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P R O J E C T I O N - I T E R A T I O N  M E T H O D  O F  S O L U T I O N  O F  T H E  

E Q U A T I O N S  O F  Q U A N T U M  F I E L D  T H E O R Y  A N D  I T S  C O N N E C T I O N  

W I T H  T H E  T H E O R Y  O F  R E N O R M A L I Z A T I O N .  

THE EQUATIONS OF QUANTUM FIELD THEORY AND IMPROPERLY POSED 

PROBLEMS OF MATHEMATICAL PHYSICS 

D . Y a .  P e t r i n a  and A . L .  R e b e n k o  

The equations f o r  the coeff icient  functions of the S ma t r ix  a re  cons idered  in Euclidean 
s p a c e - t i m e  with dimension d = 4. It is shown that they can be defined in a pa i r  of 
fundamental  spaces  of t rans la t iona l ly  invar iant  functions.  The p rob lem of finding the 
solutions to such equations is i m p r o p e r l y  posed,  and the re fo re  the i te ra t ive  method of 
solution leads  to the appearance  of u l t ravio le t  d ive rgences .  A p ro j ec t i on - i t e r a t i on  
method of solution is const ructed that leads to a r eno rma l i zed  per turba t ion  s e r i e s .  It 
is shown that the r eno rma l i zed  per turba t ion  s e r i e s  is a quasisolut ion to the or iginal  
equations.  

1 .  I n t r o d u c t i o n  

His tor ica l ly ,  the equations of quantum field theory  have been solved by per turba t ion  theory .  
Divergences  have been encountered in the higher  o r d e r s  of the theory ,  and these  have been el iminated by  
means  of Bogolyubov's  subt rac t ional  p rocedure .  Because  of the occu r r ence  of the d ivergences ,  the opinion 
has  a r i s en  (see, for  example ,  [1]} that the or iginal  equations have no meaning,  that  they a re  in ternal ly  con -  
t r ad ic to ry .  The i r  pe r tu rba t ive  solutions a re  also mean ing less ,  although the per turbat ion  s e r i e s  r eno rma l i zed  
by means  of the subt rac t ional  p rocedure  leads in individual c a s e s  (for example ,  in quantum elect rodynamics} 
to good ag reemen t  with the e x p e r i m e n t s .  

Another view has  been put forward ,  namely ,  that the equations of field theory  a re  cons is tent  and 
that the d ivergences  a r e  due to the use  of per turba t ion  theory  and would not a r i s e  in a nonper turbat ive  
approach .  There  now exis t  methods  of invest igat ion that do not use  per turba t ion  theory  [2, 3~ 4], but as yet 
they have been applied only to models  in two-dimensional  space - t ime ;  it is not known what happens to the 
models  in four -d imens iona l  s p a c e - t i m e .  

In the pioneer ing pape r s  of Bogolyubov and Pa rasyuk  [5-7] it was shown that the d ivergences  of the 
contr ibut ions f rom the Feynman d i a g r a m s  a r i s e  f rom the c i r cums tance  that these  a re  e x p r e s s e d  by  in tegra l s  
of products  of genera l ized  functions, and the products  a r e  not defined for  coincident a rguments  {in the con-  
f iguration space}. If the definition of the product  is modified appropr ia te ly ,  the in tegral  of it converges ,  and 
this gives the r eno rma l i zed  contr ibution of the Feyaman  d i ag ram.  In the momen tum space  and in the Euclidean 
region,  the contr ibut ions f rom the Feynman d i ag rams  a re  exp res sed  by means  of in tegra l s  of a product  of 
o rd ina ry  functions,  which dec r ea s e  weakly at  infinity, so that the in tegra l s  d iverge (ultraviolet  d ive rgences ) .  

A g rea t  success  was the proof  that the contr ibution f rom an a r b i t r a r y  d iag ram can be r e n e r m a l i z e d  
by  means  of the subt rac t ional  p rocedure  (R operation) [5-71, which was developed fu r the r  in [8-11]. 
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Late r ,  it was found that one can wri te  down renorma l i zed  equations for  the G r e e n ' s  functions or  
coeff icient  functions [12-14] which have the p r o p e r t y  that the i r  per turba t ion  s e r i e s  no longer  contain d i v e r -  
gences  in the i r  individual t e r m s ,  i . e . ,  in the r eno rma l i zed  contr ibut ions f rom the Feynman d i a g r a m s .  

On the bas i s  of these  facts  the re  has  developed in quantum field theory  a definite view as to how 
the equations encountered in the invest igat ion of the models  a r e  to be solved.  Br ief ly ,  the s y s t e m  of ru les  
can be formula ted  as  follows: 

1) the or iginal  equations (for the G r e e n ' s  functions, coefficient  functions,  e t c . )  deduced f rom the 
unrenormal i zed  Lagrangian  a r e  mean ing les s ,  s ince they lead to d ivergences  when solved by per turbat ion  
theory;  

2) the per turba t ion  s e r i e s  mus t  be r eno rma l i zed  by means  of the subt rac t ional  p rocedure ;  
3) the t rue  equations a r e  the r e n o r m a l i z e d  equations,  since the i r  solution by  per turba t ion  theory  is 

the r e n o r m a l i z e d  s e r i e s ,  which does not contain d ive rgences  in i ts  individual t e r m s .  This  point of view has 
been made into a pr inc ip le .  It developed h i s to r i ca l ly  together  with quantum field theory .  

What can one say about the above pr inc ip les  ? They contain a weak point - there  is no r igorous  
ana lys i s  of the or iginal  equations whose solution is sought by per turba t ion  theory .  The per turba t ion  s e r i e s  
were  wri t ten down a l r eady  at  the end of the f i f t ies ,  and the n e c e s s a r y  ma themat i ca l  ana lys i s  of the or iginal  
equations was not made by anyone.  Note that the contr ibut ions f rom the Feynman d i a g r a m s  were  init ial ly 
wri t ten down by Feynman without any equation [15], and it was shown la te r  by Dyson [16] that they a r i s e  on the 
solution of the equation for  the S m a t r i x .  The subtract ional  p rocedure  was developed for  the a l r eady  
exist ing exp res s ions  cor responding  to the contr ibut ions f rom the Feynman d i a g r a m s .  

