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Continuous subgroups of the generalized
Schrödinger groups
L.F. BARANNIK, W.I. FUSHCHYCH

Some general results on the subalgebras of the Lie algebra ASch(n) of the generalized
Schrödinger group Sch(n) and on the subalgebras of the Lie algebra AS̃ch(n) of the
generalized extended Schrödinger group S̃ch(n) have been obtained. The subalgebra
structure of the algebras ASch(n) and AS̃ch(n) are studied with respect to inner
automorphisms of the groups Sch(n) and S̃ch(u), respectively. The maximal Abeli-
an subalgebras and the one-dimensional subalgebras of the algebras ASch(n) and
AS̃ch(n) have been explicitly found. The full classification of the subalgebras of the
algebras ASch(3) and AS̃ch(n), which are nonconjugate to the subalgebras of ASch(2),
AS̃ch(2), respectively, has been carried out.

1. Introduction
To construct exact solutions of both linear and nonlinear Schrödinger and heat

equations it is important to know the subgroup structure of the extended Schrödinger
group S̃ch(3) (see [1]). Other important applications of subgroup structure of this
group were discussed in [2, 3]. It is natural to generalize the notions of the three-
dimensional Schrödinger group for the case of arbitrary n-dimensional Euclidean space
and to solve the problem of subgroup classification for these generalized groups. If
we restrict ourselves by continuous subgroups, then the problem will be reduced to
classification of subalgebras of correspondent Lie algebras. This classification was
realized for n = 1 in [4] and for n = 2 in [2].

In the present paper we study subalgebra structure of both the Lie algebra ASch(n)
of the Schrödinger group Sch(n) and the Lie algebra AS̃ch(n) of the extended Schrö-
dinger group S̃ch(n) with respect to inner automorphisms of the group Sch(n) and
the group S̃ch(n), respectively. This paper is a continuation of investigations that
were carried out in [5–9]. The applied general method of Patera, Winternitz, and
Zassenhaus [10] gets further development for classes of groups under consideration.

In Sec. 2 we give definitions of the generalized Schrödinger groups and algebras
and introduce some other concepts and basis notation used in the whole paper. In
Sec. 3, completely reducible subalgebras of the algebra AO(n)⊕ASL(2, R) are derived,
and all subalgebras of this algebra are described for n = 3. In Sec. 4 a number
of general results about splitting subalgebras of the algebra ASch(n) are obtained.
Abelian subalgebras of the extended Schrödinger algebra AS̃ch(n) are described in
Sec. 5. Classification of subalgebras of the algebras ASch(3) and AS̃ch(3) is carried
out in Sec. 6. The conclusions are summarized in Sec. 7.
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2. Definitions of Schrödinger groups and algebras. Main notation
Let R be the real number field, R an arithmetical n-dimensional Euclidean space,

and AG the Lie algebra of the Lie group G. The Schrödinger group Sch(n) is the
multiplicative group of matrices W v a

0 α β
0 γ δ

 ,

where W ∈ O(n), a,v ∈ Rn, and αδ − βγ = 1 (α, β, γ, δ ∈ R). If α = δ = 1,
γ = 0, we obtain matrices that are elements of the Galilei group G(n). If at the same
time β = 0, we have elements of the isochronous Galilei group G0(n). Besides, the
Schrödinger group Sch(n) can be realized as the transformation group

x → Wx + tv + a

γt + δ
, t → αt + β

γt + δ
,

where t is time and x is a variable vector of the space Rn.
The Lie algebra ASch(n) of the group Sch(n) consists of real matrices X v a

0 α β
0 γ −α

 ,

where X ∈ AO(n), α, β, γ ∈ R, and a,v ∈ Rn. Let Iab be a matrix of degree n + 2
having unity at the intersection of the ath line and the bth column and zeros at the
other places (a, b = 1, . . . , n + 2). Then the basis of the algebra ASch(n) is formed by
the matrices

Jab = Iab − Iba, Ga = Ia,n+1, Pa = Ia,n+2,

D = −In+1,n+1 + In+2,n+2, S = −In+2,n+1, T = In+1,n+2

(a < b, a, b = 1, . . . , n). They satisfy the following commutation relations:

[Jab, Jcd] = δadJbc + δbcJad − δacJbd − δbdJac, [Pa, Jbc] = δabPc − δacPb,

[Pa, Pb] = 0, [Ga, Jbc] = δabGc − δacGb, [Ga, Gb] = 0, [Ga, Pb] = 0,

[D,Jab] = [S, Jab] = [T, Jab] = 0, [D,Pa] = −Pa, [D,Ga] = Ga,

[S, Pa] = Ga, [S,Ga] = 0, [T, Pa] = 0, [T,Ga] = −Pa,

[D,S] = 2S, [D,T ] = −2T, [T, S] = D, (a, b, c, d = 1, 2, . . . , n).

The extended Schrödinger algebra AS̃ch(n) is obtained from the algebra ASch(n)
by adding the central element M , and, moreover, [Ga, Pb] = δabM and other com-
mutation relations do not change. The factor algebra AS̃ch(n)/〈M〉 is identified with
ASch(n). We shall denote the generators of algebras ASch(n) and AS̃ch(n) by the
same symbols.

The algebra AG̃0(n) = AO(n) ⊂+ 〈M,P1, . . . , Pn, G1, . . . , Gn〉 is called the exten-
ded isochronous Galilei algebra, and the algebra AG0(n) = AG̃0(n)/〈M〉 is called the
isochronous Galilei algebra.

Since the Lie algebra L = 〈M,P1, . . . , Pn, G1, . . . , Gn〉 is nilpotent, L is a Lie
algebra of some connected and simply connected nilpotent Lie group H. As H is an
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exponential group, any of its elements can be denoted as exp(θM) exp(vG + aP ),
where θ ∈ R, vG = v1G1 + · · · + vnGn, and aP = a1P1 + · · · + an, Pn (ai, vi ∈ R,
i = 1, . . . , n). The multiplication law is derived by the Campbell–Hausdorf formula.
Let

∆

 W 0 0
0 α β
0 γ −δ


be an element of O(n) × SL(2, R). It is not difficult to show that in Sch(n) we have

∆ · exp(vG + aP ) = exp((δWv − γWa)G + (−βWv + αWa)P ) · ∆. (1)

An arbitrary element of the group S̃ch(n) has the form

exp(θM) · exp(vG + aP ) · ∆.

By definition, exp(θM) · ∆ = ∆ · exp(θM), and the equality (1) holds true for
∆ · exp(vG + aP ). Using these equalities andmultiplication laws in H and O(n) ×
SL(2, R) we shall establish multiplication in S̃ch(n) in the usual way. Evidently,
S̃ch(n) = Hλ(O(n)) × SL(2, R)).

Subalgebras L1 and L2 of the algebra AS̃ch(n) are called S̃ch(n) conjugated
if gL1g

−1 = L2 for some element g ∈ S̃ch(n). Mapping: ϕg : X → gXg−1,
X ∈ AS̃ch(n), is called an automorphism corresponding to the element g. If g =
diag[W, 1, 1], where W ∈ O(n), then ϕg is called an O(n) automorphism correspondi-
ng to the matrix W . We shall identify the automorphism ϕg with the element g.

Henceforth we shall use the following notations: 〈X1, . . . , Xs〉 is a vector space
or Lie algebra over R with the generators X1, . . . , Xs; V [k, l] = 〈Gk, . . . , Gl〉 (k ≤
l) is a Euclidean space having the orthonormal basis Gk, . . . , Gl, V [k] = V [k, k];
W [k, l] = 〈Pk, . . . , Pl〉 (k ≤ l), W [k] = W [k, k]; M[r, t] = 〈M,Pr, . . . , Pt, Gr, . . . , Gt〉
(r ≤ t), M[r] = M[r, r], M[r, t] = M[r, t]/〈M〉; π, ω, τ , ε, and ξ are projections of
the algebras AS̃ch(n) and ASch(n) onto AO(n) ⊕ ASL(2, R), AO(n), V [1, n], and
W [1, n], respectively.

