P, T, C properties of the Poincaré invariant equations for massive particles

W.I. FUSHCHYCH

Recently [1] we have shown that for free particles and antiparticles with mass $m>0$ and arbitrary spin $s>0$, in the framework of the Poincare group $P(1,3)$, there exist three types of nonequivalent equations. In the present paper we study the P, T, C properties of these equations.

It will be convinient to investigate these properties in the canonical representation where the Hamiltonian is diagonal (as matrix) and other operators (position operator and spin operator) have adequate physical interpretation. For the transformation to this representation let us make unitary transformation [2]

$$
\begin{align*}
& \mathcal{U}\left(p, s=\frac{1}{2}\right)=\exp \left[\frac{\pi}{4} \frac{\Gamma_{0} \mathcal{H}^{(8)}}{E}\right]=\frac{1}{\sqrt{2}}\left(1+\frac{\Gamma_{0} \mathcal{H}^{(8)}}{E}\right), \tag{1}\\
& \mathcal{H}^{(8)} \equiv \Gamma_{0} \Gamma_{k} p_{k}, \quad p_{4} \equiv m, \quad k=1,2,3,4,
\end{align*}
$$

over the eight-component equation of the Dirac type

$$
\begin{equation*}
i \frac{\partial \Psi^{(8)}(t, \boldsymbol{x})}{\partial t}=\mathcal{H}^{(8)} \Psi^{(8)}(t, \boldsymbol{x}) \tag{2}
\end{equation*}
$$

Equation (2) after the transformation (1) transfers into

$$
\begin{equation*}
i \frac{\partial \Phi^{(8)}(t, \boldsymbol{x})}{\partial t}=\mathcal{H}^{c} \Phi^{(8)}(t, \boldsymbol{x}), \quad \mathcal{H}^{c}=\Gamma_{0} E, \quad \Phi^{(8)}=U \Psi^{(8)} \tag{3}
\end{equation*}
$$

In the canonical representation the generators of the $P(1,3)$ group have the form [2]

$$
\begin{align*}
P_{0} & =\mathcal{H}^{c}=\Gamma_{0} E, \quad P_{a}=p_{a}=-i \frac{\partial}{\partial x_{a}}, \quad a=1,2,3 \\
J_{a b} & =M_{a b}+S_{a b}, \quad M_{a b}=x_{a} p_{b}-x_{b} p_{a}, \tag{4}\\
J_{0 a} & =x_{0} p_{a}-\frac{1}{2}\left[x_{a}, \mathcal{H}^{c}\right]_{+}-\Gamma_{0} \frac{S_{a b} p_{b}+S_{04} m}{E}, \quad x_{0} \equiv t
\end{align*}
$$

where $S_{a b}, S_{04}$ matrices are generators of the $S O_{4} \sim S U_{2} \otimes S U_{2}$ group. On the solutions $\left\{\Phi^{(8)}\right\}$ of eq.(2) these matrices have form

$$
S_{k l}=S_{k l}^{(8)}=\frac{i}{4}\left(\Gamma_{k} \Gamma_{l}-\Gamma_{l} \Gamma_{k}\right), \quad k, l=1,2,3,4 .
$$

The representation for the generators $P(1,3)$ in the form (4) differs from the FoldyShirokov [3, 4] representation. In the form (4) it is explicity distinguished the fact that in the space where a representation of the $P(1,3)$ group is given, also a representation

[^0]of $S O_{4} \sim S U_{2} \otimes S U_{2}$ is realized. This follows, in particular, from the fact $\left[\mathcal{H}^{c}, S_{k l}\right]_{-}=$ 0 , i.e. it means that the matrices
$$
S_{a}=\frac{1}{2}\left(\frac{1}{2} \varepsilon_{a b c} S_{b c}+S_{4 a}\right), \quad T_{a}=\frac{1}{2}\left(\frac{1}{2} \varepsilon_{a b c} S_{b c}-S_{4 a}\right)
$$
commute with the Hamiltonian*. In other words this means that the space, where the representation of $P(1,3)$ group is realized, must be characterized (besides the mass m and the sign of the energy) by pair of indices s and τ
$$
S_{a}^{2} \Phi=s(s+1) \Phi, \quad T_{a}^{2} \Phi=\tau(\tau+1) \Phi, \quad s, \tau=\frac{1}{2}, 1, \frac{3}{2}, \ldots
$$
we shall denote by $D^{ \pm}(s, 0)$ and $D^{ \pm}(0, \tau)$ the irreducible representation of $P(1,3)$ group. For futher understanding it should be noted that the irreducible representations $D(s, 0)$ and $D(s, 0)$ of $S O_{4}$ group are indistinguishable with respect to the matrices $S_{a b}$ from the SO_{3} algebra.