Thus,  the initial equations were  solved pe r tu rba t ive ly  without the n e c e s s a r y  investigation of thei r  
ma thema t i ca l  s t ruc tu re .  

All these  equations a r e  ope ra t o r  equations,  and the unknowns in them a r e  sequences  of functions of 
an increas ing  number  of va r i ab les ;  the genera t ing  ope ra to r  which de te rmines  them ac t s  on the space of such 
sequences .  Clear ly ,  a r igorous  ma thema t i ca l  invest igat ion of these equations on the bas i s  of functional 
ana lys i s  is r equ i red .  It is n e c e s s a r y  to se lec t  a space  on which the generat ing ope ra to r  ac t s ,  find its 
domain of definition and range,  and also define the space  in which the initial data lie, if one is consider ing 
evolution equations,  or  the space  in which the f r ee  t e r m  l ies ,  if one is consider ing equations of r eso lven t  type.  

So far  as we know, such an ana lys i s  has  been made only for  the models  of a s c a l a r  field in two-  
d imensional  s p a c e - t i m e  and nonpolynomial  nonlocal models ,  i . e . ,  models  in which u l t rav io le t  d ive rgences  
do not a r i s e  (volume d ive rgences  occur  in any t rans la t iona l ly  invariant  model and have a comple te ly  different  
origin). 

In the present paper, we shall make the necessary analysis of the equations for the coefficient 
functions of the S matrix for the example of the model of a real scalar field in Euclidean four-dimensional 
space-time with interaction Lagrangian 

~(x) =-)~:~(x)~:, x=(x ~ .. ,, x3), (i.I) 

where ;~ is the coupling constant. 

We shall show that the equations for the coefficient functions can be given a well-defined mathematical 
meaning in a pair of function spaces of sequences of functions of an increasing number of arguments. The 
generating operator of these equations is unbounded, but has an everywhere dense domain of definition in the 
space of sequences of integrable functions, and its range lies in a different space of sequences of bounded 
functions. The free term does not belong to the domain of definition of the generating operator but belongs to 
its range. In addition, the powers of the generating operator are not defined on any element in the domain of 
definition or the operator itself is not defined on its range. 

It becomes clear why divergencesarise in the individual terms of the perturbation series; the 
generating operator and all its powers are not defined on the free term, but each term of the perturbation 
series involves powers of the generating operator on the free term. Because the powers of the generating 
operator are not defined, it is not possible to solve the equations for the coefficient functions perturbatively 
in the form of a series of iterations. For equations for which the domain of definition of the generating 
operator does not contain the free term, one cannot even construct a formal solution by perturbation theory. 
Equations of such type must be solved by direct methods, lee., one must find an element in the domain of 
definition of the generating operator that satisfies the equation. 
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The problem of determining solutions of the equations for the coefficient  functions and~ in general ,  
the equations of quantum field theory  can be included in the c lass  of problems that are  improper ly  posed in 
the sense of Tikhonov [17]. It is possible that the equations for the coefficient functions do not have solutions 
in the classical  sense at all but only quasisolutions in the sense of Ivanov [18]. 

When one compares  the methods of quantum field theory  and the methods of solving improper ly  posed 
problems,  one is struck by the c i rcumstance  that many approaches in these fields of science have developed 
independently in paral lel  and that even the terminology is frequently the same.  It is obvious that the use of 
the methods of solution to improper ly  posed problems in quantum field theory presents  a problem ripe for 
solution. 

In the present  paper,  we show that the renormal ized  perturbation ser ies  is a solution~ not to the 
original equation, but to some modified equation, in which the generating operator  is replaced by a product  of 
the generating opera tor  and the opera tor  of projection onto the domain of definition. Evidently, the 
renormal ized se r ies  is a formal  quasisolution. 

2 .  E q u a t i o n s  f o r  t h e  C o e f f i c i e n t  F u n c t i o n s  

2.1.  Equations of Resolvent Type. Equations of resolvent  type for the coefficient functions of the 
S matr ix  of the model (1.1) are  descr ibed in [19]. For  convenience, we write them in the momentum space 
in the Euclidean domain. We denote by F,~(p . . . . . .  p,~) the N-th coefficient function, and Pi = ( p l . ,  p~ )~ 
i = 1, 2, . . . , N ,  N = 1 ,2 ,  . . . .  The equations have the form 

I~N (Pl . . . . .  ply) - iV l -k s N! dq1.o, dqz_, • 
s~- - I  ~l~ . . .  ~ i s +  1 

(2~p 6 (p~, + . . .  + p~+~, - -q~-- . . . - -  q~-A 
YN-~, (ql . . . . .  q.~-~, Pl . . . . .  i5~1 . . . . .  i~%,, . . . .  PN). (2.1) 

Here, g . = i ,  F-,=F-~=F_3=0, q2=(q,)Z+... +(q,)Z, d q = d q ' . . ,  dq ~, and the symbol pi means that the argument  Pi 
is omitted.  

