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On some new exact solutions of nonlinear
d’Allembert and Hamilton equations
W.I. FUSHCHYCH, R.Z. ZHDANOV

Some new exact solutions of d’Allembert–Hamilton and d’Allembert equations are obtai-
ned. The necessary conditions of integrability of over-determined d’Allembert–Hamilton
system of nonlinear differential equations are established.

1. It was the Euler’s idea (1734–1740 y.) that problem of integrating partial di-
fferential equations (PDE) could be solved by reducing them to ordinary equations
(ODE). But one can not apply this idea to arbitrary PDE. Therefore it was suggested
by Fushchych [4, 5] to restrict oneself by PDE possessing wide symmetry groups.
This program was realized for some nonlinear wave equations by Fushchych and
Serov [7], Fushchych and Shtelen [8] and Fushchych and Zhdanov [9] (see also [1,
11, 12]). The vast list of references on this point can be found in Fushchych and
Nikitin [6].

When reducing PDE to ODE one has always to deal with the problem of investi-
gating compatibility of some systems of PDE. For example, nonlinear d’Allembert
equation

�u = F1(u), � = ∂2
x0

− ∂2
x1

− ∂2
x2

− ∂2
x3

(1)

with the aid of ansatz [4]

u = ϕ(ω), ω = ω(x0, x1, x2, x3), (2)

is reduced to the ODE having variable coefficients [7]

ωµωµϕ̈ + �ωϕ̇ = F1(ϕ), (3)

where ωµ ≡ ∂ω
∂xµ

, µ = 0, 3, ϕ̇ ≡ dϕ
dω . Hereafter the summation over repeated indices

in Minkowsky space having the metric gµν = diag (1,−1,−1,−1) is supposed, i.e.
ωµωµ ≡ gµνωµων = ω2

0 − ω2
1 − ω2

2 − ω2
3 .

We demand new variable ω to satisfy d’Allembert and Hamilton equations simul-
taneously

�ω = F2(ω), (4)

ωµωµ = F3(ω). (5)

As a result equation (3) takes the form

F3(ω)ϕ̈ + F2(ω)ϕ̇ = F1(ϕ). (6)

Winternitz and collaborators (see [1, 11]) construct new variables ω by using
subgroup structure of the Poincaré group P (1, 3). One can be easily convinced that
invariants obtained in this way satisfy system (4), (5).
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So to obtain set of variables ω making possible to reduce multi-dimensional PDE
(1) to ODE one has to consider the problem of compatibility of system (4), (5) and
then to integrate it.

In the present paper compatibility of equations (4), (5) is investigated, i.e. all
smooth functions ensuring the compatibility of d’Allembert–Hamilton system are
described.

The direct application of Cartan’s method of investigation of compatibility of over-
determined PDE [2] is rather difficult. To avoid arising difficulties we essentially use
symmetry properties of system (4), (5) [7, 8].

System (4), (5) via the change of dependent variable z = z(ω) can be reduced to
the following system

�ω = F (ω), (7)

ωµωµ = λ, λ = const, (8)

ODE (6) taking the form

λϕ̈ + F (ω)ϕ̇ = F1(ϕ). (9)

Before formulating the principal result of the paper we adduce without proof some
auxiliary statements.

Lemma 1. Solutions of system (7), (8) satisfy the identities

ωµν1ω
µν1 = −λḞ (ω),

ωµν1ω
ν1ν2ωµ

ν2
=

1
2!

λ2Ḟ (ω),

ωµν1ω
ν1ν2 ω̈νnµ =

1
n!

(−λ)n dnF (ω)
dωn

, n ≥ 0,

(10)

where ωαβ ≡ ∂2ω
∂xα∂xβ

, α, β = 0, 3.

Lemma 2. Solutions of the system (7), (8) satisfy the following equality:

det(ωµν) = 0. (10′)

Let us now formulate the principal statement.

Theorem 1. The necessary condition of compatibility of overdetermined system (7),
(8) is as follows

F (ω) =




0,

λ(ω + C1)−1,

2λ(ω + C1)[(ω + C1)2 + C2]−1,

3λ((ω + C1)2 + C2)[(ω + C1)3 + 3C2(ω + C1) + C3]−1,

(11)

where C1, C2, C3 are arbitrary constants.
Proof. By direct (and rather tiresome) verification one can be convinced that the
following identity holds

6(ωµν1ω
ν1ν2ων2ν3ω

ν3µ) − 8(ωµ
µ)(ωµν1ω

ν1ν2ωµ
ν2

) −
− 3(ωµν1ω

µν1)2 + 6(ωµ
µ)2(ωµν1ω

µν1) − (ωµωµ)4 = 24det(ωµν).
(12)



New exact solutions of nonlinear d’Allembert and Hamilton equations 369

Substituting (10), (10′) into (12) one obtains nonlinear ODE for F (ω)

λ3
...

F + 4λ2F
...

F + 3λ2Ḟ 2 + 6λḞF 2 + F 4 = 0, (13)

where Ḟ ≡ dF
dω .

General solution of equation (13) is given by formulae (11). Theorem is proved.

Note 1. Compatibility of three-dimensional d’Allembert–Hamilton system has been
investigated in detail by Collins [3]. Collins essentially used geometrical methods
which could not be generalized to higher dimensions.

Using Lie’s method (see e.g. [10]) one can prove the following statement.

Theorem 2. The sytem of PDE (7), (8) is invariant under the 15-parameter confor-
mal group C(1, 3) iff

F (ω) = 3λ(ω + C)−1, λ > 0, C = const. (14)

Note 2. Formula (14) can be obtained from (11) by putting C2 = C3 = 0. So Theo-
rem 2 demonstrates close connection between compatibility of a system of PDE and
its symmetry.

