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Nonlinear representations for Poincaré
and Galilei algebras and nonlinear equations
for electromagnetic fields
W.I. FUSHCHYCH, I.M. TSYFRA, V.M. BOYKO

We construct nonlinear representations of the Poincaré, Galilei, and conformal algebras
on a set of the vector-functions Ψ = ( �E, �H). A nonlinear complex equation of Euler
type for the electromagnetic field is proposed. The invariance algebra of this equation
is found.

1. Introduction
It is well known that the linear representations of the Poincaré algebra AP (1, 3)

and conformal algebra AC(1, 3), with the basis elements

Pµ = igµν∂ν , Jµν = xµPν − xνPµ + Sµν , (1)

D = xνP ν − 2i, (2)

Kµ = 2xµD − (xνxν)Pµ + 2xνSµν , (3)

is realized on the set of solutions of the Maxwell equations for the electromagnetic
field in vacuum (see e.g. [1, 2])

∂ �E

∂t
= rot �H,

∂ �H

∂t
= −rot �E, (4)

div �E = 0, div �H = 0. (5)

Here Sµν realize the representation D(0, 1) ⊕ D(1, 0) of the Lorentz group.
Operators (1)–(3) satisfy the following commutation relations:

[Pµ, Pν ] = 0, [Pµ, Jαβ ] = i(gµαPβ − gµβPα), (6)

[Jαβ , Jµν ] = i(gβµJαν + gανJβµ − gαµJβν − gβνJαµ), (7)

[D,Pµ] = −iPµ, [D,Jµν ] = 0, (8)

[Kµ, Pα] = i(2Jαµ − 2gµαD), [Kµ, Jαβ ] = i(gµνKβ − gµβKα), (9)

[Kµ,D] = −iKµ, [Kµ,Kν ] = 0, µ, ν, α, β = 0, 1, 2, 3. (10)

In this paper the nonlinear representations of the Poincaré, Galilei, and conformal
algebras for the electromagnetic field �E, �H are constructed. In particular, we prove
that the continuity equation for the electromagnetic field is not invariant under the
Lorentz group if the velocity of the electromagnetic field is taken in accordance with
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the Poynting definition. Conditional symmetry of the continuity equation is studied.
The complex Euler equation for the electromagnetic field is introduced. The symmetry
of this equation is investigated.

2. Formulation of the main results
The operators, realizing the nonlinear representations of the Poincaré algebras

AP (1, 3) = 〈Pµ, Jµν〉, AP1(1, 3) = 〈Pµ, Jµν ,D〉, and conformal algebra AC(1, 3) =
〈Pµ, Jµν ,D, Kµ〉, have the structure

Pµ = ∂xµ
, (11)

Jkl = xk∂xl
− xl∂xk

+ Skl, (12)

J0k = x0∂xk
+ xk∂x0 + S0k, k, l = 1, 2, 3, (13)

D = xµ∂xµ
, (14)

K0 = x2
0∂x0 + x0xk∂xk

+ (xk − x0E
k)∂Ek − x0H

k∂Hk , (15)

Kl = x0xl∂x0 + xlxk∂xk
+ [xkEl − x0(ElEk − H lHk)]∂Ek +

+ [xkH l − x0(H lEk + ElHk)]∂Hk ,
(16)

where

Skl = Ek∂El − El∂Ek + Hk∂Hl − H l∂Hk ,

S0k = ∂Ek − (EkEl − HkH l)∂El − (EkH l + HkEl)∂Hl .

The operators, realizing the nonlinear representations of the Galilei algebras
AG(2)(1, 3) = 〈Pµ, Jkl, G

(2)
k 〉, AG

(2)
1 (1, 3) = 〈Pµ, Jkl, G

(2)
k ,D〉 have the form:

Pµ = ∂xµ
, Jkl = xk∂xl

− xl∂xk
+ Skl, (17)

G2
k = xk∂x0 − (EkEl − HkH l)∂El − (EkH l + HkEl)∂Hl , (18)

D = x0∂x0 + 2xk∂xk
+ Ek∂Ek + Hk∂Hk . (19)

We see by direct verification that all represented operators satisfy the commutation
relations of the algebras AP (1, 3), AC(1, 3), AG(1, 3).

