Professor, Dr. Leonid NIZHNIK


Department of Functional Analysis
Institute of Mathematics NAS of Ukraine

Address:
Email: nizhnik (#) imath . kiev . ua
Fax: +(38044) 235 20 30
Room 406

Institute of Mathematics, Tereschenkivska 3, Kiev, 01 024, Ukraine.


MAIN RESEARCH ACTIVITIES

in functional analysis, differential equations, mathematical physics, numerical and applied mathematics.
In particular:


L.Nizhnik was awarded the State Prize of Ukraine in Science and Technology (1987, 1998) and Ostrogradskii Prize NAS of Ukraine (2006).

He is the author of 4 monographs and over 170 research papers.


RECENT PUBLICATIONS
  1. P.A. Cojuhari and L.P. Nizhnik (2019): Scattering problem for Dirac system with nonlocal potentials, Methods Funct. Anal. Topology, Vol. 25 , no. 3, 211-218.

  2. K. Dębowska and L. Nizhnik (2019): Direct and inverse spectral problems for Dirac systems with nonlocal potentials, Opuscula Mathematics, 39, no. 5, 645-673.

  3. Nizhnik, L. (2018): On the inverse eigenvalue problems for a Jacobi matrix with mixed given data, Methods of Funct. Anal. Topology, Vol. 24, no. 2, 178–186.

  4. Kuzhel, S. and Nizhnik, L. (2018): Phillips symmetric operators and their extensions, Banach J. Math. Anal., 12, no. 4, 995–1016.

  5. Cojuhari, P. and Nizhnik, L. (2017): Hochstadt inverse eigenvalue problem for Jacobi matrices, J. Math. Anal. Appl., 455, 439–451.

  6. Nizhnik, L. and Rabanovich, S. (2017): On new inverse spectral problems for weighted graphs, Methods of Funct. Anal. Topology, Vol. 23, no. 1, 66–75.

  7. Nizhnik, L. (2015): Inverse spectral problems for Jacobi matrix with finite perturbed parameters, Methods Funct. Anal. Topology, Vol 21, 3, 256-265.

  8. Lebid’,V. and Nizhnik, L. (2015): Spectral analysis of some graphs with infinite chains, Ukr. Math. J., 66, no.9, 1333-1345.

  9. Lebid’,V. and Nizhnik, L. (2014): Spectral analysis of locally finite graphs with one infinite chain, Reports of the National Academy of Sci of Ukraine, no.3, 29–35.

  10. Brasche, J. and Nizhnik, L. (2013): One-dimensional Schrödinger operators with general point interactions, Methods Funct. Anal.Topology, Vol 19, 1, 4-15.

  11. Albeverio, S. and Nizhnik, L. (2013): Schrödinger operators with nonlocal potentials, Methods Funct. Anal.Topology, Vol 19, 3, 199-210.

  12. Brasche, J. and Nizhnik, L. (2013): One-dimensional Schrödinger operators with δ'-interactions on a set of Lebesgue measure zero, Operators and Matrices, Vol.7, 4, 887-904.

  13. Nizhnik, L. (2012): Inverse eigenvalue problems for nonlocal Sturm-Liouville operators on a star graph, Methods Funct. Anal.Topology, Vol 18, 1, 68 - 78.

  14. Berezansky, Yu. M., Brasche, J. and Nizhnik, L. P. (2011): On generalized selfadjoint operators on scales of Hilbert spaces, Methods Funct. Anal. Topology, Vol 17, 3, 193-198.

  15. Nizhnik, L. (2011): Inverse spectral nonlocal problem for the first order ordinary differential equation, Tamkang J. Mathematics, 42 , 3, 385-394.

  16. Dudkin, M. E., Nizhnik, L. P. (2010): Singularly perturbed normal operators, Methods Funct. Anal. Topology, Vol 16, 4, 298-303.

  17. Nizhnik, L. (2009): Inverse eigenvalue problems for nonlocal Sturm-Liouville operators, Methods Funct. Anal. Topology, Vol 15, 1, 41-47.

  18. Albeverio, S., Kuzhel, S. and Nizhnik, L. (2008): On the Perturbation Theory of Self-Adjoint Operators, Tokyo Journal of Mathematics, Vol 31, 2, 273-292.

  19. Albeverio, S. and Nizhnik, L. (2007): Schrödinger operators with nonlocal point interactions, J.Math. Anal. Appl., Vol 332, 2, 884-895.

  20. Albeverio, S., Kuzhel, S. and Nizhnik, L. (2007): Singularly Perturbed Self-Adjoint Operators in Scales of Hilbert spaces, Ukrain. Math. J., Vol 59, 6, 723-743.

  21. Albeverio, S., Hryniv, R. and Nizhnik, L. (2007): Inverse spectral problems for non-local Sturm-Liouville operators, Inverse Problems, 23, 523-535.

  22. Albeverio, S. and Nizhnik, L. (2006): A Schrödinger operator with δ'-interaction on a Cantor set and Krein-Feller operators, Mathematische Nachrichten, 279, No. 5-6, 467-476.

  23. Nizhnik, L. (2006): A one-dimensional Schrödinger operators with point interactions on Sobolev spaces, J. Funct. Anal. Appl., 40, n. 2, 143-147.

  24. Kuzhel, S. and Nizhnik, L. (2006): Finite Rank Self-Adjoint Perturbations, Methods Funct. Anal. Topology, 12, n. 3, 243-253.


Last updated 28.10.2019

© Irene Nizhnik, 2005.