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On unique symmetry of two nonlinear
generalizations of the Schrödinger equation
W.I. FUSHCHYCH, R.M. CHERNIHA, V.I. CHOPYK

We prove that two nonlinear generalizations of the nonlinear Schrödinger equation
are invariant with respect to a Lie algebra that coincides with the invariance algebra
of the Hamilton–Jacobi equation.

Nowadays many authors, who start from various physical considerations, have
suggested a wide spectrum of nonlinear equations which can be considered as some
nonlinear generalizations of the classical Schrödinger equation. It is necessary to note
that some of the suggested equations do not satisfy the Galilean relativistic principle.
As a rule this requirement is not used in construction of nonlinear generalizations.
Meantime it is well known that the linear Schrödinger equation is compatible with
the Galilean relativistic principle and, besides, is invariant with respect to scale and
projective symmetries (see, e.g. [1] and references cited therein).

In the [1–6] the construction of nonlinear generalizations of the Schrödinger equa-
tion was based on the idea of symmetry and the following problems were solved:

1. Nonlinear Schrödinger equations, which are compatible with the Galilean relati-
vistic principle, are described.

2. All nonlinear equations, which preserve nontrivial AG2(1, n)-symmetry of the
linear Schrödinger equation, are constructed.

Let us adduce some nonlinear generalizations of the Schrödinger equation that
have AG2(1, n)-symmetry, namely:

iUt + ∆U = λ1|U |4/nU, [1, 2] (1)

iUt + ∆U = λ1
|U |a|U |a
|U |2 U, [3, 4] (2)

iUt + ∆U = λ1
∆|U |2
|U |2 U, [6] (3)

where U = U(t, x) is an unknown differentiable complex function, Ut ≡ ∂U
∂t , ∆ ≡

∂2

∂x2
1

+ · · · + ∂2

∂x2
n
, x = (x1, . . . , xn), |U | =

√
UU∗, |U |a ≡ ∂|U |

∂Xa
, and ∗ is the sign of

complex conjugation.
Consider the generalization of the nonlinear Schrödinger equations (2)–(3) of the

following form

iUt + ∆U =
(

1
2
λ0

∆|U |2
|U |2 − λ1

|U |a|U |a
|U |2 +

1
2
λ2 ln

U

U∗

)
U, (4)

where λk = ak + ibk, ak and bk ∈ R, k = 0, 1, 2.
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It is easily seen that some nonlinear equations, which have been suggested by
many authors as mathematical models of quantum mechanical, are particular cases
of this nonlinear generalization of the Schrödinger equation. Indeed, we obtain from
equation (4) (for λ0 = λ1 and λ2 = ib2) the following equation

iUt + ∆U =

(
λ1

∆|U |
|U | + ib2 ln

(
U

U∗

)1/2
)
U, (5)

which was proposed in [7] for the stochastic interpretation of quantum mechanical
vacuum dissipative effects.

Equation (5) for b2 = 0 reduces to the form

iUt + ∆U = λ1
∆|U |
|U | U, (6)

which was studied in [7–11]. The term on the right hand side of (6) takes into consi-
deration the effect of quantum diffusion. In all these papers the authors, starting from
some physical models, assumed that the parameters Reλ1 and b2 in (5) and (6) are
small (λ1 �= 0, b2 �= 0).

The main purpose of the present paper is to draw attention to equation (5). If we
reject the mentioned assumptions as it was done in all mentioned papers [7–11] and
put λ1 = 1, then the equations

iUt + ∆U =
∆|U |
|U | U (7)

and

iUt + ∆U =

(
∆|U |
|U | + ib2 ln

(
U

U∗

)1/2
)
U (8)

have the unique symmetry, which is the same as symmetry as of the Hamilton–Jacobi
equation [1].

It means that the nonlinear second-order term ∆|U |/|U | changes and essentially
extends symmetry of the linear Schrödinger equation.

Let us note that equation (7) for n = 2 can be obtained from the nonlinear
hyperbolic equation [12]

|ψ|�ψ − ψ� |ψ| = 0,

where ψ = ψ(y0, y), y = (y1, y2, y3), � = ∂2

∂y2
0
− ∂2

∂y2
1
− ∂

∂y2
2
− ∂2

∂y2
3
, by means of the

ansatz

ψ = ϕ(t, x1, x2) exp(aµyµ), t = bµyµ, x1 = cµyµ, x2 = dµyµ,

where the parameters aµ, bµ, cµ, dµ, µ = 0, 1, 2, 3 satisfy the following conditions:

aµbµ = 1, bµcµ = cµaµ = aµdµ = dµcµ = 0, a2
µ = d2

µ = −1.

Now let us formulate theorems which give the complete information about local
symmetry properties of equation (4).
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Statement 1. Equation (4) for arbitrary complex constants λ0, λ1 and λ2 is invariant
with respect to the Lie algebra with the basic operators

Pt =
∂

∂t
, Pa =

∂

∂xa
, I = U

∂

∂U
+ U∗ ∂

∂U∗ ,

Jab = xaPb − xaPb, a, b = 1, . . . , n,
(9)

X =



(

2a2

b2
I +Q

)
exp b2t, b2 �= 0,

2a2tI +Q, b2 = 0,
(10)

where Q = i
(
U ∂

∂U − U∗ ∂
∂U∗

)
.

Statement 2. Equation (4) for λ2 = ib2 is invariant with respect to the Lie algebra
with the basic operators (9) and

Ga = exp(b2t)Pa +
b2
2
xaQ1, Q1 =

1
2

exp(b2t)Q. (11)

Note that the algebra AG(1, n) with basic operators (9) (without I) and (11) is
essentially different from the well-known Galilei algebra AG(1, n) in that it contains
commutative relations [Pt,Ga] = b2Ga, [Pt, Q1] = b1Q1, since in the AG(1, n) algebra
[Pt, Ga] = Pa, [Pt, Q] = 0.