Let U be a subspace of M[1, n] and F̂ be a subalgebra of ASch(n) such that
π(F̂ ) = F . The notation F̂ + U means that [F,U ] ⊂ U and F̂ ∩ M[1, n] ⊂ U .
Considering algebras (F̂ + U1), . . . , (F̂ + Us) we shall use the notation F̂ : U1, . . . , Us.
In the case of the algebra AS̃ch(n) this notation has the same meaning.

Let L be the direct sum of Lie algebras L1, . . . , Ls, K a Lie subalgebra of L,
and πi the projection of L onto Li. If πi(K) = Li, for all i = 1, . . . , s, then K is
called the subdirect sum of algebras L1, . . . , Ls. In this case we shall use the notation
K = L1 +

˙
· · · +

˙
Ls. The subdirect sum of modules over a Lie algebra is defined in a

similar way.

3. On the subalgebras of the algebra AO(n) ⊕ ASL(2, R)
In this section a number of auxiliary results to be used in following sections are

obtained.

Lemma 3.1. Subalgebras of the algebra ASL(2, R) are exhausted with respect to
SL(2, R) conjugation by the following algebras: O, 〈D〉, 〈T 〉, 〈S + T 〉, 〈D,T 〉,
ASL(2, R). The written algebras are not conjugated mutually.
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Later on, when we speak about subalgebras of the algebra ASL(2, R) we shall
mean the subalgebras given by Lemma 3.1.

By direct calculations we are convinced that the normalizer of 〈D〉 in the group
SL(2, R) consists of matrices(

0 α
−α−1 0

)
,

(
σ 0
0 α−1

)
where α ∈ R, α 	= 0. The normalizer of 〈T 〉 and the normalizer of 〈D,T 〉 in the group
SL(2R) consist of matrices ± exp(θ1D) · exp(θ2T ), where θ1, θ2 ∈ R. The normalizer
of 〈S + T 〉 coincides with the group

SO(2) =

{(
cos ϕ sin ϕ
− sin ϕ cos ϕ

) ∣∣∣∣∣ ϕ ∈ R

}
.

Proposition 3.1. Let AH(n) be the Cartan subalgebra of the algebra AO(n). Up to
conjugacy under O(n)× SL(2, R) the algebra AO(n)⊕ASL(2, R) has two maximal
solvable subalgebras AH(n) ⊕ 〈S + T 〉, AH(n) ⊕ 〈D,T 〉.

Proposition 3.1 follows immediately from Lemma 3.1 and the fact that AO(n) has,
with respect to O(n) conjugation, the only maximal solvable subalgebra AH(n).
Proposition 3.2. Up to conjugacy under O(n) × AL(2, R) the algebra AO(n) ⊕
ASL(2, R) has the following subalgebras: (i) F ⊕ K, where F ⊂ AO(n), K ⊂
ASL(2, R); (ii) F ⊕ 〈X + Y 〉, where F ⊕ 〈X〉 ⊂ AO(n), Y ∈ ASL(2, R); and (iii)
〈X + D〉 ⊂+ (F ⊕ 〈T 〉), where F ⊕ 〈X〉 ⊂ AO(n).

Proposition 3.2 is proved by the Goursat twist method [11].

Corollary. Subalgebras of the algebra AO(3)⊕ASL(2, R) are exhausted with respect
to O(3) × SL(2, R) conjugation by the following algebras:

O; 〈J12〉; 〈D〉; 〈T 〉; 〈S + T 〉; 〈J12 + αD〉 (α > 0);
〈J12 + T 〉; 〈J12 + α(S + T )〉 (α > 0); 〈J12 + αD, T 〉 (α > 0);
〈D,T 〉; 〈J12,D〉; 〈J12, T 〉; 〈J12, S + T 〉; 〈J12,D, T 〉;
AO(3); ASL(2, R); 〈J12〉 ⊕ ASL(2, R); AO(3) ⊕ 〈D〉;
AO(3) ⊕ 〈T 〉; AO(3) ⊕ 〈S + T 〉; AO(3) ⊕ 〈D,T 〉; AO(3) ⊕ ASL(2, R).
The written algebras are not conjugated mutually.
The space can M[1, n] be considered as an exact module the Lie algebra AO(n)⊕

ASL(2, R). Let L be a subalgebra of this algebra. If M[1, n] is a completely reducible
L module, then the algebra L will be called completely reducible.

Theorem 3.1. A subalgebra L of the algebra AO(n) ⊕ ASL(2, R) is completely
reducible if and only if τ(L) does not coincide with 〈T 〉 and 〈D,T 〉.
Proof. If τ(L) = 0, then L is a completely reducible algebra. If τ(L) = 〈D,T 〉, then
L = L1 ⊕ L2, where L1 ⊂ AO(n), L2 = 〈X + D,T 〉, X ∈ AO(n). Since the algebra
L2 is solvable and non-Abelian, then L is not a completely reducible algebra [12]. Let
τ(L) = ASL(2, R). Since direct decomposition of F ⊂ AO(n) can be realized through
every ideal, and since every subalgebra of the algebra AO(n) is not compact, then
L = ω(L) + τ(L). That is why [12] L is completely reducible.

Let us assume that τ(L) = 〈D〉. Since [D,Pa] = −Pa, [D,Ga] = Ga, then M[1, n]
can be decomposed into a direct sum of L-irreducible spaces. Consequently L is a
completely reducible algebra.
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As [S + T, Pa] = Ga and [S + T,Ga] = −Pa, then the skew-symmetric matrix(
0 −E
E 0

)
corresponds to the operator S + T in a basis P1, . . . , Pn, G1, . . . , Gn of the space
M[1, n]. Hence it follows that if τ(L) = 〈S + T 〉, then in the basis mentioned above
every element of an algebra L is represented by a skew-symmetric matrix of degree
2n, and that is why L is a completely reducible algebra.

Let τ(L) = 〈T 〉, and V [k, l] be an irreducible ω(L) module. Evidently V [k, l] +
W [k, l] is an L module. Since by Lemma 4.2 of [9] this module can not be decomposed
into a direct sum of irreducible L modules, an algebra L is not completely reducible.
The theorem is proved.

4. The structure of splitting subalgebras of the Schrödinger algebra
The aim of this section is to study up to conjugation the subspaces of the space

M[1, n] invariant under subalgebras of the algebra AO(n) ⊕ ASL(2, R). The main
results are Theorems 4.1 and 4.2.

Let F be a subalgebra of AO(n) ⊕ ASL(2, R), and F̂ be a subalgebra of the
algebra ASch(n) such that π(F̂ ) = F . If algebra F̂ is Sch(n) conjugated to the
algebra F ⊂+N, where N is an F -invariant subspace of the space M[1, n], then F̂ is
called a splitting in the algebra ASch(n). The notion of a splitting subalgebra of the
algebra AS̃ch(n) is defined in an analogous way. If every subalgebra F̂ is a splitting,
we shall say that F has only splitting extensions in the algebra ASch(n) (resp. in the
algebra AS̃ch(n)).

We shall find all subalgebras F , which possess only splitting extensions.
Let

J(a, b) = J2a−1,2a + · · · + J2b−1,2b (a ≤ b),

J(a) = J(a, a), J =
(

0 1
−1 0

)
,

X = S + T + α1J12 + · · · + αtJ2t−1,2t, 0 ≤ α1 ≤ · · · ≤ αt,

Y2a−1 = G2a−1 + P2a, Y2a = G2a − P2a−1, Z2a−1 = G2a−1 − P2a,

Z2a = G2a + P2a−1, La = 〈Y2a−1, Y2a〉, Na = 〈Z2a−1, Z2a〉.

Obviously, La + Na = M[2a − 1, 2a]. If 1 ≤ a ≤ t, then

[X,Y2a−1] = −(αa−1)Y2a, [X,Y2a] = (αa − 1)Y2a−1,

[X,Y2a−1] = −(αa + 1)Z2a, [X,Z2a] = (αa + 1)Z2a−1,
(2)

Thus (α1 − 1)J is the matrix of ad X in the basis Y2a−1, Y2a of the space La, and
(αa + 1)J is the matrix of ad X in the basis Z2a−1, Z2a of the space Na (1 ≤ a ≤ t).
If αa = 0, we obtain a matrix corresponding to ad (S + T ).

