = 0 in the reducible representation (4), then it reduces into the
following direct sum of the irreducible representation of the P (1, 3) algebra

D+

(
1
2
, 0

)
⊕ D−

(
0,

1
2

)
⊕ D−

(
1
2
, 0

)
⊕ D+

(
0,

1
2

)
→

→ D+

(
1
2
, 0

)
⊕ D+

(
−1

2
, 0

)
⊕ D−

(
0,

1
2

)
⊕ D−

(
0,−1

2

)
⊕

⊕D−
(

1
2
, 0

)
⊕ D−

(
−1

2
, 0

)
⊕ D+

(
0,

1
2

)
⊕ D+

(
0,−1

2

)
,

(31)

*In the coupling scheme, brought in ref. [1], the correction D+(s, 0)
C↔ D−(0, s) should be done.
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where members 1
2 and − 1

2 are the eigenvalues of the operators Sapa/E and Tapa/E.
These operators commute with the generators Pµ, Jαβ when m = 0. From (31) follows
that there exist 28 types of mathematical nonequivalent two-component equations for
massless particles.

Note 3. In order that Poincaré-invariant equation m �= 0 was totally P , T , C invariant
it is necessary and sufficient that the wave function was transformed on the following
direct sum of representation of P (1, 3)

D+(s, τ) ⊕ D−(s, τ) ⊕ D+(τ, s) ⊕ D−(τ, s), if τ �= s, (32)

D+(s, τ) ⊕ D−(s, τ), if τ = s. (33)

The representation D+(s, τ) is in general reducible with respect to the P (1, 3) algebra,
therefore the wave function describes a multiplet of particles with variable-spin, but
fixed mass. The spin of the multiplet can take the values from (s− τ) to (s + τ). The
equations of motion describing a physical system with variable-mass and variable-spin
were considered in ref. [5].
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