The chain of equations (2.1) can be written in the form of a single opera tor  equation for the complete 
r162 . sequence of coefficient functions F =  ( ~}~:=l, 

F = - ~ A F  + F ~ (2.2) 

where the generat ing opera tor  A is defined by the r ight-hand side of Eq. (2. !), and 

F N ~  (2n) ~6 (p ,+ . . .  +p,) 6~r (2.3) 

2.2.  Structure of the Operato r A. To elucidate the s t ructure  of A, we consider  the formal solution 
of Eq. (2.2) in the form of the i teration ser ies  

F= ~, (--k) "A"F ~. (2. 4) 

It follows [19] f rom the derivation of Eqs.  (2.1) that the ser ies  (2.4) coincides with the perturbation ser ies  
for the S matr ix  without the vacuum contributions.  For  example, the vector  F ~ cor responds  to the cont r i -  
bution from the diagram of f i rs t  o rder  (vertex) in the theory  with the Lagrangian (1.1). The vector  AF ~ is 
equal to the sum of the contributions f rom all d iagrams of second o rder .  Thus, the (n - I ) - t h  power of the 
opera tor  A on the vector  F ~ genera tes  the Feynman d iagrams of n-th order ,  since F ~ is of f i rs t  o rder  in ~. 
In diagram language, each application of the opera tor  A to the contribution f rom the diagram of (n - ! )-th 
o rder  joins to the existing diagram a ver tex in one of the following four possible ways:  

a b c d 

Depending on how the new vertex is joined to the diagram of o rder  n - !~ the opera tor  A can be 
split into a sum of four opera tors ,  each of which joins the new vertex in its own charac te r i s t ic  way. With 
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case  a), we associa te  the opera tor  Al: ~. The action of this opera tor  on the vector  F is determined by the 
t e rm of the express ion (2,1) with s -- - 1 .  With case b) we associate  the opera tor  A27~, whose action on the 
vector  F is determined by the t e rm of the expression (2.1) with s = 0. Similarly, in case c) the operator  
A3.1 cor responds  to s = 1 and in the case  d) the opera tor  As.0 cor responds  to s = 2. The application of 
these opera tors  to the contribution f rom the d iagram of o rde r  n depends on the topological s t ruc ture  of the 
d iagram itself.  In the most  general  case ,  the d iagram of o rder  n need not be connected, i . e . ,  it can, for 
example, have k independent parts ,  each of which is a connected diagram.  Then the opera tor  A~.o acts 
in such a way as to increase  the connectedness of the d iagrams by unity, and the number of external lines 
by 4 - 0 = 4 (since it joins the vertex in a nonconnected manner) .  The opera tor  A3,, conserves  the 
connectedness of the d iagrams,  but inc reases  the number of external lines by 3 - 1 = 2 (since it connects  
the ver tex to one external line, i . e . ,  in a weakly connected manner) .  The powers of the opera tor  As,i on F ~ 
generate skeleton d iagrams or  so-cal led t r ee s .  

The opera tor  A2~ can generate  different topologically inequivalent d iagrams.  It cannot change the 
connectedness of the d iag rams .  In this case ,  the vertex is joined to two external  lines belonging to one 
connected component of the d iagram.  We denote the corresponding operator  by A~,2. 

In the other case ,  the vertex is joined to two external lines belonging to two connected components.  
We denote the corresponding opera tor  by Az,,,. The opera tor  As,,, reduces  the connectedness of the diagram 
by unity. The opera tor  A2,y acts  ei ther  as A2,2 or  as A~,, depending on whether the var iables  of integration 
ql and q2 (see the te rm in (2.1) for s = 0) belong to one connected component or  different connected 
components.  

A s imi lar  classif icat ion can be given for the operator  Al: ~. The opera tor  A U joins the vertex to 
three external lines belonging to one connected component; the opera tor  A,,~, joins the vertex to three 
external lines, two of which belong to one connected component and the third to another;  the opera tor  A,,m 
joins the vertex to three external lines, each belonging to a corresponding connected component.  The ope ra -  
tor A,,~, reduces  the connectedness of the diagram by unity and A,,,, by two. 

A more  detailed analysis  is given in [20]. 

The opera tors  A~,,, A~,,,, and A~., generate  weakly connected d iagrams.  The opera tors  A,,~, A~,~, 
and A,,~, join the new n-th ver tex to a connected component of the diagram of order  n - 1 by at least  two 
internal l ines.  Now the contributions from such diagrams contain ultraviolet  divergences [20]. Thus, the 
contributions of the s t rongly connected d iagrams shown above diverge.  

As will be shown below, the divergences  of the contributions f rom the d iagrams of o rder  n ar ise ,  
in the language of functional analysis ,  because the contributions from the d iagrams of o rder  n - 1 do not lie 
in the domain of definition of the opera tors  A,,s,A~,~, and A,.2, (the contributions from the d iagrams of o rder  
n - 1 may be finite). 

Thus, the opera tor  A is the sum of the opera tors  A~,~ introduced above: 

A = ~ A,,j, 
i j  

where the indices (i, j ) t a k e  the values (1,3), (1,21), (1,111), (2,2), (2,11), (3, 1), (4, 0). 

(2.5) 

3 .  T h e  S p a c e  .on w h i c h  t h e  O p e r a t o r  A I s  D e f i n e d  

3.1.  The spaces 9~ ~, S t ,  and 8T~. Thus, the (n - 1)- th power of the opera tor  A on the vector  F ~ 
is equal to the sum of the contributions from the Feyaman diagrams of o rder  n. The contributions from the 
d iagrams are  t ranslat ional ly invariant functions, and therefore  the space on which the opera tor  A is defined 
must  consis t  of t ranslat ional ly  invariant functions. Such spaces were introduced in the papers  of the f i rs t  
author in connection with the investigation of models of quantum stat ist ical  physics [22] and were used to 
study the equations for the coefficient functions of the model (1. I) in two-dimensional  space- t ime [3, 23]. We 
shall need a modification of such a space, to the descript ion of which we now turn. 