Let αa 	= 0, αa 	= 1. The 〈X〉 module N is called an elementary module of the
first kind, and the 〈X〉 module Na is called an elementary module of the second kind.
A subdirect sum of elementary modules of the first kind is called a module of the
first kind, and a subdirect sum of elementary modules of the second kind is called a
module of the second kind.
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Lemma 4.1. Let C be a matrix obtained from the identily matrix of degree n as a
result of fulfilling a permutation over its columns(

2k − 1 2k 2l − 1 2l
2l 2l − 1 2k 2k − 1

)
(k < l),

followed by the multiplication on (−1) columns which have number 2k and 2l. The
O(n) automorphism ϕ of the algebra ASch(n) which corresponds to the matrix C
has the following properties:

(1) ϕ(J2d−1,2d) = J2d−1,2d, if d 	= k, d 	= l,

ϕ(J2k−1,2k) = J2l−1,2l, ϕ(J2l−1,2l) = J2k−1,2k;
(2) ϕ(G2k−1) = G2l, ϕ(G2k) = −G2l−1,

ϕ(G2l−1) = G2k, ϕ(G2l) = −G2k−1;
(3) ϕ(Lk) = Ll, ϕ(Ll) = Ll,

ϕ(Nk) = Nl, ϕ(Nl) = Nk.

Proof. For simplicity we can take n = 4 and

C =
(

0 −J
−J 0

)
.

Then

C(α12 + βJ34)C−1 = βJ12 + αJ34, C ·


y1

y2

y3

y4

 =


−y4

y3

−y2

y1

 .

Using the last equality we conclude that ϕ(G1) = G4, ϕ(G2) = −G3, ϕ(G3) = G2,
and ϕ(G4) = −G1. The lemma is proved.

Lemma 4.2. Letting n > 4, 1 ≤ q ≤ [n/2] − 1, and Ea be the identity matrix of
degree a,

C1(λ) =


1√

1 + λ2

λ√
1 + λ2

λ√
1 + λ2

−1√
1 + λ2

⊕ E2,

C1(λ) =


1√

1 + λ2
0

λ√
1 + λ2

0 Ek−1 0

λ√
1 + λ2

0
−1√
1 + λ2

⊕ E2 (k ≥ 2);

∆(1, k;λ) = diag [Ck(λ), En−2,(k+1)], if 2(k + 1) < n,

∆(1, k;λ) = Ck(λ), if 2(k + 1) = n;
∆(q, k;λ) = diag [E2q−2, Ck(λ), En−2(k+q)], if q > 1, 2(k + q) < n,

∆(q, k;λ) = diag [E2q−2, Ck(λ)], if q > 1, 2(k + q) = n;
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and ϕ(q, k;λ) is an O(n) automorphism of the algebra ASch(n) which corresponds
to a matrix ∆(q, k;λ). Then

ϕ(q, k;λ)(J(q, q + k)) = J(q, q + k),

ϕ(q, k;λ)(G2q−1 + λG2(q+k)−1) =
√

1 + λ2 · G2q−1,

ϕ(q, k;λ)(G2q + λG2(q+k)) =
√

1 + λ2G2q,

Proof. We may restrict ourselves only to the case when n = 4, q = 1, k = 1. Since

C1(λ) ·
(

X ′ 0
0 X ′

)
=
(

X ′ 0
0 X ′

)
· C1(λ),

for every matrix X ′ of degree 2, and

C1(λ) ·


y1

y2

λy1

λy2

 =
√

1 + λ2


y1

y2

0
0


then

ϕ(1, 1;λ)(J(1, 2)) = J(1, 2),

ϕ(1, 1;λ)(G1 + λG3) =
√

1 + λ2G1,

ϕ(1, 1;λ)(G2 + λG4) =
√

1 + λ2G2,

The lemma is proved.

Proposition 4.1. Let X = S + T + αJ(k, l), where α > 0, α 	= 1. If U is an 〈X〉
submodule of the first (the second) king of the module M[2k − 1, 2l], then U is
conjugated to the module

t∑
a=k

La

(
t∑

a=k

Na

)
(t ≤ l).

Proof. Let us assume that U is a module of the first king. By Lemma 4.1 we shall
suppose that a projection of U onto Lk differs from 0. As

exp(θJ2a−1,2a)(γaY2a−1 + δaY2a) exp(−θJ2a−1,2a) =
= (γa cos θ + δa sin θ)Y2a−1 + (δa cos θ − γa sin θ)Y2a,

putting δa cos θ − γa sin θ = 0, we may assume that if a projection of an element
Y ∈ U onto La is equal to γaY2a−1 + δaY2a, then δa = 0. Hence it follows that U has
the element

Y = Y2k−1 + λk+1Y2k+1 + · · · + λlY2l−1 =
= (G2k−1 + λk+1G2k+1 + · · · + λlG2l−1) + (P2k + λk+1P2k+2 + · · · + λlP2l)

In view of Lemma 4.2, for some O(n) automorphism ϕ = ϕ(k, 1;µ1) ·ϕ(k, 2;µ2) · · · · ·
ϕ(k, l−k;µl−k) of the algebra ASch(n) the following equalities hold true: ϕ(X) = X,
ϕ(Y ) = γ(G2k−1 + P2k) (γ ∈ R, γ 	= 0). Therefore we may assume that Y2k−1 ∈ U .
Then Y2k ∈ U , and thus Lk ⊂ U . Using induction we conclude that U =

∑
La.
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The case when U is a module of the second king is treated similarly. The proposi-
tion is proved.

Theorem 4.1. Let F be a subalgebra of the algebra AO(n) ⊕ ASL(2, R). Then
F has only splitting extensions in ASch(n) if and only if one of the following
conditions is satisfied: (1) D ∈ τ(F ); (2) τ(F ) = 〈S +T 〉 and F is not conjugated to
〈J12 +S +T 〉 +

˙
K, where K is a subalgebra of the algebra 〈Jab | a, b = 3, . . . , n; (3)

τ(F ) ⊂ 〈T 〉 and ω(F ) is not conjugated to any subalgebra of the algebra AO(n−1);
or (4) τ(F ) = 0 and ω(F ) is a semisimple algebra.
Proof. Let D ∈ τ(F ). If τ(F ) = ASL(2, R), then by Theorem 3.1 F is a completely
reducible algebra. Since in this case F annuls only zero subspace in M[1, n], then
by Proposition 2.1 of [9] the algebra F has only splitting extensions in ASch(n).
If τ(F ) = 〈D,T 〉, then T ∈ F . Algebra F/〈T 〉 acts completely reducible in M[1, n]
and annuls only zero subspace in this space. From this, using Proposition 2.1 and
Lemma 3.1, we conclude that F has only splitting extensions in ASch(n). At the
same time the case τ(F ) = 〈D〉 is considered.

Let τ(F ) = 〈S + T 〉. If S + T ∈ F , then F annuls only zero subspace in M[1, n].
Because of Theorem 3.1 the algebra F is completely reducible; then by Proposition 2.1
of [9] any algebra F̂ in the algebra ASch(n), then F contains X = S + T + α1J12 +
· · · + αtJ2t−1,2t, where 0 < α1 ≤ · · · ≤ αt. We may assume that prolections of other
basis elements of the algebra F onto 〈S + T 〉 are equal to 0. In view of Proposition
2.1 of [9] the algebra F annuls in M[1, n] a certain nonzero subspace U . It follows
from this and formula (2) that U ⊂ 〈Y1, Y2, . . . , Y2k〉 and X = S + T + J(1, t) (k ≤ t)
or

X = S + T + J(1, k) + βk+1J(k + 1) + · · · + βtJ(t) (t > k),

where βk+1 > 0, . . ., βt > 0, βk+1 	= 1, . . ., βt 	= 1. Arguing as in the proof
of Proposition 4.1 we obtain that Y1 ∈ U up to conjugacy. Hence it follows that
F = 〈S + T + J12〉+

˙
K, where K ⊂ 〈Jab | a, b = 3, . . . , n〉. By Lemma 2.1 of [9] the

algebra F̂ which is obtained from F by replacing S + T + J12 by S + T + J12 + Y1, is
nonsplitting.