From the canonical eight-component equation (3) we can obtain the following three types of nonequivalent four-component equations

$$
\begin{align*}
& i \frac{\partial \Phi_{a}(t, \boldsymbol{x})}{\partial t}=\mathcal{H}_{a} \Phi_{a}(t, \boldsymbol{x}), \quad a=1,2,3 \tag{5}\\
& \mathcal{H}_{1}=\mathcal{H}_{2}=\varepsilon \gamma_{0} E, \quad \mathcal{H}_{3}=\varepsilon E, \quad \varepsilon= \pm 1 \tag{6}
\end{align*}
$$

where γ_{0} is the hermitian and diagonal 4×4 matrix ${ }^{* *}$. Under a transformation of the $P(1,3)$ group the four-component wave functions $\Phi_{1}, \Phi_{2}, \Phi_{3}$ transform on the representations (for the sake of brevity we consider only case $\varepsilon=+1$)

$$
\begin{array}{ll}
D^{+}(s, 0) \oplus D^{-}(0, \tau), & s=\tau=\frac{1}{2} \\
D^{+}(s, 0) \oplus D^{-}(s, 0), & s=\frac{1}{2}, \tau=0 \\
D^{+}(s, 0) \oplus D^{+}(0, \tau), & s=\tau=\frac{1}{2} \tag{9}
\end{array}
$$

On the manifolds $\left\{\Phi_{1}\right\},\left\{\Phi_{2}\right\},\left\{\Phi_{3}\right\}$ the generators $P_{\mu}, J_{\alpha \beta}$ have the forms

$$
\begin{align*}
P_{0}^{(1)}=\mathcal{H}_{1}, \quad P_{a}^{(1)}=p_{a}, \quad J_{a b}^{(1)}=M_{a b}+S_{a b} \\
J_{0 a}^{(1)}=x_{0} p_{a}-\frac{1}{2}\left[x_{a}, \mathcal{H}_{1}\right]_{+}-\gamma_{0} \frac{S_{a b} p_{b}+S_{a 4} m}{E} \tag{10}\\
P_{0}^{(2)}=\mathcal{H}_{2}, \quad P_{a}^{(2)}=p_{a}, \quad J_{a b}^{(2)}=M_{a b}+S_{a b} \\
J_{0 a}^{(2)}=x_{0} p_{a}-\frac{1}{2}\left[x_{a}, \mathcal{H}_{2}\right]_{+}-\gamma_{0} \frac{S_{a b} p_{b}+\frac{1}{2} \varepsilon_{a b c} S_{b c} m}{E} \tag{11}
\end{align*}
$$

[^1]\[

$$
\begin{align*}
P_{0}^{(3)} & =\mathcal{H}_{3}=E, \quad P_{a}^{(3)}=p_{a}, \quad J_{a b}^{(3)}=M_{a b}+S_{a b} \\
J_{0 a}^{(3)} & =x_{0} p_{a}-\frac{1}{2}\left[x_{a}, E\right]_{+}-\frac{S_{a b} p_{b}+S_{a 4} m}{E} \equiv x_{0} p_{a}-x_{a} E+S_{0 a} \frac{\mathcal{H}}{E} \tag{12}
\end{align*}
$$
\]

where

$$
\mathcal{H}=\gamma_{0} \gamma_{k} p_{k}, \quad S_{\mu \nu}=\frac{i}{4}\left(\gamma_{\mu} \gamma_{\nu}-\gamma_{\nu} \gamma_{\mu}\right), \quad \mu=0,1,2,3,4
$$

It should be noted that only in the last representation (12) the Hamiltonian $\mathcal{H}_{3}=E$ is the positive-definite operator. If we add to the algebra (12) an operator of the change $Q=\gamma_{0}$, then such algebra (in the quantum mechanics framework) has the same properties as the corresponding Poincaré algebra, obtained by the procedure of the Dirac equation quantization.

It is well known [3] that there exist two nonequivalent definitions of the spacereflection operator P :

$$
\begin{array}{ll}
P^{(1)} \Phi(t, \boldsymbol{x}, m)=r_{1} \Phi(t,-\boldsymbol{x}, m), & \left(P^{(1)}\right)^{2} \sim 1 \\
P^{(2)} \Phi(t, \boldsymbol{x}, m)=r_{2} \Phi^{*}(t,-\boldsymbol{x}, m), & \left(P^{(2)}\right)^{2} \sim 1 \\
{\left[P^{(1)}, P_{0}\right]_{-}=0=\left[P^{(1)}, J_{a b}\right]_{-},} & {\left[P^{(1)}, P_{a}\right]_{+}=0=\left[P^{(1)}, J_{0 a}\right]_{+}} \\
{\left[P^{(2)}, P_{0}\right]_{+}=0=\left[P^{(2)}, J_{a b}\right]_{+},} & {\left[P^{(2)}, P_{a}\right]_{-}=0=\left[P^{(2)}, J_{0 a}\right]_{-}} \tag{16}
\end{array}
$$