We consider  functions of N var iables  of the form 

N 

~ l  Ok(i,. . . ,N) 
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H e r e ,  ~h (1 . . . . .  N)  i s  a p a r t i t i o n i n g  of the  s e t  of  N po in t s  into k s u b s e t s  (n,}={x~ . . . . .  x~~ . . . . .  (n~}= 
{x,  . . . . . .  x , ~ } ,  n , T . . . + n ~ = N ,  and the s u m m a t i o n  i s  o v e r  a l l  p a r t i t i o n i n g s  a~ of the  se t  { N } .  The  funct ion 
[~ . . . . . . . . .  ~ (x~,,. . . ,x~, ; . . .  ;x, . . . . . .  x,.~ ) i s  t r a n s l a t i o n a l l y  i n v a r i a n t  with r e s p e c t  to each  g roup  of  v a r i a b l e s  
{x~, . . . . .  x~, } . . . . .  {x, . . . . . .  x,.~}, and in a s p e c i a l  c a s e  can  be  thought  of  a s  a l i n e a r  c o m b i n a t i o n  of  p r o d u c t s  of 
the  t r a n s l a t i o n a l l y  i n v a r i a n t  func t ions  ]~,(x~,,.. r,x~.,), . . . .  fn~ (x~ . . . . . .  x~n~ ). In the m o m e n t u m  s p a c e ,  t h e  fnnc$ion 
~ ( . . . )  t a k e s  the  f o r m  

N 

f~ (P~ . . . . .  PN)---- Z Z f (PA"I -  . . . + Pin)  . . . 6 ( P t , - F  . . . -F Pz,~) /~v;n ..... n~ (Pi . . . . . .  Pim;" " ;  Pt . . . . . .  Pq~}' (3.2) 

w h e r e  f~;,,1 ..... % (Pr . . . . .  Pin~;'" "; pz . . . . . .  p t~ )  i s  the  F o u r i e r  t r a n s f o r m  of  the  funct ion fu;,,.. . . . . . .  (x~, . . . . .  z~,, ; . . .  ; 
x~,,.. . ,x,.~) with r e s p e c t  to the n 1 - 1, . . . ,  n~ - 1 d i f f e r e n c e  v a r i a b l e s  x~ , - x~ , , , , . . . , x~ , z , - x~ , , ; , . . ;  xz~--x~,~ . . . .  , 
xz,~_z--xz~ I the F o u r i e r  t r a n s f o r m  be ing  def ined  on the i n t e r s e c t i o n  of the h y p e r s u r f a e e s  ~ , , = ( p l p ~ , +  . . .+p~ . ,  

=0)  . . . .  , ~% =(P ] Pz, -t-...-Fpz% ----0). If ]~ ( . . . )  i s  s y m m e t r i c  with r e s p e c t  to x, . . . .  ,x~ (p~ . . . . .  p~r), the  s u m  o v e r  
qh does  not inc lude  p e r m u t a t i o n  of  the  i n d i c e s  wi th in  each  g r o u p .  

F i n a l l y ,  we c o n s i d e r  the s p a c e  ~r ,  whose  e l e m e n t s  a r e  s e q u e n c e s  of s y m m e t r i c  t r a n s l a t i o n a l t y  
i n v a r i a n t  func t ions  ] = { f s ) ~ .  Each  funct ion  f ~ ( . . . )  in the  m o m e n t u m  s p a c e  i s  such  tha t  

dp~ dp~v lily; n ...... %(Pt . . . .  Pr "Pt,,- p ~ )  [ ~ oo~ (3.3) ] (N; (~.) . ~  p l  ~ .~-~--------~''" pN ~ .4:- ~---------~ . . . . . . . .  
nn~n .-. O~n~ 

We i n t r o d u c e  a t opo logy  in the s p a c e  of  such  s e q u e n c e s  b y  m e a n s  of  the n o r m  

I l f l l x ~ = ~  ~ 2 / ( N ;  o,~), (3.4) 

w h e r e  S(N; (~) i s  def ined  b y  the e x p r e s s i o n  (3 .3) .  

In add i t ion ,  we c o n s i d e r  one f u r t h e r  B a n a c h  s p a c e  $~. The  e l e m e n t s  of  t h i s  s p a c e  a r e  a l s o  s e q u e n c e s  
/={f~}N~__~ of t r a n s l a t i o n a l l y  i n v a r i a n t  func t ions  ]z,(. . .)  of  the f o r m  (3.1) and (3 .2) .  We def ine  the n o r m  
in (~r b y  

II/flsr = sup sup ]IN; ....... ~k (PJ, . . . . .  PJ=J ~ "; P~ . . . . . .  P~=~)i. (3o5) 
N, k. a?r m,..., Pl~QntN . . .  I"lg'~n k 

The n o r m  (3.5) de f i ne s  a s p a c e  of func t ions  of  the  f o r m  (3.2) tha t  a r e  bounded on the i n t e r s e c t i o n  of the 

h y p e r s u r f a c e s  0 . . . . . . .  0,~.  

In what  fo l l ows ,  to c o n s t r u c t  s o l u t i o n s  of  Eqs .  (2.2) i t e r a t i v e l y  we need a l a r g e r  c l a s s  of  fhnCtions , 
which  we denote  b y  $ ~ .  By de f in i t i on ,  ~1~ i s  the  se t  of  a l l  s e q u e n c e s  of func t ions  of  the  f o r m  (3.2) tha t  a r e  
l o c a l l y  bounded on the i n t e r s e c t i o n  of  the  h y p e r s u r f a c e s  ~ . . . . . .  , ~ - k .  We do not i n t r o d u c e  a t opo iogy  in $ ~ ,  
s i n c e  i t  wi l l  not be  used  in what  f o l l o w s .  We a l s o  deno te  by  D 0 ( ~ )  the  s e t  of  a l l  f in i te  s e q u e n c e s  whose  
c o m p o n e n t s  a r e  l o c a l l y  bounded func t ions  on the  i n t e r s e c t i o n  of the  h y p e r s u r f a c e s  ~ ,~ .  

3 . 2 .  D o m a i n  of  Def in i t ion  and Range  of the  O p e r a t o r  A .  We now c h a r a c t e r i z e  the  d o m a i n  of  
de f in i t i on  and r a n g e  of  A .  