Let τ(F ) = 〈T 〉, F1 = ω(F ), and F̂ be a subalgebra of the algebra ASch(n) such
that π(F̂ ) = F . If F1 is not conjugated to a subalgebra of the algebra AO(n−1), then
by Proposition 2.1 and Lemma 3.1 of [9] an algebra F̂ is splitting. If F1 is conjugated
to a subalgebra of the algebra AO(n− 1), then F = 〈X〉 ⊕F2, where X 	= 0, and 〈X〉
and F2 are subalgebras of the algebra AO(n− 1)⊕〈T 〉. An algebra F2 ⊂+ 〈PnX +Gn〉
is nonsplitting.

The case τ(F ) = 0 is considered in [5, 7]. The theorem is proved.

Proposition 4.2. A subalgebra F of the algebra AO(n) ⊕ ASL(2, R) possesses only
splitable extensions in AS̃ch(n) if and only if F is a semisimple algebra.

The proof of Proposition 4.2 is similar to the proof of Theorem 4.1.

Let Γ : X → X be the trivial representation of a subalgebra F of the algebra
AO(n). Then Γ is O(n) equivalent to diag [Γ1, . . . ,Γm], where Γi is an irreducible
subrepresentation (i = 1, . . . , m). It is well known that if representations ∆ and ∆′ of
Lie algebra L by skew-symmetric matrices are equivalent over R, then C∆(X)C−1 =
∆′(X) for some orthogonal matrix C (X ∈ L), hence we conclude that if Γi and Γj
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are equivalent representations, then we can assume that for every X ∈ F the equality
Γi(X) = Γj(X) takes place. Uniting equivalent nonzero irreducible subrepresentations
we shall get nonzero disjunctive primary subrepresentations ∆1, . . . ,∆q of the repre-
sentation Γ. An algebra

Ki = {diag [0, . . . ,∆i(X), . . . , 0] | X ∈ F} (1 ≤ i ≤ q)

is called a primary part of the algebra F . Evidently F is a subdirect sum of its
primary parts.

We shall say that the splitting subalgebra F of the algebra ASch(n) or of the
algebra AS̃ch(n) has a splitting factor algebra in the case π(F̂ ) = F1 ⊕ F2, where
F1 ⊂ AO(n), F2 ⊂ ASL(2, R). If this condition does not hold, then the factor algebra
π(F̂ ) of an algebra F̂ is called nonsplitting.

Theorem 4.2. Let K1,K2, . . . , Kq be primary parts of the nonzero subalgebra L′

of the algebra AO(n), L′′ be a subalgebra of the algebra ASL(2, R) differing from
〈S + T 〉, and L be a subdirect sum of L′ and L′′. If U is a subspace of M[1, n],
being invariant under L, then U = U1 ⊕ · · · ⊕Uq ⊕ Ũ , where Ui = [Ki, U ] = [Ki, Ui];
[L′′, Ui] ⊂ Ui; [Kj , Ui] = 0 in the case j 	= i; [Ki, Ũ ] = 0, [L′′, Ũ ] ⊂ Ũ (i, j = 1, . . . , q).

Proof. If L′′ = ASL(2, R), then L′′ ⊂ L. Therefore from [L,U ] ⊂ U it follows that
[L′′, U ] ⊂ U . Since M[a] is invariant under ASL(2, R) for any a, 1 ≤ a ≤ n, then each
subspace Ui = [Ki, U ] is invariant under this algebra. Let Ũ be a maximal subspace
of the space U annulled by L′, U ′ = [L′, U ]. Since L′ is a completely reducible
algebra, U = U ′ ⊕ Ũ and [L′, U ′] = U ′. Applying Lemma 3.1 of [9] we conclude that
U ′ = U1 ⊕ · · · ⊕ Uq, where Ui = [Ki, U ] = [Ki, Ui] (i = 1, . . . , q).

Let L′′ = 〈T,D〉. Since 〈T,D〉 is a non-Abelian solvable algebra and every subal-
gebra of the algebra AO(n) is reductive, then applying the Goursat twist method [11]
we obtain that T ∈ L. Therefore it is enough to consider the case L′′ = 〈D〉. By
Lemma 4.2 of [9], [D,U ] ⊂ U , it follows that [D,Ui] ⊂ Ui, [D, Ũ ] ⊂ Ũ (i = 1, . . . , q).

The case L′′ = 〈T 〉 is considered in [5, 7]. The theorem is proved.

Because of Theorem 4.2, the study of splitting subalgebras F̂ of the algebra
ASch(n), for which τ(F̂ ) 	= 〈S+T 〉, is reduced to the study of splitting subalgebras K̂
of the algebra ASch(n) having the splitting factor algebra π(K̂) and zero or primary
projection onto AO(n). Such subalgebras have been described in [13].

Proposition 4.3. Nonzero subspaces of the space M[1, n] invariant under 〈S + T 〉
are exhausted with respect to O(n) conjugalion by the following spaces: M[1, d]
(d = 1, . . . , n); Uq (q = 1, . . . , [n/2]); Um + M[2m + 1, t] (m = 1, . . . , [(n − 1)/2]; t =
2m + 1, . . . , n), where Uq is a subdirect sum of V [1, 2q] and W [1, 2q] having zero
interseclions with there spaces. If

{Gj + α1jP1 + · · · + α2q,jP2q | j = 1, . . . , 2q}
is a basis of Uq, then with respect to O(2q) conjugation a matrix (αkj) (k, j =
1, . . . , 2q) coincides with diag [Γ(λ1), . . . ,Γ(λq)], where 0 < λ1 ≤ · · · ≤ λq ≤ 1 and

Γ(λ) =
(

0 λ
−λ−1 0

)
.

The numbers λ1, . . . , λq are defined by the space Uq uniquely.
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Proposition 4.3 is proved along with Proposition 2.4 and Theorem 3.4 in [13].

Proposition 4.4. Let

Λb(a) = 〈P1 + λ1Pa+1, . . . , Pb + λbPa+b〉,
where 0 < λ1 ≤ · · · ≤ λb, b ≤ a, a + b ≤ n. A subalgebra F̂ of the algebra
ASch(n) such that ω(F̂ ) = 0, D ∈ τ(F̂ ), is Sch(n) conjugated to L ⊂+U , where
L ⊂ ASL(2, R) and U is a subspace of the space M[1, n]. Let U 	= 0. If L =
ASL(2, R), then U is conjugated to M[1, d] (1 ≤ d ≤ n). If L = 〈D,T 〉, then U is
conjugated to one following spaces W [1, d], M[1, d], (1 ≤ d ≤ n); V [1, d] + W [1, t]
(1 ≤ d ≤ n − 1, d + 1 ≤ t ≤ n). If L = 〈D〉, then U is conjugated to one of the
following spaces:

W [1, d], M[1, d] (1 ≤ d ≤ n); V [1, d]+W [d+1, d+t] (1 ≤ d ≤ [n/2]; d ≤ t ≤ n−d);
V [1, d] + W [1, c] + W [d + 1, d + t] (1 ≤ d ≤ n − 1; 1 ≤ c ≤ d; d − c ≤ t ≤ n − d, if

c 	= d; 1 ≤ t ≤ n − d, if c = d);
V [1, d] + Λd(d) (1 ≤ d[n/2]); V [1, d] + Λt(d) + W [t + 1, d] (2 ≤ d ≤ n − 1; 1 ≤ t ≤

min{d − 1, n − d});
V [1, d] + Λt(d) + W [d + t + 1, b + t + s] + W [d + t + 1, d + t + s] (1 ≤ d ≤ [n/2];

1 ≤ t ≤ min{d, n − d − 1}; 1 ≤ s ≤ n − d − t; s + t ≥ d);
V [1, d] + Λt(d) + W [t + 1, b] + W [d + t + 1, d + t + s] (2 ≤ d ≤ n − 2; 1 ≤ t ≤

min{d − 1, n − d − 1}; t + 1 ≤ b ≤ d; 1 ≤ s ≤ n − d − t; b + s ≥ d).
The proof of Proposition 4.4 is similar to the proof of Theorem 3.3 [13].