Also there exist two nonequivalent definitions of the time-reflection T :

$$
\begin{array}{ll}
T^{(1)} \Phi(t, \boldsymbol{x}, m)=t_{1} \Phi(-t, \boldsymbol{x}, m), & \left(T^{(1)}\right)^{2} \sim 1 \\
T^{(2)} \Phi(t, \boldsymbol{x}, m)=t_{2} \Phi^{*}(-t, \boldsymbol{x}, m), & \left(T^{(2)}\right)^{2} \sim 1 \\
{\left[T^{(1)}, P_{0}\right]_{+}=0=\left[T^{(1)}, J_{0 a}\right]_{+},} & {\left[T^{(1)}, P_{a}\right]_{-}=0=\left[T^{(1)}, J_{a b}\right]_{-},} \\
{\left[T^{(2)}, P_{0}\right]_{-}=0=\left[T^{(2)}, J_{0 a}\right]_{-},} & {\left[T^{(2)}, P_{a}\right]_{+}=0=\left[T^{(2)}, J_{a b}\right]_{+}} \tag{20}
\end{array}
$$

Besides these conditions usually imposed on the discrete operators P and T we shall require also the subsidiary conditions

$$
\begin{align*}
& {\left[\hat{X}_{a}, P^{(1)}\right]_{+}=0=\left[P^{(2)}, \hat{X}_{a}\right]_{+}} \tag{21}\\
& {\left[T^{(1)}, \hat{X}_{a}\right]_{-}=0=\left[T^{(2)}, \hat{X}_{a}\right]_{-}} \tag{22}
\end{align*}
$$

to be satisfied where \hat{X}_{a} is a position operator. The conditions (21) and (22) guarantee that quantities $r_{1}, r_{2}, t_{1}, t_{2}$ are the matrices which do not depend on the momentum. If the conditions (21), (22) are not imposed, then the operators P and T may be nonlocal (in this case the quantities depend on the momentum).

In addition to the discrete operators P and T we shall introduce some more discrete operators:

$$
\begin{equation*}
M \Phi(t, \boldsymbol{x}, m)=r_{m} \Phi(t, \boldsymbol{x},-m), \quad M^{2} \sim 1 \tag{23}
\end{equation*}
$$

$$
\begin{align*}
& M_{t} \Phi(t, \boldsymbol{x}, m)=m_{t} \Phi(-t, \boldsymbol{x},-m), \quad M_{t}^{2} \sim 1 \tag{24}\\
& M_{x} \Phi(t, \boldsymbol{x}, m)=m_{x} \Phi(t,-\boldsymbol{x},-m), \quad M_{x}^{2} \sim 1 \tag{25}\\
& {\left[M, P_{\mu}\right]_{-}=0=\left[M, J_{\mu \nu}\right]_{-}, \quad \mu, \nu=0,1,2,3} \tag{26}\\
& {\left[M_{t}, P_{0}\right]_{+}=0=\left[M_{t}, J_{0 a}\right]_{+}, \quad\left[M_{t}, P_{a}\right]_{-}=0=\left[M_{t}, J_{a b}\right]_{-}} \tag{27}\\
& {\left[M_{x}, P_{0}\right]_{-}=0=\left[M_{x}, J_{a b}\right]_{-}, \quad\left[M_{x}, P_{a}\right]_{+}=0=\left[M_{x}, J_{0 a}\right]_{+}} \tag{28}
\end{align*}
$$

where r_{m}, m_{t}, m_{x} are the 4×4 matrices.
There is no need to define specially the operator of the charge conjugation C since it is equal to the operator $T^{(1)} \cdot T^{(2)}$ (or $P^{(1)} \cdot P^{(2)}$).

If we use the explicit forms (10)-(28) for the generators P_{μ} and $J_{\alpha \beta}$ and carrying out the analysis of the conditions (13)-(28) we come to the following results:

1) Equation (5) for the function Φ_{1} (taking into consideration the representation (10)) is $C, M_{x}, M_{t}, P^{(1)} T^{(2)}$ invariant, but $P^{(1)}, P^{(2)}, T^{(2)}, M$ noninvariant;
2) Equation (5) for the function Φ_{2} (taking into consideration the representation (11)) is $P^{(2)}, T^{(1)}, M_{x}, P^{(1)} T^{(2)}$ invariant, but $P^{(1)}, T^{(2)}, C, M, M_{t}$ noninvariant ${ }^{*}$;
3) Equation (5) for the function Φ_{3} (taking into consideration the representation (12)) is $P^{(1)}, T^{(2)}, M, M_{x}, P^{(1)} T^{(2)}$ invariant, but $T^{(1)}, C, P^{(2)}, M_{t}$ noninvariant.
These assertions may be proved also starting from eight-component equation (2) (or (3)) in which constraints have been imposed on the wave function [1]. To establish this it is necessary to analyse the commutation relations between the discrete operators and the projections $P_{1}^{ \pm}, P_{2}^{ \pm}, P_{3}^{ \pm}$.
Note 1. It can be easily checked that

$$
\begin{equation*}
P^{(1)} S_{a}=T_{a} P^{(1)}, \quad M S_{a}=T_{a} M, \quad T^{(1)} S_{a}=S_{a} T^{(1)} \tag{29}
\end{equation*}
$$