THEOREM 3 . 1 .  The d o m a i n  of  de f in i t ion  D ( A )  of  the o p e r a t o r  A c o n t a i n s  the  s e t  D0(A) of f in i t e  
s e q u e n c e s  ] ( /N=0,  i f  N > N 0) of  con t inuous  func t ions  ]N;m ..... n~(Pr . . . . .  Psn , ; . . . ;  Pt . . . . . .  pt=k ) c o n c e n t r a t e d  on 

c o m p a c t a  in t h e ' i n t e r s e c t i o n  of  the  h y p e r s u r f a c e s  Q . . . . . .  , ~-k" It m a p s  s e q u e n c e s  ]6Da(A)  to f in i te  s e q u e n c e s  
in ~.r. 

P r o o f .  We note  f i r s t  t ha t  in what  fo l lows  we s h a l l  c o n s i d e r  func t ions  ]~; ~, . . . ,  .~ on the i n t e r s e c t i o n  
of  the h y p e r s u r f a e e s  ~ . . . . . .  , O,~ wi thout  s t a t i n g  th i s  s p e c i f i c a l l y .  

We g ive  the  p r o o f  fo r  e ach  t e r m  of  A.  We beg in  with  A,,0. In a c c o r d a n c e  with  the  de f in i t i ons  (2.1) 
and (3.2),  

N 

' 2 (A~.j)N (px . . . . .  PN) = N~ (N - -  i)  (N - -  2) (N - -  3) (2:~) ~ 8 (p~, + . .  + p~,) ]'N-~ (px, 
i , #  .. .  ~ i ~ = 1  

N N - - 4  
^ 4 (2a) 4 
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fN-4; n ....... k (Pi . . . . . .  P i , , ; . . . ;  P~ . . . . . .  Pz,k), ]i . . . .  , ]~,;... ; l, . . . .  , l=h.:#i,, i2, i3, i~; n , + . . .  +nk=N--4. (3.6) 

It follows f rom (3.6) that the sequence A~.o[ is finite together  with f and, in addition, (A~.0])~=0 
for  N = 1, 2, 3. Then in accordance  with the definition of the norm (3.5) in the space $,r, 

4 (2~)' J fN-~: n ...... n k (Pi . . . . .  ; ' "  "; . . . .  Pint) l" (3.7) H A,,0f II~r = s u p  sup N ~ (N --  i) (N --  2) (N --  3) 
N>3, If, G k PI,..., PN-4 

Since the function ]~-~; ......... ~ (...) is continuous and concentrated on a compact set on the hypersurface 
Q~,fi... fi~ , the norm (3.7) is finite. 

The estimates of the norms for the operators As,,, A~,~, and A,.3 are similar and differ only in 
technical details. We shall therefore omit the further calculations, referring the reader to [20]. 

Thus, Theorem 3. I establishes that all terms of the operator A, and, hence, the operator A itself 
are defined on a domain that is everywhere dense in M r, namely, the domain D0(A) of finite sequences with 
components concentrated on compact supports. However, the set Dn(A) does not exhaust the complete 
domain of definition of A. It is r ead i ly  noted that the t e r m s  A2.2, A,.~.,, and A,,3, whose definit ions include 
integrat ions  over  the va r i ab l e s  ql (for A,,, and A,,,,) and ql and q2 (for A,.s), can be defined on finite 
sequences  whose c o m p o n e n t s a r e  not n e c e s s a r i l y  concent ra ted  on compac ta ;  all  that is needed is suff iciently 
rapid dec r ea se  at infinity with r e s p e c t  to the momentum va r i ab le s .  And the remain ing  t e r m s  of the ope ra to r  A 
a re  defined on all finite sequences  D0(:~ ") in ~ and map  vec to r s  in D0(~ r) to finite sequences D0(~ 'r) of the 
space  ~r.  In addition, the domain of definition D(A) of A m a y  include nonfinite sequences ]={f~,}~__t whose 
components  d e c r e a s e  suff icient ly rap id ly  with r e s p e c t ' t o  the number  N, and vec to r s  1(~)= (0 . . . .  ,0, f~, 0, . . . )~ 
D ( A ) ,  N=l ,  2 . . . . .  Then a lso  the vec tor  

[=  ~ [(N)~D (A) .  

3.3 .  The Powers  of the Ope ra to r  A. I r r e spec t i ve  of the topology of the space on which the 
ope ra to r  A is defined and the space in which its range  l ies ,  the powers  of the ope ra to r  A a re  defined 
nowhere.  To see this,  we show that for  any sequence f the sequence A2f contains d ive rgences .  

Since the ope ra to r  A can be r e p r e s e n t e d  in the fo rm (2.5), A 2 is a sum of products  of the fo rm 
A~,~A~,~. We cons ider ,  for  example ,  the products  A~,~4,,o and A2,:A~,o. These  ope ra to r s  contain t e r m s  that a re  
o p e r a t o r s  of mult ipl icat ion by functions cor responding  to loop d i ag rams  (w These  functions can be 
exp re s sed  by the divergent  in tegra ls  (for d = 4) 

~ _ dq, dq2 i (3.8) 
(2~)'(q,~+~ ~) (2~)~(q~+~ ~) (2n)'[ (p,_q,_q~)~§ , 

dq, t (3.9) f 
J (2~)'iq,~+~d) (2~) ' [ (q-p , , - -pD~+~]  ' 

There fo re ,  the ope ra to r  A 2 is defined nowhere .  The d ivergence  of the in tegra ls  in (3.8) and (3.9) also shows 
that the vec to r  F ~ does not lie in the domain of definition of A, since the express ions  (3.8) and (3.9) a re  
equal to the values  of the o p e r a t o r s  A~,3 and A~,2 on F ~ 

Bes ides  the above p roduc t s , . t he  ope ra to r  A 2 contains t e r m s  of the type A~.oA~,~, A~.~A~,o, A~,I~A~,~, e t c . ,  
which, essent ia l ly ,  a r e  o p e r a t o r s  of mult ipl icat ion by bounded functions.  These  ope ra to r s  a re  well defined 
on the se t  of all  finite sequences  D~($ r) and map vec to r s  in D0(.~ r) to vec to r s  in D0($r). It then follows f rom 
the definit ions of the o p e r a t o r s  A~,0, A,,~, A~.~, and A~,~, that they a re  defined not only on St ,  but also on 
the set  of finite sequences  of the space  St,. and 

A~,~0($~)~D0($ "~) for  i, ]=4,0; 3,i; 2,tl; 1,t l i .  