Using Theorem 4.2 to investigte splitting subalgebras wilh nonsplitting factor
algebra, it is enough to consider the algebras F̂ ⊂ ASch(n) for which τ(F̂ ) = 〈S +T 〉
and τ(F̂ ) 	⊂ F̂ . In this case π(F̂ ) = F ′ ⊕ 〈X〉, where F ′ is a subalgebra of AO(n)
and X = S + T + αiJ12 + · · · + αkJ2k−1,2k. We may suppose that 0 < α1 ≤ · · · ≤ αk.
Henceforth we shall discuss subspaces of the space M[1, n] that are invariainl un-
der X.

Lemma 4.3. Let 1 ≤ a, b ≤ k. Then La
∼= Lb if and only if αa = αb or αa + αb = 2;

Na
∼= Nb if and only if αa = αb; La

∼= Nb if and only if αa = 2+αb (a 	= b). Modules
La and Na are not isomorphic.
Proof. The matrices λJ , µJ are similar if and only if λ2 = µ2. It follows thal La

∼= Lb

if and only if (αa − 1)2 = (αb − 1)2. In the case αa − αb 	= 0, αa + αb = 2.
If Na

∼= Nb then (αa +1)2 = (αb +1)2, whence 2(αa −αb) = −(αa −αb)(αa +αb).
In the case αa−αb 	= 0, 2 = −(αa +αb). But this contradicts the fact that αa, αb > 0.

Let La
∼= Nb. Then (αa−1)2 = (αb +1)2, whence 2(αa +αb) = (αa−αb)(αa +αb).

Thus if α 	= 0, then αa − αb = 2. The lemma is proved.

Let us remark that if αa 	= 1, then the 〈X〉 modules La and Na are irreducible,
and any 〈X〉 submodule of the module M[1, n] is completely reducible.

Proposition 4.5. Let

X = S + T +
s∑

i=1

βiJ(ki−1 + 1, k),

where s ≥ 2, k0 = 0, βi > 0, βi 	= 1, βi 	= βj if i 	= j. There exists an
indecomposable 〈X〉 submodule with nonzero projections onto M[1, 2k1], M[2k1 +
1, 2k2], . . ., M[2ks−1 + 1, 2ks] of the 〈X〉 module M[1, 2ks] if and only if s = 2 and
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one of the following conditions is satisfied: (i) β1 = 2 + β2; (ii) β2 = 2 + β1; (iii)
β1 +β2 = 2. If U is ademanded indecomposable 〈X〉 module and U , is the projection
of U onto M[2ki−1 + 1, 2ki] (i = 1, 2), then in case (i) U1 is a module of the first
kind and U2 is a module of the second kind; in the case (ii) U1 is a module of the
second kind; and U2 is a module of the first kind; and in cas (iii) U1 and U2 are
modules of the first kind.

Proof. By Lemma 3.1 of [9], in the 〈X〉 module M[1, 2ks], there exists an indecompo-
sable submodule demanded if and only if the 〈X〉 modules M[1, 2k1], M[2k1 + 1, 2k2],
. . ., M[2ks−1,+1, 2ks], have isomorphic composition factors. If Lki

∼= Lkj
, and Lkj

∼=
Lkr

then by Lemma 4.3 βi + βj = 2 and βj + βr = 2. From this it follows that
βi = βr and that is why i = r. If Lki

∼= Nkj
and Nkj

∼= Nkr
, then βi = 2 + βj and

βr = 2+βj , whence i = r. Thus s ≤ 2 and one of the following conditions is satisfied:
(1) β1 = 2 + β2; (2) β2 = 2 + β1; (3) 0 < β1 < 2, β2 = 2 − β1. Statements about the
kinds of projections follow from Lemma 4.3. The proposition is proved.

Proposition 4.6. Let X = S +T +βJ(1, k) (β > 0). In the 〈X〉 module M[1, n] there
exists an indecomposable 〈X〉 submodule with nonzero projections onto M[1, 2k]
and M[2k + 1, n] if and only if β = 2. If U is such a submodule and U1 is the
projection U onto M[1, 2k], then U1 is a module of the first kind.

5. Abelian subalgebras of the extended Schrödinger algebra
The main results of this section are Theorem 5.1 and its two corollaries.
Let us use the following notation:

Xt = α1J12 + α2J34 + · · · + αtJ2t−1,2t,

where α1 = 1, 0 < α2 ≤ · · · ≤ αt ≤ 1 if t ≥ 2;

AH(0) = 0, AH(2d) = AH(2d + 1) = 〈J12, J34, . . . , J2d−1,2d〉;
∆0[r, t] = 〈Gr + αrPr, . . . , Gt + αtPt〉, ∆[r, t] = ∆0[r, t] + 〈M〉,

where r ≤ t, αr ≤ · · · ≤ αt, αr = 0, and αt = 1 if αt 	= 0;

Π(a, b) = 〈Y2a−1, Y2a+1, . . . , Y2b−1〉 (a ≤ b).

We recall that Y2c−1 = G2c−1 + P2c and Y2c = G2c − P2c−1.
The algebra AH(n) is a maximal Abelian subalgebra of the algebra AO(n). It is

well known that any maximal Abelian subalgebra of the algebra AO(n) is conjugated
AH(n) with respect to inner automorphisms of the algebra AO(n). Henceforth when
speaking about Abelian subalgebras of the algebra AO(n) we shall mean subalgebras
of the algebra AH(n).

Lemma 5.1. Let L be an Abelian subalgebra of the algebra 〈J(a, b) + S + T 〉 ⊂
+M[2a − 1, 2b] such that its projection onto 〈J(a, b) + S + T 〉 is nonzero and its
projection onto 〈M〉 is equal to 0. Then L is conjugated to one of the following
algebras:

〈J(a, b) + S + T + αY2b−1〉 (α ≥ 0);
Π(a, c) ⊕ 〈J(a, b) + S + T + αY2b−1〉 (α ≥ 0, c ≤ b).

The written algebras are pairwise nonconjugated.
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Proof. The maximal subspace of the space M[2a− 1, 2b] anulled by 〈J(a, b) + S + T 〉
and having zero projection onto 〈M〉 coincides with

b∑
c=a

Lc.

Let U = L ∩ M[2a − 1, 2b]. By the same arguments as in the proof of Proposition 4.1
we can establish that if U 	= 0, then U contains Y2a−1. As [Y2a−1, Y2a] = −2M , so
U = 〈Y2a−1〉 + U1, where U1 is a subspace of the space

b∑
c=a+1

Lc.

Continuing these arguments we obtain that U = Π(a, c) (c ≤ b) and L contains
J(a, b) + S + T + αY2b−1 (α ≥ 0). The lemma is proved.

Theorem 5.1. Let L be a nonzero Abelian subalgebra of algebra AS̃ch(n). If τ(L) =
〈D〉, then L is conjugated to the subdirect sum L1 +

˙
L2 +

˙
L3 of algebras L1, L2,

L3, where L1 ⊂ AH(2d), L2 = 〈D〉, L3 ⊂ 〈M〉 (0 ≤ d ≤ [n/2]. If τ(L) = 〈T 〉,
then L is conjugated to L1 +

˙
L2 +

˙
L3 +

˙
L4, where L1 ⊂ AH(2d), L2 = 〈T + αG2d+1〉

(α ∈ 0, 1), L3 = 0 or L3 = W [r, t], L4 ⊂ 〈M〉 (0 ≤ d ≤ [n/2]; r = 2d + 1 if α = 0,
2d + 1 ≤ n; r = 2d + 2 if α = 1, 2d + 2 ≤ n); if τ(L) = 〈S + T 〉, then L is conjugated
to L1 +

˙
L2 +

˙
L3 +

˙
L4, where L1 ⊂ 〈M〉, L2 ⊂ AH(2d) (0 ≤ d ≤ [n/2]), and the

algebras L3 and L4 satisfy one of the following conditions:

(1) L3 = 〈S + T 〉, L4 = 0;
(2) L3 = 〈J(d + 1, t) + S + T + αY2t−1〉, L4 = 0 (α > 0);
(3) L3 = 〈J(d + 1, t) + S + T + αY2t−1〉, L4 = Π(d + 1, s) (s ≤ t; α ≥ 0).