The operators Ga generate the following transformations

t′ = t, x′a = xa + va exp(b2t), a = 1, . . . , n,

U ′ = U exp
[
i
b2
2

exp(b2t)
(
xava +

vava

2
exp(b2t)

)]
,

(12)

where v1, . . . , vn are arbitrary real group parameters.
Some classes of equations with the AG(1, n)-symmetry were constructed and stu-

died in [4] (see the part II), [13].
Statement 3. Equation (4) for λ2 = 0 is invariant with respect to the Lie algebra
with the basic operators (9) and

Ga = tPa +
xa

2
Q, Q, D = 2tPt + xaPa − n

2
I,

Π = t2Pt + txaPa +
|x|2
4

Q− nt

2
I.

(13)

It is clear that operators (9) and (13) generate the well known generalized Galilei
algebraAG2(1, n) with the additional unit operator I. The linear Schrödinger equation

iUt + ∆U = 0 (14)

is invariant with respect to the 〈AG2(1, n), I〉 algebra, too. It is well known that
operators Ga, a = 1, . . . , n generate the Galilean transformations

t′ = t, x′a = xa + vat, U ′ = U exp
[
i

2

(
xava +

vava

2
t
)]

(15)

which are essentially different from (12).
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So, equation (5) for arbitrary λ1 and b2 �= 0, which is a particular case of equa-
tion (4), is invariant with respect to the algebra 〈AG(1, n), I〉, but in the case b2 = 0
(see equation (6)) it has the AG2(1, n)-symmetry with the additional unit operator I.
Statement 4. Equation (5) for λ1 = 1 and b2 = 0 (see equation (7)) is invariant
with respect to the Lie algebra with the basic operators (9), (13) and

G1
a = −i ln U

U∗Pa + xaPt, D1 = −i ln U

U∗Q+ xaPa,

Π1 = −
(

ln
U

U∗

)2

Q− 2i ln
U

U∗xaPa + |x|2Pt + in ln
U

U∗ I,

Ka = txaPt −
( |x|2

2
+ it ln

U

U∗

)
Pa + xaxbPb − n

2
xaI − ixa

2
ln

U

U∗Q.

(16)

If we make the substitution U = ρ exp iW , where ρ and W are real functions, then
operators (16) are simplified, and we can note that the algebra (9), (13) and (16) is
that of the Hamilton–Jacobi equation. So, equation (7) has the same algebra of Lie
symmetries as the classical Hamilton–Jacobi equation [1].
Statement 5. Equation (5) λ1 = 1 and b2 �= 0 (see equation (8)) is invariant with
respect to the Lie algebra with the basic operators (9) and

Ga = exp(b2t)
(
Pa +

b2
4
xaQ

)
, D = exp(−b2t)(Pt + b2WQ),

Π = exp(b2t)
[

1
b2
Pt + xaPa +

(
W +

b2
4
|x|2
)
Q− n

2
I

]
,

G1
a = exp(−b2t)

[
WPa +

1
2
xaPt +

b2
2
xaWQ

]
, D1 = 2WQ+ xaPa,

Π1 = exp(−b2t)
[(
W +

b2
4
|x|2
)
WQ+WxaPa +

|x|2
4
Pt − n

2
WI

]
,

Ka =
xa

b2
Pt +

(
2
b2
W − |x|2

2

)
Pa + xaxbPb + 2xaWQ− n

2
xaI,

(17)

where W = − i
2 ln U

U∗ , the operators Q and I are defined in (9)–(10).
The algebra (9), (13), (16) and one (9), (17) contain the same numbers of basic

operators. Moreover, we found the following substitution

|U | = |V |, U

U∗ =
(
V

V ∗

)exp(b2t)

, V = V (τ, x), τ =
1
b2

exp(b2t) (18)

that reduces the algebra (9), (17) to one (9), (13), (16) for the variables V, τ, x1, . . . , xn.
It is easily proved that the substitution (18) reduces equation (8) to equation (7) for
the function V . So, equation (8) and equation (7) are locally equivalent equations,
and are invariant with respect to the algebra of the Hamilton–Jacobi equation.

Note that in [6] the coupled system of Hamilton–Jacobi equations was constructed,
which preserves the Lie symmetry of the single Hamilton–Jacobi equation. On the
other hand, in [14] generalizations of the Hamilton–Jacobi equations for a complex
function were constructed, which are invariant with respect to subalgebras of the
algebra of the Hamilton–Jacobi equation.
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Finally, we consider the last case, where equation (4) has the nontrivial Lie sym-
metry. In this case equation (4) has the form

iUt + ∆U =
(

∆|U |
|U | +

1
2
λ2 ln

U

U∗

)
U. (19)

It is easily checked that equation (19) for λ2 = a2 + ib2 can be reduced with the
help of substitution (18) to the same equation but with λ2 = a2. So, we assume that
b2 = 0 in equation (19).
Statement 6. Equation (19) for λ2 = a2 ∈ R is invariant with respect to the Lie
algebra with the basic operators (9), (10) at b2 = 0, and

D1 = 2tPt + xaPa, D2 = tPt +
i

4
ln

U

U∗ Q.

Note. The substitution

U = ρ exp iW,

where ρ(t, x) and W (t, x) are real functions, reduces equation (7) to the following
system

∂ρ

∂t
= −ρ∆W − 2

∂ρ

∂xa

∂W

∂xa
,

∂W

∂t
+
∂W

∂xa

∂W

∂xa
= 0,

in which the second equation is the Hamilton–Jacobi one.
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