Moreover ,  for  ~he same  r ea s on  
T T 

A,.~Do (~,o~) cD~ (~,o,).  

This enables  us to extend somewhat  the domains  of definition of the individual t e r m s  of A. We define the 
set  D* as follows: 

D * = D  (A) (JD~ (~,r) [JD~ (~,ro.), (3.10) 

where  D ( A ) ~  r is the se t  of all sequences  on which the ope ra to r  A i s  defined; the se ts  D0(6 ~ and D0(~T~) 
D* a r e  defined above.  Then the o p e r a t o r s  A,.,, A,,~, A2.~ a re  defined on only on D(A) ,  and the o p e r a t o r s  
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A,,,,. A2,,l, A~,,, and A,.0 a re  defined on the whole of D*. In this connection, we introduce fur ther  notation. 
Let D*(A a) be the se t  of vec to r s  in D* on which the opera to r  A a is defined, i . e . ,  such that A ~ f  for  ]OD* 
belongs to one of the spaces  9~ r, ST, or  $,Too. 

Thus,  in this section we have shown that Eq. (2.2) is defined as an opera to r  equation of reso lven t  
type considered for  the pa i r  of function spaces  MT and ST. We have also es tabl ished the r easons  that preclude 
application of the method of success ive  approximat ion (the method of i teration) to the finding of a solution to 
this equation. 

In the following sect ions,  we shall  d i scuss  possible  ways of solving Eq. (2.2) co r r ec t l y .  

3 .4 .  The I m p r o p e r l y  Posed Nature of the P rob lem of Solving Eq. (2.2)__.~. Thus,  Eq. (2.2) can be 
cons idered  in the pa i r  of Banach spaces  Mr and ~r.  The ope ra to r  A is unbounded in 2~*, and D(A)=/=~ ~, and 
its  range  R(A) ,  like the range  R( I  + hA) of the ope ra to r  I + kA, l ies  in S r  and it is not Clear whether  
R(A)  and R( I  + hA) coincide with ~r. It may  happen that F~ and the re fore  the prob lem (2.2) 
fails  to sa t i s fy  not only the c r i t e r i a  for  a p rope r ly  posed p rob lem of Hadamard  [251 but a lso  the c r i t e r i a  of 
Tikhonov [26]. 

As Tikhonov has shown [17], " imprope r ly  posed"  p rob lems  a r i se  in the descr ip t ion of many  rea l  
physical  phenomena.  It will be seen f rom the following analys is  that the methods of the i r  solution have m u c h  
in common with the methods developed in quantum field theory  independently of the theory  of i m p r o p e r l y  
posed p rob l ems .  It will be shown in the following sect ion that the well-known method of solving the equations 
of quantum field theory  by means  of per turba t ion  theory  and r enorma l i za t ions  is equivalent to  a c e r t a i n  
p ro j ec t ion - i t e r a t i on  method, and that the resu l t ing  s e r i e s  (~he r eno rma l i zed  per turba t ion  se r ies )  is ,  
genera l ly  speaking, a quasisolut ion of Eq. (2.2). In addition, we shall  t r ace  the analogies  between p rob l ems  
of quantum field theory  and some i m p r o p e r l y  posed p r o b l e m s .  

4 .  C o n s t r u c t i o n  o f  a n  I t e r a t i v e  S e r i e s  

As we have a l ready  noted, the method of i te ra t ion  is inapplicable to finding a solution to Eqo (2.2), 
since the f i r s t  i tera t ion a l r eady  leads to contr ibut ions f rom the loop d i a g r a m s  (see w that d ive rge .  
However ,  a solution to Eq. (2.2) f ree  of u l t ravio le t  d ivergences  m a y  exis t .  Such a situation can be i l lus t ra ted  
by an e l e m e n t a r y  example .  

Consider  the integral  equation 

f(x) =--)~ i dY[--~(e-t~'-ml'[x-Y[) ]f(Y)-~[x[" (4. !) 

It is r ead i ly  seen that a l r eady  the f i r s t  i terat ion of Eq. (4.1) d iverges :  

f,(x) =-u2)~ i (e-I':-*l+[x-Y[) lyldy=-~. 

However ,  an exact  solution to Eq. (4.1) can be obtained by applying the theory  of Four i e r  t r ans fo rma t ions  of 
genera l ized functions.  The solution is 

and if ~>0 ](x)EL,(B'). 
By analogy with Eq. (4.1), it can be hoped that such a solution of Eq. (2.2) a lso  exis ts ,  but it cannot  

be constructed i te ra t ive ly .  The exis tence of a solution to Eq. (2.2) r e m a i n s  an open p rob l em.  

For  what follows, we shall  need some anc i l l a ry  cons t ruc t ions ,  to which we now turn.  