3. Construction of nonlinear representations
In order to construct the nonlinear representations of Euclid-, Poincaré-, and Gali-

lei groups and their extensions the following idea was proposed in [2, 3]: to use
nonlinear equations invariant under these groups; it is necessary to find (point out,
guess) the equations, which admit symmetry operators having a nonlinear structure.
Such equation for the scalar field u(x0, x1, x2, x3) is the eikonal equation

∂u

∂xµ

∂u

∂xµ
= 0, µ = 0, 1, 2, 3 (20)

which is invariant under the conformal algebra AC(1, 3) with the nonlinear operator
Kµ [2, 3].
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The nonlinear Euler equation for an ideal fluid

∂vk

∂t
+ vl

∂vk

∂xl
= 0, k = 1, 2, 3 (21)

which is invariant under nonlinear representation of the AP (1, 3) algebra, with basis
elements

Pµ = ∂xµ
, Jkl = xk∂xl

− xl∂xk
+ vk∂vl

− vl∂vk
, (22)

J0k = xk∂0 + x0∂xk
+ ∂vk

− vkvl∂vl
, (23)

was proposed in [3] to construct the nonlinear representation for the vector field.
Note that equation (21) is also invariant with respect to the Galilei algebra AG(1, 3)
with the basis elements

Pµ = ∂xµ
, Jkl = xk∂xl

− xl∂xk
+ vk∂vl

− vl∂vk
, Ga = x0∂xa

+ ∂va
. (24)

As mentioned in [2, 3] both the Lorentz–Poincaré–Einstein and Galilean principles
of relativity are valid for system (21). We use the following nonlinear system of
equations [4]

∂Ek

∂x0
+ H l ∂Ek

∂xl
= 0,

∂Hk

∂x0
+ El ∂Hk

∂xl
= 0, (25)

for constructing a nonlinear representation of the AP (1, 3) and AG(1, 3) algebras
for the electromagnetic field. To construct the basis elements of the AP (1, 3) and
AG(1, 3) algebras in explicit form we investigate the symmetry of system (25). We
search for the symmetry operators of equations (25) in the form:

X = ξµ∂xµ
+ ηl∂El + βl∂Hl , (26)

where ξµ = ξµ(x, �E, �H), ηl = ηl(x, �E, �H), βl = βl(x, �E, �H).
Theorem 1. The maximal invariance algebra of system (25) in the class of operators
(26) is the 20-dimensional algebra, whose basis elements are given by the formulas

Pµ = ∂xµ, (27)

J
(1)
kl = xk∂xl

− xl∂xk
+ Ek∂El − El∂Ek + Hk∂Hl − H l∂Hk , (28)

J
(2)
kl = xk∂xl

+ xl∂xk
+ Ek∂El + El∂Ek + Hk∂Hl + H l∂Hk , (29)

G(1)
a = x0∂xa

+ ∂Ea + ∂Ha , (30)

G(2)
a = xa∂x0 − EaEk∂Ek − HaHk∂Hk , (31)

D0 = x0∂x0 − El∂El − H l∂Hl , (32)

D1 = x1∂x1 + E1∂E1 + H1∂H1 , (33)

D2 = x2∂x2 + E2∂E2 + H2∂H2 , (34)

D3 = x3∂x3 + E3∂E3 + H3∂H3 . (35)
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Proof. To prove theorem 1 we use Lie’s algorithm. The condition of invariance of the
system L( �E, �H), i.e. (25), with respect to operator X has the form

X
1

L
∣∣∣
L=0

= 0, (36)

where

X
1

= X + [Dα(ηl) − El
jDα(ξj)]∂El

α
+ [Dα(βl) − H l

jDα(ξj)]∂Hl
α
,

El
α =

∂El

∂xα
, H l

α =
∂H l

∂xα
, l = 1, 2, 3; α = 0, 1, 2, 3

is the prolonged operator. From the invariance condition (36) we obtain the system of
equations which determine the coefficient functions ξµ, ηl, βl of the operator (26):

ηl
k = 0, ηl

0 = 0, βl
k = 0, βl

0 = 0, ξµ
αν = 0, ξµ

Ea = 0, ξµ
Ha = 0,

ηk = −Ekξ0
0 + ξk

0 + Eaξk
a − EaEkξ0

a,

βk = −Hkξ0
0 + ξk

0 + Haξk
a − HaHkξ0

a,

(37)

where

ηl
k =

∂ηl

∂xk
, ηl

0 =
∂ηl

∂x0
, ξµ

Ea =
∂ξµ

∂Ea
, ξµ

αν =
∂2ξµ

∂xα∂xν
.