Note 3. It is common knowledge that PDE (7) is invariant under the group C(1, 3)
iff F (ω) = λω3 [7]. Consequently, an additional constraint (8) changes essentially
symmetry properties of d’Allembert equation (choosing F3(ω) in a proper way one
can obtain conformally-invariant system of the form (4), (5) under arbitrary F2(ω)).

2. Let us list explicit form of some exact solutions of d’Allembert–Hamilton system
and reduced ODE for function ϕ(ω).

№ λ F (ω) ω = ω(x) ODE for ϕ(ω)

1. 1 0 aµxµ ϕ̈ = F1(ϕ)

2. 1 ω−1
[
(aµxµ)2 − (bµxµ)2

]1/2
ϕ̈ + ω−1ϕ̇ = F1(ϕ)

3. 1 2ω−1
[
(aµxµ)2 − (bµxµ)2 − (cµxµ)2

]1/2
ϕ̈ + 2ω−1ϕ̇ = F1(ϕ)

4. 1 3ω−1 (xµxµ)1/2 ϕ̈ + 3ω−1ϕ̇ = F1(ϕ)
5. −1 0 (bµxµ) cos h1 + (cµxµ) sin h1 + g1 ϕ̈ = −F1(ϕ)

aµxµ − (bµxµ) cos h2 −
− (cµxµ) sin h2 − g2 = 0

6. −1 −ω−1
[
(bµxµ + h1)2 + (cµxµ + h2)2

]1/2
ϕ̈ + ω−1ϕ̇ = −F1(ϕ)

7. −1 −2ω−1
[
(bµxµ)2 + (cµxµ)2 + (dµxµ)2

]1/2
ϕ̈ + 2ω−1ϕ̇ = −F1(ϕ)

8. 0 0 h1 0 = F1(ϕ)

Here h1, g1 are arbitrary smooth functions on aµxµ +dµxµ, h2, g2 — on ω+dµxµ;
aµ, bµ, cµ, dµ are arbitrary real parameters satisfying conditions of the form

−aµaµ = bµbµ = cµcµ = dµdµ = −1,

aµbµ = aµcµ = aµdµ = bµcµ = bµdµ = cµdµ = 0.
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3. Natural generalization of the formula (2) is given by ansatz of the form [4]

u(x) = f(x)ϕ(ω). (15)

Some multi-parameter families of exact solutions of nonlinear d’Allembert equation
with nonlinearity F1 = τuk, τ, k = const, were constructed with the help of ansatz
(15) by Fushchych and Serov [7].

Omitting intermediate calculations we write down new family of solutions of
equation (1) under F1 = τuk obtained via ansatz (15)

u(x) = R−1

[
C6 +

1
2
τ(1 − k)2

∫
R1−k(ω)dω

]1/(1−k)

×

×
{

1
2
(aµxµ − dµxµ) − 1

2
ṘR−1

[
(bµxµ)2 + (cµxµ)2

]
+

+ f0

[
(bµxµ)2 − (cµxµ)2

]
+ f1bµxµ + f2

}1/(1−k)

,

where

f0(ω) =
1
2
C1R

−2(ω),

f1(ω) =
1
2
C4R(ω) exp

{
4C1

∫
R−2(ω)dω

}
,

f2(ω) = C4

∫
R(ω) exp

{
4C1

∫
R−2(ω)dω

}
dω + C5,

and ω = aµxµ + dµxµ, C1, . . . , C6 = const.
Function R = R(ω) is determined by formulae

R(ω) =




ε

2
[
(C2ω + C3)2 − 16C2

1

]1/2
,

(8εC1ω + C2)1/2, ε = ±1.

1. Beckers J., Patera J., Winternitz P., J. Math. Phys., 1977, 18, 72–83.

2. Cartan E., Les systèmes differentiels extérieurs et leur applications scientifiques, Paris, Hermann,
1946.

3. Collins C.B., Proc. Cambr. Phyl. Soc., 1976, 80, 165–172.

4. Fushchych W.I., The symmetry of mathematical physics problems, in Algebraic-theoretical studies
in mathematical physics, Kiev, Institute of Mathematics, 1981, 6–28.

5. Fushchych W.I., On symmetry and some exact solutions of some many-dimensional equations of
mathematical physics, in Theoretical-algebraic methods in mathematical physics problems, Kiev,
Institute of Mathematics, 1983, 4–23.

6. Fushchych W.I., Nikitin A.G., Symmetries of Maxwell’s equations, Dordrecht, D. Reidel Publ.
Comp., 1987.

7. Fushchych W.I., Serov N.I., The symmetry and some exact solutions of the nonlinear multidimen-
sional Liouvile, d’Alambert and eikonal equations, J. Phys. A: Math. Gen., 1983, 16, 3645–3656.



New exact solutions of nonlinear d’Allembert and Hamilton equations 371

8. Fushchych W.I., Shtelen W.M., Conformal symmetry and new exact solutions of SU2 Yang–Mills
theory, Lett. Nuovo Cim., 1982, 34, 498–502.

9. Fushchych W.I., Zhdanov R.Z., On some exact solutions of a system of non-linear differential
equations for spinor and vector fields, J. Phys. A: Math. Gen., 1987, 20, 4173–4190.

10. Olver P.J., Applications of Lie groups to differential equations, Springer-Verlag, New York, 1986.

11. Patera J., Winternitz P., Zassenhaus H., Continuous subgroups of fundamental group of physics. I.
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