4 .1 .  The Set of Contributions of the Renormal ized  Feynman D i a g r a m s .  In D*, we cons ider  the 
set  G, which cons i s t s  of sequences  of contr ibut ions f rom the r enorma l i zed  Feynman d i a g r a m s .  To cons t ruc t  
such a set ,  we introduce the o p e r a t o r s  A'.~;~,, A,.2,;~,, A,.~t~;~,, A~,~;,,,~,, A~,,i~,,,,,A~.~,,~,,~,, and A~,0;~ ..... ~,, c o r r e -  
sponding to fixed va r i ab les  p, , , . . . ,  p~, k= i ,  2, 3, 4, in the k e r n e l s  of the o p e r a t o r s  A~,~. Then 

(A,.~t)7---- 2 (A'J'~"""fl)~~' (4~2) 
ii~=.,.=#i~ 
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w h e r e  k = 1 c o r r e s p o n d s  to the o p e r a t o r s  A~.s, A~.~, and Am~; k = 2 ,  to the o p e r a t o r s  A2.2 and A2,~; k = 3 ,  to 
the o p e r a t o r  A,. , ,  and k = 4, to the o p e r a t o r  A,.0i and the summat ion  in (4.2) is o v e r  all  se t s  of  n u m b e r s  
i ~ i 2 ~  = . . .  V = g k  in 1 . . . .  , N. F o r  b r e v i t y ,  we in t roduce  the index u=( i ,  ]; i , , . . . ,  ~) and denote the o p e r a t o r s  
defined above by  A a . The o p e r a t o r  A is the sum of the o p e r a t o r s  A a o v e r  all  a d m i s s i b l e  a :  

A =  2 A~. 

The f o r m a l  e x p r e s s i o n  A . . . . .  A=,,F ~ is the cont r ibu t ion  (possibly divergent)  f r o m  a def ini te  Feynman  d i a g r a m .  

We denote by  R ( A  . . . . .  A~,,,F ~ the cont r ibu t ion  f r o m  the d i a g r a m  c o r r e s p o n d i n g  to A . . . . .  A ~ F  ~ when 
it is  r e n o r m a l i z e d  by  m e a n s  of  the R ope ra t i on .  We f o r m  finite sequences  cons i s t ing  of funct ions  of  the f o r m  

g . . . . . . . . .  = B  (A . . . . .  A=~F~ (4.3) 

whe re  the indices  a~ . . . . .  a~ take all  a d m i s s i b l e  va lues .  We define the se t  G as the l i nea r  hull of  these  
s equences .  It fol lows f r o m  the p r o p e r t i e s  of  the R opera t ion  [5-11] that  the con t r ibu t ions  g .. . . . . . . .  a r e  
l oca l ly  bounded funct ions ,  and t h e r e f o r e  the sequence  g be longs  to D0@Tc). It is obvious  that  a l so  G~Do($Too) 
~ n * .  

4 . 2 .  Cons t ruc t ion  of  an Equat ion "Close  ~ to Eq. (2.2). The o p e r a t o r s  A,.,~,, A~,2~,~,, A=,~;~,.~, a r e  not 
defined on the whole of  D*, and t h e r e f o r e  to c o n s t r u c t  the i t e ra t ive  s e r i e s  we in t roduce  o p e r a t o r s  that  a r e  
"c lose"  to the o p e r a t o r s  A n .  

We shal l  s ay  that  the o p e r a t o r s  Aa~ a r e  "c lo se"  [27] to the o p e r a t o r s  A a if fo r  ]OD(A=) 

A J I = A J .  (4.4) 

We c o n s t r u c t  the o p e r a t o r s  Aar such  that  they  a r e  defined on the comple te  D*.* We do this  s u c c e s s i v e l y  in 
s eve ra l  s t eps .  We in t roduce  f i r s t  in S t ,  $ , ,  and D* the o p e r a t o r s  H a .  Fo r  ~ = 1, 3; i~ 

t I~,o(p~ . . . . .  p, . . . . . .  p ~ , p , , - p ~ - , - p , , ) ,  (4.5) II:-~II(~')' (II(")/)~'~ . . . . .  P~)---- (2n) ' [  (P , , -P~-~-p~) '§  

p,-~, p~ and p , - p ~ v - ~ - p ~ ( n ~ } ,  i . e . ,  p~-~, p~ and p , - p ~ - ~ - p ~  belong to one of  the connected  componen t s .  

Fo r  a = 1, 21 the ac t ion  of  the o p e r a t o r  H a is defined by the e x p r e s s i o n  (4.5) with the only  
d i f f e rence  that  the o p e r a t o r  ac t s  on funct ions  fo r  which two of the v a r i a b l e s  p~-,, p~, and p , , - p ~ _ , - p ~  belong 
to one connec ted  componen t ,  and the th i rd  to ano the r  connec ted  componen t .  

F o r  c~ = 2 ,2 ;  i ,  i 2 

i 
II==1I <~,,':), (1-t(',,'~,])~o(~ . . . . . .  ~ )  = ~ 2 ~ ) ' [  ( p , , + ~ , = - ~ ) ~ + ~ ]  =]~-~~ (~' . . . .  '~'  . . . . .  ' ~' . . . . . .  P ~ ' ~ " + ~ " - ~ ) '  

For  the r e m a i n i n g  ~, we se t  1] Of 

Using the o p e r a t o r s  [Ia, 

F o r  ol = 1 , 3 ; i ~  and ~ = 1 ,21 ; i ~  

pN, p~,+p~,-p~,O {n~}. 

---- 1 .  

we r e p r e s e n t  the o p e r a t o r s  A a 

A~,=B~,IIr 

in the f o r m  

(N+2) (N+t)  dqi dq2 r (Bg) 
N,~ (pt . . . . .  p~) = 4  (2~) ~ N ' J (2g) ~ (q 2+~)  (2~), (q ~+lp) 

For  a = 2 ,2 ;  it, i 2 

For  the r e m a i n i n g  ~, B a 

( B = / ) , , , . ( p ,  . . . .  , p , , ) - - - -  

A ~ ,  

t 2 ( 2 ~ ) ,  f dq, 
N J (2u')~(q~:+~ ~) 

[~+~,~(pi . . . . .  p~, ql, q~). 

]n+l,~(p~ . . . . .  pN, qi). 