Having found the general solution of system (37), we get the explicit form of all
the linear independent symmetry operators of system (25), which have the structure
(27)–(35). Operators of Lorentz rotations J0k is given by the linear combination of
the Galilean operators G

(1)
k and G

(2)
k :

J0k = G
(1)
k + G

(2)
k . (38)

All the following statements, given here without proofs, can be proved in analogy
with the above-mentioned scheme.

4. The finite transformations and invariants
We present some finite transformations which are generated by the operators J0k:

J01 : x0 → x′
0 = x0 ch θ1 + x1 sh θ1,

x1 → x′
1 = x1 ch θ1 + x0 sh θ1,

x2 → x′
2 = x2, x3 → x′

3 = x3,

(39)

E1 → E1′
=

E1 ch θ1 + sh θ1

E1 sh θ1 + ch θ1
, H1 → H1′

=
H1 ch θ1 + sh θ1

H1 sh θ1 + ch θ1
,

E2 → E2′
=

E2

E1 sh θ1 + ch θ1
, H2 → H2′

=
H2

H1 sh θ1 + ch θ1
,

E3 → E3′
=

E3

E1 sh θ1 + ch θ1
, H3 → H3′

=
H3

H1 sh θ1 + ch θ1
.

(40)
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The operators J02, J03 generate analogous transformations. θ1 is the real group
parameter of the geometric Lorentz transformation. Operators G

(2)
k generate the

following transformations:

G
(2)
1 : x0 → x′

0 = x0 + θ1x1, xk → x′
k = xk,

Ek → Ek′
=

Ek

1 + θ1E1
, Hk → Hk′

=
Hk

1 + θ1H1
.

Analogous transformations are generated by the operators G
(2)
2 , G

(2)
3 . Operators G

(1)
k

generate the following transformations:

G
(1)
1 : x0 → x′

0 = x0, x1 → x′
1 = x1 + x0θ1,

x2 → x′
2 = x2, x3 → x′

3 = x3,

E1 → E1′
= E1 + θ1, H1 → H1′

= H1 + θ1,

E2 → E2′
= E2, E3 → E3′

= E3,

H2 → H2′
= H2, H3 → H3′

= H3.

The operators G
(1)
2 , G

(1)
3 generate analogous transformations.

It is easy to verify that

I1 =

(
1 − �E �H

)2

(
1 − �E2

) (
1 − �H2

) , �E2 �= 1, �H2 �= 1 (41)

is invariant with respect to the nonlinear transformations of the Poincaré group which
are generated by representations (28), (38).

The invariant of the Galilei group which is generated by representations (28), (31)
has the form:

I2 =
�E2 �H2(
�E �H

)2 , (42)

whereas the Galilei group which is generated by representations (28), (30) has the
invariant

I3 = ( �E − �H)2. (43)

5. Complex Euler equation for the electromagnetic field
Let us consider the system of equations

∂Σk

∂x0
+ Σl ∂Σk

∂xl
= 0, Σk = Ek + iHk. (44)

The complex system (44) is equivalent to the real system of equations for �E and �H

∂Ek

∂x0
+ El ∂Ek

∂xl
− H l ∂Hk

∂xl
= 0,

∂Hk

∂x0
+ H l ∂Ek

∂xl
+ El ∂Hk

∂xl
= 0.

(45)



278 W.I. Fushchych, I.M. Tsyfra, V.M. Boyko

The following statement has been proved with the help of Lie’s algorithm.

Theorem 2. The maximal invariance algebra of the system (45) is the 24-dimensio-
nal Lie algebra whose basis elements are given by the formulas

Pµ = ∂xµ
,

J
(1)
kl = xk∂xl

− xl∂xk
+ Ek∂El − El∂Ek + Hk∂Hl − H l∂Hk ,

J
(2)
kl = xk∂xl

+ xl∂xk
+ Ek∂El + El∂Ek + Hk∂Hl + H l∂Hk ,

G
(1)
a = x0∂xa

+ ∂Ea ,

G
(2)
a = xa∂x0 − (EaEk − HaHk)∂Ea − (EaHk + HaEk)∂Hk ,

D0 = x0∂x0 − Ek∂Ek − Hk∂Hk ,

Da = xa∂xa
+ Ea∂Ea + Ha∂Ha (no sum over a),

K0 = x2
0∂x0 + x0xk∂xk

+ (xk − x0E
k)∂Ek − x0H

k∂Hk ,

Ka = x0xa∂x0 + xaxk∂xk
+ [xkEa − x0(EaEk − HaHk)]∂Ek +

+ [xkHa − x0(HaEk + EaHk)]∂Hk .