If L ⊂ AG̃0(n), then L is conjugated to L1 +
˙

L2 +
˙

L3 +
˙

L4, where L1 ⊂ AH(2d),

L2 = 0 or L2 = ∆0[2d + 1, s], L3 = 0 or L3 = W [k, l], L4 = 0 or L4 = 〈M〉
(0 ≤ d ≤ [n/2]; k = s + 1 if L2 	= 0; k = 2d + 1 if L2 = 0; l ≤ n).

Proof. lf τ(L) = 〈D〉, then by Theorem 4.1 the algebra L is conjugated to the algebra
U + F , where U ⊂ M[1, n] and F ⊂ AH(n) ⊕ 〈D,M〉. Since D annuls only 〈M〉 in
M[1, n] and by Theorem 4.2 [D,U ] ⊂ U , then U ⊂ 〈M〉. Thus L is conjugated to
some subalgebra of the algebra AH(2d) ⊕ 〈D,M〉 (0 ≤ d ≤ [n/2]).

If τ(L) = 〈T 〉, then by Theorem 4.1 the algebra L is conjugated to the algebra
U +F satisfying one of the following conditions: U ⊂ M[1, n] and F is a subalgebra of
AH(n)+〈M,T 〉; or U ⊂ M[1, 2d] and F is a subalgebra of AH(2d)+M[2d+1, n]+〈T 〉
(d ≥ 1). Let us consider the last case. Let us suppose that the projection K of the
algebra F onto AO(n) is not conjugated to any subalgebra of the algebra AH(2d−2).
Since K annuls only the zero subspace of V [1, 2d], then U ⊂ 〈M〉. Therefore we shall
assume that U = 0. As [T,Ga] = −Pa, so by Witt’s mapping theorem [14] ε(F ) = 0,
or ε(F ) = 〈G2d+1〉. Since

exp(θT )(T + αG2d+1 + βP2d+1) exp(−θT ) = T + αG2d+1 + (β − θα)P2d+1
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and

exp(λD)(T + αG2d+1) exp(−λD) = exp(−2λ)(T + α exp(3λ) · G2d+1),

then if ε(F ) 	= 0, the projection of F onto 〈T 〉 ⊂+M[2d + 1, n] contains T + G2d+1. In
this case, by Witt’s theorem ξ(F ) coincides with 0 or W [2d + 2, t]. If ε(F ) = 0, then
ξ(F ) = 0 or ξ(F ) = W [2d + 1, t].

Let τ(L) = 〈S + T 〉. If S + T ∈ L then ε(L) = 0 and ξ(L) = 0. If S + T 	∈ L, then
an algebra L contains

Y = S + T +
[n/2]∑
a=1

αaJ2a−1,2a +
n∑

i=1

(βiGi + γiPi) + δM.

We shall suppose that projections of the at rest basis elements of the algebra L onto
〈S+T 〉 are equal to zero, and αa ≥ 0 for all a. If αc 	= 1, then 〈S+T +αcJ2c−1,2c〉 is a
completely reducible algebra of linear iransformalions of the vector space M[2c−1, 2c]
and annuls only the zero subspace of this space, whence by Proposition 2.1 of [9] we
conclude that the projection of L onto M[2c − 1, 2c] is equal to zero. Therefore we
may assume that

Y = J(d + 1, t) + S + T +
2t∑

i=2d+1

(βiGi + γiPi).

From Proposition 2.1 of [9] it also follows that

2t∑
i=2d+1

(βiGi + γiPi) ∈
i∑

j=d+1

Lj .

Applying Theorem 4.1 and Lemma 5.1 we conclude that, with respect to the conjuga-
tion ω(L) ⊂ AH(2d) + 〈J(d + 1, t)〉,

Y = J(d + 1, t) + S + T + αY2t−1,

and L ∩ M[1, n] = 0 or L ∩ M[1, n] = Π(d + 1, s) (α ≥ 0; s ≤ t).
Let us assume thet L ⊂ AG̃0(n). By Theorem 2 of [7] the algebra L is conjugated

to an algebra U + F , which statisfies one of the following conditions: U ⊂ M[1, n]
and F is a subalgebra of AH(n) + 〈M〉; or U ⊂ M[1, 2d] and F is a subalgebra of
AH(2d) + M[2d + 1, n] (1 ≤ d ≤ [n − 1/2]). Let us restrict ourselves to the last
case. Let the projection K of the algebra AH(2d − 2). Since K annuls only the zero
subspace of the space M[1, 2d], U ⊂ 〈M〉. Therefore we suppose that U = 0.

Let N be the projection of F onto M[2d + 1, n] and ε(N) = V [2d + 1, 2d + q]. By
Witt’s mapping theorem the algebra N is a subdirect sum of the algebras N1, N2,
N3, where N1 ⊂ M[2d + 1, 2d + q] (as a space), N2 = 0 or N2 = W [2d + q + 1, t], and
N3 ⊂ 〈M〉. Let

Zi = G1 + β2d+1,iP2d+1 + · · · + β2d+q,iP2d+q (i = (2d + 1), . . . , (2d + q)),

Nq = 〈Z2d+1, . . . , Z2d+q〉. Evidently [Zi, Zj ] = (βij − βji)M . Since N1 is an Abelian
algebra, βij = βji. Hence it foliows that the matrix B = (βij) is symmetric. Therefore
there exists a matrix Q ∈ O(q) such that QBQ−1 = diag [λ1, . . . , λq]. From this it
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follows that with respect to automorphisms from the group O(2d)×O(q)×O(n−2d−q)
we may assume that Z2d+j = G2d+j + λjP2d+j (j = 1, . . . , q), where λ1 ≤ · · · ≤ λq.
Applying the automorphism exp(λ1T ) we obtain the generators G2d+j + µjP2d+j

(j = 1, . . . , q), where µ1 = 0, 0 ≤ µ2 ≤ · · · ≤ µq. If µq > 0, then µq = exp(−2θ).
Obviously

exp(θD)(G2d+j + µjP2d+j) exp(−θD) = exp θ(G2d+j + µj exp(−2θ)P2d+j).

Therefore if µq > 0, we may suppose that µq = 1. This proves that the algebra N1 is
conjugated to ∆0[2d + 1, 2d + 1, 2d + q]. The theorem is proved.

Corollary 1. The maximal Abelian subalgebras of the algebra AS̃ch(n) are exhaus-
ted with respect to the S̃ch(n) conjugation by the following algebras:

AH(n) ⊕ 〈T,M〉 (n ≡ 0 (mod 2)); AH(n) ⊕ 〈S + T,M〉;
AH(n) ⊕ 〈D,M〉; AH(n − 1) ⊕ 〈Gn + T,M〉; (n ≡ 1(mod 2));
AH(2d) ⊕ ∆[2d + 1, n] (d = 0, 1 . . . , [(n − 1)/2]);
AH(2d)⊕∆[2d+1, t]⊕W [t+1, n] (d = 0, 1, . . . , [(n−2)/2]; t = 2d+1, . . . , n−1);
AH(2d) ⊕ 〈T,M〉 ⊕ W [2d + 1, n] (d = 0, 1, . . . , [(n − 1)/2]);
AH(2d) ⊕ 〈G2d+1 + T 〉 ⊕ W [2d + 2, n] ⊕ 〈M〉 (d = 0, 1, . . . , [(n − 2)/2]);
AH(2d)⊕〈J(d+1, r)+S +T 〉⊕ 〈M〉⊕Π(d+1, r) (d = 0, 1, . . . , [(n−2)/2]); r =

d + 1, . . . , [n/2]).
Corollary 2. Let α, β ∈ R, α > 0, β > 0; t = 1, . . . , [(n − 1)/2]; n ≥ 3. One-
dimensional subalgebras of the algebra AS̃ch(n) are exhausted with respect to the
S̃ch(n) conjugation by the following algebras:

〈D〉; 〈T 〉; 〈S + T 〉; 〈M〉; 〈D + αM〉; 〈T ± M〉; 〈S + T ± αM〉; 〈P1〉;
〈G1 + P2〉; 〈G1 + T 〉; 〈Xt〉; 〈Xt + αD〉; 〈Xt + αD + βM〉; 〈Xt + T 〉;
〈Xt + α(S + T )〉; 〈Xt + αM〉; 〈Xt + α(S + T ) ± βM〉; 〈Xs + P2s+1〉;
〈Xr + G2r+1 + αP2r+2〉 (r = 1, . . . , [(n − 2)/2]); 〈Xs + T + αG2s+1〉;
〈Xt + S + T + α(G1 + P2)〉.