The transformation connecting the cannonical representations (10)-(12) and the Fol-dy-Shirokov representation has the form

$$
\begin{equation*}
U_{1}=\frac{m+E+\gamma_{4} \gamma_{a} p_{a}}{\{2 E(E+m)\}^{1 / 2}} \tag{30}
\end{equation*}
$$

Note 2. If we put $m=0$ in the reducible representation (4), then it reduces into the following direct sum of the irreducible representation of the $P(1,3)$ algebra

$$
\begin{align*}
& D^{+}\left(\frac{1}{2}, 0\right) \oplus D^{-}\left(0, \frac{1}{2}\right) \oplus D^{-}\left(\frac{1}{2}, 0\right) \oplus D^{+}\left(0, \frac{1}{2}\right) \rightarrow \\
& \rightarrow D^{+}\left(\frac{1}{2}, 0\right) \oplus D^{+}\left(-\frac{1}{2}, 0\right) \oplus D^{-}\left(0, \frac{1}{2}\right) \oplus D^{-}\left(0,-\frac{1}{2}\right) \oplus \tag{31}\\
& \oplus D^{-}\left(\frac{1}{2}, 0\right) \oplus D^{-}\left(-\frac{1}{2}, 0\right) \oplus D^{+}\left(0, \frac{1}{2}\right) \oplus D^{+}\left(0,-\frac{1}{2}\right)
\end{align*}
$$

*In the coupling scheme, brought in ref. [1], the correction $D^{+}(s, 0) \stackrel{C}{\hookrightarrow} D^{-}(0, s)$ should be done.
where members $\frac{1}{2}$ and $-\frac{1}{2}$ are the eigenvalues of the operators $S_{a} p_{a} / E$ and $T_{a} p_{a} / E$. These operators commute with the generators $P_{\mu}, J_{\alpha \beta}$ when $m=0$. From (31) follows that there exist 28 types of mathematical nonequivalent two-component equations for massless particles.
Note 3. In order that Poincaré-invariant equation $m \neq 0$ was totally P, T, C invariant it is necessary and sufficient that the wave function was transformed on the following direct sum of representation of $P(1,3)$

$$
\begin{align*}
& D^{+}(s, \tau) \oplus D^{-}(s, \tau) \oplus D^{+}(\tau, s) \oplus D^{-}(\tau, s), \quad \text { if } \quad \tau \neq s, \tag{32}\\
& D^{+}(s, \tau) \oplus D^{-}(s, \tau), \quad \text { if } \quad \tau=s . \tag{33}
\end{align*}
$$

The representation $D^{+}(s, \tau)$ is in general reducible with respect to the $P(1,3)$ algebra, therefore the wave function describes a multiplet of particles with variable-spin, but fixed mass. The spin of the multiplet can take the values from $(s-\tau)$ to $(s+\tau)$. The equations of motion describing a physical system with variable-mass and variable-spin were considered in ref. [5].

1. Fushchych W.I., Lett. Nuovo Cimento, 1972, 4, 344.
2. Fushchych W.I., Theor. Math. Phys., 1971, 7, 3; Preprint ITF-70-32, Kyiv, 1970.
3. Foldy L.L., Phys. Rev., 1956, 102, 568.
4. Shirokov Yu.M., Zurn. Eksp. Teor. Fiz., 1957, 33, 1196.
5. Fushchych W.I., Theor. Math. Phys., 1970, 4, 360; Preprint ITF-70-4, Kyiv, 1970; Fushchych W.I., Krivsky I.Yu., Nucl. Phys. B, 1969, 14, 573.

[^0]: Lettere al Nuovo Cimento, 1973, 6, № 4, P. 133-137.

[^1]: *In fact, eq.(2) or (3) is invariant with respect to $S O_{6} \supset S O_{4}$ group [2]. A relativistic equation of motion for particle with spin $\frac{3}{2}$ is invariant also with respect to the S_{6} group.
 ${ }^{* *}$ The fact that the \mathcal{H}_{1} and \mathcal{H}_{2} have identical forms in two eqs.(5) must not lead into confusion since the equation of motion is defined completly if only we determine both the Hamiltonian and the representation of $P(1,3)$ group.