(46)

The algebra, engendered by the operators (46), include the Galilei algebras
AG(1)(1, 3), AG(2)(1, 3) and Poincaré algebra AP (1, 3), and conformal algebra
AC(1, 3) as subalgebras. Operators G

(2)
a generate the linear geometrical transforma-

tions in R(1, 3)

x0 → x′
0 = x0 + θaxa (no sum over a), xl → x′

l, (47)

as well as the nonlinear transformations of the fields

El + iH l → El′ + iH l′ =
El + iH l

1 + θa(Ea + iHa)
(no sum over a),

El − iH l → El′ − iH l′ =
El − iH l

1 + θa(Ea − iHa)
.

(48)

The invariant of the group G(2)(1, 3) is

I4 =

(
�E2 − �H2

)
+ 4

(
�E �H

)2

(
�E2 + �H2

)2 . (49)

Operators J0k generate the linear transformations in R(1, 3)

x0 → x′
0 = x0 ch θk + x0 sh θk,

xk → x′
k = xk ch θk + x0 sh θk (no sum over k),

xl → x′
l = xl, if l �= k,

(50)

as well as the nonlinear transformations of the fields

Ek + iHk → Ek′
+ iHk′

=
(Ek + iHk) ch θk + sh θk

(Ek + iHk) sh θk + ch θk
,

Ek − iHk → Ek′ − iHk′
=

(Ek − iHk) ch θk + sh θk

(Ek − iHk) sh θk + ch θk
.
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If l �= k, then

El + iH l → El′ + iH l′ =
El + iH l

(Ek + iHk) sh θk + ch θk
,

El − iH l → El′ − iH l′ =
El − iH l

(Ek − iHk) sh θk + ch θk
(no sum over k).

(51)

The invariant of group P (1, 3) is

I5 =
1 − 2

[
( �E2 − �H2) − 1

2 ( �E2 − �H2)2 − 2( �E �H)2
]

[
1 − ( �E2 + �H2)

]2 , �E2 + �H2 �= 1. (52)

The operator K0 generates the following nonlinear transformations in R(1, 3) and
linear transformations of the fields

xµ → x′
µ =

xµ

1 − θ0x0
,

Ek → Ek′
= Ek + θ0(xk − x0E

k),

Hk → Hk′
= Hk(1 − θ0x0).

(53)

The operators Ka generate nonlinear transformations in both R(1, 3) and of the fields

x0 → x′
0 =

x0

1 − xaθa
, xa → x′

a =
xa

1 − xaθa
.

If k �= a, then

xk → x′
k =

xk

1 − xaθa
,

Ea + iHa → Ea′
+ iHa′

=
Ea + iHa

1 + θa[x0(Ea + iHa) − xa]
,

Ea − iHa → Ea′ − iHa′
=

Ea − iHa

1 + θa[x0(Ea − iHa) − xa]
.

If k �= a, then

Ek + iHk → Ek′
+ iHk′

=
Ek + iHk + θa(Ea + iHa)xk

1 + θa[x0(Ea + iHa) − xa]
,

Ek − iHk → Ek′ − iHk′
=

Ek − iHk + θa(Ea − iHa)xk

1 + θa[x0(Ea − iHa) − xa]
(no sum over a).

(54)

Note 1. Setting �Σ = a�E + ib �H, where a, b are arbitrary functions of the invariants
�E2, �H2, �E �H, we obtain more general form of the equation (44). The equation

∂Σk

∂x0
+ Σl ∂Σk

∂xl
= F ( �E �H, �E2, �H2)Σk

is invariant only under some subalgebras of algebra (46) depending on the choice of
function F .
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Note 2. If we analyse the symmetry of the following equations(
∂

∂x0
+ El ∂

∂xl
+ H l ∂

∂xl

)
Ek = 0,

(
∂

∂x0
+ El ∂

∂xl
+ H l ∂

∂xl

)
Hk = 0;

(∗)

or

∂Ek

∂x0
= ±

(
El ∂

∂xl
+ H l ∂

∂xl

)
Hk,

∂Hk

∂x0
= ±

(
El ∂

∂xl
+ H l ∂

∂xl

)
Ek,

(∗∗)

we obtain concrete examples of nonlinear representations for the Poincaré and Galilei
algebras. This problem will be considered in a future paper.