Remark. One-dimensional subalgebras of the algebra AS̃ch(n) are exhausted with
respect to the S̃ch(n) conjugation by one-dimensional subalgebras, of the algebra
AS̃ch(n) whose generators do not contain λM as an addend (λ 	= 0.
Theorem 5.2. Let L be a nonzero Abelian subalgebra of the algebra ASch(n). If
τ(L) = 〈D〉, then L is conjugated to a subdirect sum of 〈D〉 and the subalgebra
of the algebra AH(2d) (0 ≤ d ≤ [n/2]). If τ(L) = 〈T 〉, then L is conjugated to
L1 +

˙
L2 +

˙
L3, where L1 ⊂ AH(2d), L2 = 〈T + αG2d+1〉, and L3 is one of the

following algebras:
0; W [2d + 2, t]; 〈P2d+1 + λP2d+2〉 + γW [2d + 2] + δW [2d + 3, t] (0 ≤ d ≤ [n/2];

t ≤ n; α, γ, δ ∈ {0, 1}; λ ≤ 0).
If τ(L) = 〈S + T 〉, then L is conjugated to L1 +

˙
L2 +

˙
L3, where L1 ⊂ AH(2d)

(0 ≤ d ≤ [n/2]) and the algebras L2, L3 satisfy one of the following conditions:
(1) L2 = 〈S + T 〉 and L3 = 0; or (2) L2 = 〈J(d + 1, t) + S + T + αY2t−1〉 (α ≥ 0) and
L3 is a subalgebra of the algebra

t∑
a=d+1

La
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If L ⊂ AG0(n), then L is conjugated to L1 +
˙

L2, where L1 ⊂ AH(2d) and L2 ⊂
M[2d + 1, n] (0 ≤ d ≤ [n/2]).

The theorem is proved along the same lines as Theorem 5.1.

Corollary. The maximal Abelian subalgebras of the algebra ASch(n) are exhausted
with respect to the Sch(n) conjugation by the following algebras:

AH(n) ⊕ 〈D〉; AH(n) ⊕ 〈S + T 〉; AH(n) ⊕ 〈T 〉 [n ≡ 0 (mod 2)];
AH(2d) ⊕ 〈T 〉 ⊕ W [2d + 1, n] (d = 0, 1, . . . , [(n − 1)/2]);
AH(2d) ⊕ M[2d + 1, n] (d = 0, 1, . . . , [(n − 1)/2]);
AH(2d) ⊕ 〈G2d+1 + T 〉 + W [2d + 1, n] (d = 0, 1, . . . [(n − 1)/2]);

AH(2d) ⊕ 〈J(d + 1, r) + S + T 〉 ⊕
r∑

a=d+1

La (d = 0, 1, . . . [(n − 2)/2]; r = d +

1, . . . , [n/2]).

6. Classification of subalgebras of the algebras ASCh(3) and AS̃ch(3)
In this section we make use of the previous results to provide a classification of

all subalgebras of the algebras ASch(3) and AS̃ch(3).
Let AG̃(3) = (AO(3) ⊕ 〈T 〉) ⊂+M[1, 3] and AG(3) = AG̃(3)/〈M〉. Subalgebras of

the algebras AG(3) and AG̃(3) were classified up to conjugacy under G(3) and G̃(3),
respectively, in [5]. Further simplification of these subalgebras is being realized by
SL(2, R) automorphisms.

Theorem 6.1. Let α, β, γ, λ, µ ∈ R, and α > 0, β > 0, γ 	= 0. The splitting
subalgebras of the algebra AG(3) are exhausted with respect to Sch(3) conjugation
by the splitting subalgebras of the algebra AG(2) (see [2]) and by the following
algebras (the subalgebras preceded by the sign ∼ are subalgebras of ASch(3)):

∼ 〈G1 + P2, P3〉; 〈G1 + P2, P1 + αP3〉; ∼ 〈G1 + γP1 + P3, G2 + αP3〉;
〈G1 + λP1 + P3, G2 + γP1 + αP3〉; 〈G1 + λP1 + P3, G2 + αP1〉;
〈G1 + P2 + αP3, G2 − P1 + βP2 + λP3〉; 〈G1 + P2 + αP3, G2 − P1〉;
〈G1 + P2, G2 −P1 + αP2 + βP3〉; ∼ 〈P1, P2, P3〉; ∼ 〈G1, P2, P3〉; 〈G1 + P2, P1, P3〉;
〈G1, P1 + αP2, P3〉; 〈G1 + P3, G2 + αP3, P1〉; 〈G1 + P3, G2, P1〉; 〈G1, G2 + P3, P1〉;
〈G1 + λP1, G2 + P1, P3〉; ∼ 〈G1 + γP1, G2, P3〉; 〈G1 + λP1, G2 + P1, P1 + αP3〉;
〈G1 +λP1, G2, P1 +αP3〉; 〈G1 +P2 +αP3, G2 +λP3, P1〉; 〈G1 +P2, G2 +αP3, P1〉;
〈G1 + P2, G2 − P1, P3〉; 〈G1 + P2, G2 − P1 + αP2, P3〉;
〈G1 + P2 + λP3, G2 + µP3, P1 + αP3〉;
〈G1 − P2 + αP3, G2 + P1 + βP2 + λP3, G3 + αP1 + λP2 + µP3〉 (µ − α2β 	= 0);
〈G1 − P2, G2 + P1 + βP2 + αP3, G3 + αP2 + γP3〉;
〈G1 − P2 + αP3, G2 + P1, G3 + αP1 + γP3〉; 〈G1, P1, P2, P3〉; 〈G1, G2, P1, P3〉;
〈G1 + P2, G2, P1, P3〉; 〈G1, G2 + P3, P1 + αP3, P2〉; 〈G1, G2 + P3, P1, P2〉;
〈G1, G2, P1 + αP3, P2〉; 〈G1 + P2, G2 − P1 + αP2, G3 + βP1 + λP2, P3〉;
〈G1 + P2, G2 − P1 + αP2, G3 + βP2, P3〉; 〈G1 + P2, G2 − P1 + αP2, G3, P3〉;
〈G1, G2 + P2, G3 + αP1 + βP2, P3〉; 〈G1 + P2, G2 − P1, G3 + αP1, P3〉;
〈G1 + P2, G2 − P1, G3, P3〉; G1, G2, P1, P2, P3〉;
〈G1, G2 + P1, G3, P2, P3〉; 〈G1, G2, G3, P1, P2, P3〉;
〈T 〉: ∼ W [1, 3], 〈G1 + P2, P1, P3〉, 〈G1, P1, P2, P3〉, 〈G1 + P3, G2, P1, P2〉,

M[1, 2] + W [3], M[1, 3];
〈J12〉: ∼ W [3], M[3], ∼ W [1, 3], ∼ W [1, 2] + V [3], L1 + W [3], V [3] + W [1, 3],

L1 + M[3], M[1, 2] + W [3], M[1, 3];
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〈J12 + T 〉: ∼ W [3], M[3], ∼ W [1, 3], V [3] + W [1, 3], M[1, 2] + W [3], M[1, 3];
〈J12, T 〉: ∼ W [3], M[3], ∼ W [1, 3], V [3] + W [1, 3], M[1, 2] + W [3], M[1, 3];
AO(3): ∼ 0, ∼ W [1, 3], M[1, 3]; AO(3) ⊕ 〈T 〉: ∼ 0, ∼ W [1, 3], M[1, 3].