6. Symmetry of the continuity equation and the Poynting vector
Let us consider the continuity equation for the electromagnetic field

L( �E, �H) ≡ ∂ρ

∂x0
+ div ρ�v = 0. (55)

According to the Poynting definition ρ and ρvk have the forms

ρ =
1
2
( �E2 + �H2), ρvk = εklnElHn. (56)

Theorem 3. The nonlinear system (55), (56) is not invariant under the Lorentz
algebra, with basis elements:

Jkl = xk∂xl
− xl∂xk

+ Ek∂El − El∂Ek + Hk∂Hl − H l∂Hk ,

J0k = xk∂x0 + x0∂xk
+ εkln(El∂Hn − H l∂En), k, l, n = 1, 2, 3.

(57)

To prove theorem 3 it is necessary to substitute ρ and ρvk, from formulas (56),
to equation (55) and to apply Lie’s algorithm, i.e., it is necessary to verify that the
invariance condition

J
1
µν

(
L( �E, �H)

)∣∣∣
L=0

≡ 0 (58)

is not satisfied, where J
1

µν is the first prolongation of the operator Jµν .

Theorem 4. The continuity equation (55), (56) is conditionally invariant with
respect to the operators Jµν , given in (57) if and only if �E, �H satisfy the Maxwell
equation (4), (5).

Thus the continuity equation, which is the mathematical expression of the conser-
vation law of the electromagnetic field energy and impulse is not Lorentz-invariant if
�E, �H does not satisfy the Maxwell equation. A more detailed discussion on conditional
symmetries can be found in [1, 2].

The following statement can be proved in the case when

ρ = F 0( �E, �H) and ρvk = F k( �E, �H), (59)

where F 0, F k are arbitrary smooth functions F 0 �≡ 0, F k �≡ 0.
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Theorem 5. The continuity equation (55), (59) is invariant with respect to the
classic geometrical Lorentz transformations if and only if

r(B) = 4, (60)

where r(B) is the rank of the Jacobi matrix of functions Fµ.
In conclusion we present some statements about the symmetry of the following

systems:

∂ �E

∂x0
= rot �H + �F1( �E, �H),

∂ �H

∂x0
= −rot �E + �F2( �E, �H),

div �E = R1( �E, �H), div �H = R2( �E, �H),
(61)

∂(R�E)
∂x0

= rot (R �H),
∂N �H

∂x0
= −rot (N �E),

div (R�E) = 0, div (N �H) = 0.
(62)

Here

R = R(W1,W2), N = N(W1,W2), W1 = �E2 − �H2, W2 = �E �H.

div (R�E + N �H) = 0. (63)

Theorem 6. The system of equations (61) is invariant under the Lorentz algebra
with the basis elements (57) if and only if

�F1 ≡ �F2 ≡ 0, R1 ≡ R2 ≡ 0.

Theorem 7. The system of equations (62) is invariant under the Lorentz algebra
(57) if R and N are arbitrary functions of the invariants W1 = �E2− �H2, W2 = �E �H.
Theorem 8. The equation (63) is invariant under the Lorentz algebra with the basis
elements (57) if and only if �E, �H satisfy the system of equations

∂(R�E + N �H)
∂x0

= rot (R �H − N �E).

Thus it is established that, besides the generally recognized linear representation of
the Lorentz group discovered by Henry Poincaré in 1905 [5], there exists the nonlinear
representation constructed by using the nonlinear equations of hydrodynamical ty-
pe [4]. It is obvious that for instance the linear superposition principle does not hold
for a non-Maxwell electrodynamic theory based on the equation (25) or (45).

The nonlinear representations for the algebras AG(1, 3), AP̃ (1, 2), AP̃ (2, 2),
AC(1, 2), AC(2, 2) for a scalar field have been considered in [6], AP (1, 1) in [7],
and AP (1, 2) in [8].
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