Theorem 6.2. The nonsplitting subalgebras of the algebra AG(3) are exhausted
with respect to Sch(3) conjugation by the nonsplitting subalgebras of the algebra
AG(2) [2] and by the following algebras:

〈T + G1〉: ∼ W [2, 3], 〈P1 + αP2, P3〉, 〈G2 + αP3, P2〉, 〈G2 + αP1 + βP3, P2〉;
W [1, 3]; 〈G2, P2, P3〉, 〈G2 + αP1, P2, P3〉, M[2] + 〈P1 + αP3〉,
〈G2 + αP3, P1 + βP3, P2〉, 〈G2 + αP3, P1, P2〉, V [2] + W [1, 3], M[2, 3],
〈G2 + αP1, G3, P2, P3〉, M[2, 3] + W [1] (α > 0, β > 0);
〈J12 + G3〉: ∼ 0, W [3], ∼ W [1, 2], ∼ V [1, 2], W [1, 3], V [1, 2] + W [3], M[1, 2],

M[1, 2] + W [3];
〈J12 + T + αG3〉: ∼ 0, W [3], ∼ W [1, 2], W [1, 3], M[1, 2], M[1, 2] + W [3];
〈J12 + αG3〉: L1, L1 + W [3] (α > 0);
〈J12, T + G3〉: ∼ 0, W [3], ∼ W [1, 2], W [1, 3], M[1, 2], M[1, 2] + W [3];
〈J12 + αG3, T + G3〉: W [3], W [1, 3], M[1, 2] + W [3] (α > 0);
〈J12 + G3, T 〉: W [3], W [1, 3], M[1, 2] + W [3];
〈J12 + P3, T 〉: ∼ 0, ∼ W [1, 2], M[1, 2];
〈J12 + αP3, T + G3〉: 0, W [1, 2], M[1, 2].

The written algebras are not mutually conjugated.

Theorem 6.3. The subalgebras of the algebra AG̃(3) are exhausted with respect
to Sch(3) conjugation by the subalgebras of the algebra AG(2) (see [2]), by the
algebras preceded by the sign ∼ in Theorems 6.1 and 6.2, by algebras obtained from
algebras written in Theorems 6.1 and 6.2 by adding the generator M , and by the
following algebras:

〈T ± M,P1, P2, P3〉;
〈J12 + αM〉: W [3], W [1, 3], W [1, 2] + V [3] (α > 0);
〈J12 + T ± αM〉: W [3], W [1, 3] (α > 0);
〈J12 + αM,T 〉: W [3], W [1, 3] (α > 0);
〈J12 + αM,T + G3〉: 0, W [1, 2] (α > 0);
〈J12 + αP3 + βM,T ± M〉: 0, W [1, 2] (α > 0, β > 0);
〈J12 + αP3, T ± M〉: 0, W [1, 2] (α > 0);
〈J12 + P3 + αM,T 〉: 0, W [1, 2] (α > 0);
A0(3) ⊕ 〈T ± M〉: 0, W [1, 3].

The written algebras are not mutually conjugated.

Theorem 6.4. Let α ∈ R, α > 0. The subalgebras of the algebra ASch(3) which are
nonconjugated to subalgebras of the algebras AG(3) and ASch(2) are exhausted
with respect to Sch(3) conjugation by the following algebras:

〈D〉: ∼ W [1, 3], ∼ 〈G1, P2, P3〉, 〈G1, P1 + αP2, P3〉, 〈G1, G2, P1 + αP3, P2〉,
〈G1, G2, P1, P3〉, V [1] + W [1, 3], M[1, 2] + W [3], M[1, 3];

〈S + T,G1 − λ−1P2, G2 + λP1, G3, P3〉 (0 < λ ≤ 1); 〈S + T 〉 ⊂+M[1, 3];
〈J12+αD〉: ∼ W [3], M[3], ∼ W [1, 3], W [1, 2]+V [3], W [1, 2]+M[3], M[1, 2]+W [3],

M[1, 3];
〈S + T + αJ12〉: M[3], L1 + M[3], N1 + M[3], M[1, 3];
〈S + T + 2J12, G1 + P2 + αP3, G2 − P1 − αG3〉;
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〈S + T + J12〉: 〈G1 + P2〉 + M[3], 〈G1 + P2〉 + N1 + M[3];
〈D,T 〉: ∼ W [1, 3], V [1, j] + W [1, 3] (j = 1, 2, 3);
〈J12 + αD, T 〉: ∼ W [3], M[3], ∼ W [1, 3], W [1, 2] + M[3], M[1, 2] + W [3], M[1, 3];
〈J12,D〉: ∼ W [3], M[3], ∼ W [1, 3], ∼ W [1, 2]+V [3], W [1, 2]+M[3], M[1, 2]+W [3],

M[1, 3];
〈J12, S + T 〉: M[3], L1 + M[3], M[1, 3];
〈J12,D, T 〉: ∼ W [3], M[3], ∼ W [1, 3], W [1, 2] + M[3], M[1, 2] + W [3], M[1, 3];
ASL(2, R) ⊂+M[1, 3]; 〈J12〉 ⊕ ASL(2, R): M[3], M[1, 3];
AO(3) ⊕ 〈D〉: ∼ 0, ∼ W [1, 3], M[1, 3]; AO(3) ⊕ 〈S + T 〉: ∼ 0, M[1, 3];
A)(3) ⊕ 〈D,T 〉: ∼ 0, ∼ W [1, 3], M[1, 3]; AO(3) ⊕ ASL(2, R): ∼ 0, M[1, 3];
〈S+T +J12+α(G1+P2)〉: M[3], 〈G2−P1〉+M[3], N1+M[3], 〈G2−P1〉+N1+M[3].

The written algebras are not mutually conjugated.

Theorem 6.5. Let α, β, γ ∈ R, and α > 0, β 	= 0. The subalgebras of the algebra
ASch(3) are exhausted with respect to S̃ch(3) conjugation by subalgebras of the
algebra AG̃(3), by subalgebras of the algebra AS̃ch(2) (see [2]), by algebras prece-
ded by the sign ∼ in Theorem 6.4, by algebras obtained from algebras written in
Theorem 6.4 by adding the generator M , and by the following algebras:

〈D+βM〉: W [1, 3], V [1]+W [2, 3]; 〈J12 +αD+βM〉: W [3], W [1, 3], W [1, 2]+V [3];
〈S + T + 2J12 + βM,G1 + P2 +

√
2P3, G2 − P1 −

√
2G3〉;

〈D + βM,T 〉 ⊂+W [1, 3]; 〈J12 + αM,D〉: W [3], W [1, 3], W [1, 2] + V [3];
〈J12 + αM,D + βM〉: W [3], W [1, 3], W [1, 2] + V [3];
〈J12,D + βM〉: W [3], W [1, 3], W [1, 2] + V [3];
〈J12 + αD + βM,T 〉: W [3], W [1, 3]; 〈J12 + αM,D + γM, T 〉: W [3], W [1, 3];
〈J12,D + βM,T 〉: W [3], W [1, 3]; AO(3) ⊕ 〈D + βM〉: 0, W [1, 3];
AO(3) ⊕ 〈S + T + βM〉; AO(3) ⊕ 〈D + βM,T 〉: 0, W [1, 3].

The written algebras are not mutually conjugated.

7. Conclusions
The results of the present paper may be summarized in the following way.
(1) The completely reducible subalgebras of the algebra AO(n) ⊕ ASL(2, R) have

been identified (Theorem 3.1).
(2) The subalgebras of AO(n)⊕ASL(2, R) which possess only splitting extensions

in the algebra ASch(n) have been described (Theorem 4.1).
(3) We have established that the description of the splitting subalgebras of the

algebra ASch(n) whose projections onto ASL(2, R) are not equal to 〈S + T 〉 is
reduced to the description of the splitting subalgebras of ASch(n) whose projections
onto AO(n) are equal to zero or to primary algebras (Theorem 4.2).

(4) The maximal Abelian subalgebras and the one-dimensional subalgebras of
the algebras ASch(n) and AS̃ch(n) have been explicitly found (the corollaries to
Theorems 5.1 and 5.2).

(5) The classification of the subalgebras of ASch(3) and AS̃ch(3) with respect
to Sch(3) conjugation and S̃ch(3) conjugation, respectively, has been carried out
(Theorems 6.1–6.5). This classification gives the possibility to construct the wide
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classes of exact solutions of the nonlinear, Schrod̈inger-type equations in [15–18],

i
∂Ψ
∂t

− ∆Ψ + λ|Ψ|3/4Ψ = 0,

i
∂Ψ
∂t

− ∆Ψ + λ
∂(Ψ∗Ψ)

∂Xa

∂(Ψ∗Ψ)
∂Xa

(Ψ∗Ψ)−2 · Ψ = 0,

which are invariant under Sch(3).
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