It is r e a d i l y  ver i f i ed  that  the o p e r a t o r s  B a ,  l ike An ,  a r e  defined on a se t  that  is  e v e r y w h e r e  dense  
in M r, namely ,  the se t  of  finite s equences  of  funct ions  D0(~  r) that  a r e  concen t r a t ed  on c o m p a c t  se t s ,  and 

* We recall that the operators A c~ 

not coinc ide  outs ide  D ( A a ) .  
a r e  not defined on the comple te  domain  D , and t h e r e f o r e  A r and A a do 

(4.6) 

(4.7) 

(4.8) 

(4.9) 
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that  they map this set  to the set  of finite sequences  in ~T. By anology with the set  D*(Aa), we ~ntroduce the 
set  D (Ba) , which cons is t s  of vec to r s  f ~ D and such that the vec tor  B ~ f  belongs to one of the spaces  
:~,  Sz,  or  gfVo. TO const ruct  the ope ra to r s  Ara, we introduce in ]3* the ope ra to r s  of project ion onto D*(B a) 
in accordance  with the rule  

/ f ; ~ . . . ) ,  if f/~ED*(B,~), 
(P~f)N-( . . . ) -~-~(f~,)N(. . . ) , .  if  ]~N----~H~g ....... ~ ,  g(~D*(A~), (4.][0) 

[ (f~)N (.- .) in all  o ther  c a s e s .  

Here ,  (]~*)~ is defined by the formula  

( Br163 N~=It ( A r . . . . .  Ac,,,F ~ N, (4. !1) 

and f~  is the par t  of the function f that l ies  in D*(Ba).  It is obviously sufficient to define the o p e r a t o r s  Pa 
on functions cor responding  to t r iv ia l  par t i t ionings  of the set  of va r i ab les  pi . . . .  , p~-. For  the sequences 
corresponding to a r b i t r a r y  par t i t ionings the ope ra to r s  Pa will act  on the connected components  on which A a 
ac t s .  We do not fix the p rocedure  for  separa t ing  f ~ ,  since in what follows we shall  deal with only vec to r s  
in G. However,  we shall  desc r ibe  in m o r e  detail  the p rocedure  for separa t ing fa*" 

To define (f=*)~- we must  in Eq. (4.11), r ega rded  as an equation for  f :  for  known /?(A~A . . . . .  Ac~F~ 
invert ,  as  it were ,  the ope ra to r  B a . This  can be r ead i ly  done by using the following a rgumen t s .  

The r ight-hand side of Eq. (4.10) is the contribution f rom the r enormal i zed  d iagram and is defined 
in accordance  with the R operat ion as the r e su l t  of subtract ion f rom the function equal to the product of the 
Feynman propaga to rs  of functions equal to the values  of a definite number  of p ropaga to rs  and their  de r iva t ives  
at fixed points and integrat ion of the resul t ing  ra t ional  function Q ( . . . )  with r e spec t  to the independent 
momentum va r i ab le s*  ql . . . .  , qz, i . e . ,  

dqi dq, 
. . .  O .......... (p~ . . . . .  p~,q:, . , q , ) .  (4.12) R(A~, A . . . . .  A% F~ . . . . .  pN)=6(p~+.. .  +p,)  

(2z~) 4(qt~+9 ~ ) (2z~)~ (ql~§ ~ ) 

For  s impl ic i ty ,  we cons ider  he re  the case  when the express ion  A~,A~, . . . .  A ~ F  ~ co r r e sponds  to a connected 
Feynman graph.  Since the express ion  t I (A:A  . . . . .  A~,,~F ~ co r r e sponds  to the r eno rma l i zed  Feynman cont r ibu-  
tion, the in tegra ls  over  q~ . . . . .  qz converge  absolute ly .  In the f i r s t  pa r t  of the express ion  (4.12), we now 
separa te  the ope ra to r  B~.  Then what r e m a i n s  is f a"  We do this for the example  of the ope ra to r  B~,,;~,, i . e . ,  
a = 1,3;  i I. Using (4.8), we find 

N dq~ dqz 
]*N+2(p, . . . . .  p~,.,qi, q2) 4(2z04(N+2 ) (N+t)  I '~)~(q3~+~d)  . . . .  "(2z0~(q~+g ~) Q .......... '~(P~ . . . . .  P~'q~'q~'q'~ . . . . .  q~). (4.13) 

Similar ly ,  we obtain B2.2; ~,, i , .  

Finally,  we define the o p e r a t o r s  A r 

and the ope ra to r  

Then the equation 

is " c l o s e '  to Eq. (2.2). 

We formula te  our  main  t heo rem.  

THEOREM 4 .1 .  

"c lose"  to A a by the formula  

AJ=B~,P~IL, 

o. 

(4. ~4) 

F = - ~ , A r F + F  ~ (4.15) 

A fo rmal  solution of Eq. (4.15) is the i te ra t ive  s e r i e s  

F ,=  ~ ,  ( - k ) " A , ' W  ~ 

Each t e r m  of the s e r i e s  (4.16) belongs to G. 

(4.16) 

The s e r i e s  (4.16) is equivalent to the r eno rma l i zed  per turbat ion  

* The ra t ional  function Q ( . . .  ) depends both on the externa l  momenta  Pl, ~ �9 �9 PN as well as on the internal  
independent momen ta  qt . . . .  , qz' where  I is the number  of independent cyc les  of the Feynman d i ag ram 
cor responding  to the contr ibution A~,A . . . . .  A : , , F  ~ 
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ser ies  for the S matr ix  in the model of Euclidean quantum field theory with the Lagrangian (1.1). 

Proof .  We prove the theorem by induction. For  n = 0, the theorem is trivial ,  since F ~ ~ G by 
the definition of the set G. 

For n = I, 

A'F~ Z B~,P,~IL, Ft 

For  zt=4,0; i, . . . .  , i,, a=3, t ;  i,, h, h, a=2 , t l ;  i,, i~ and a = t , t i i ;  i, F ~ ~D(A~,=Br and therefore  B~P~II~F ~ 
=A~F c, and for ct=t,3; i~, a=l,21; i, and cz=2,2; i,, i~ B~,Pc, H:F~176 in accordance with the definitions 
(4.10) and (4.11). 

suppose A~F ~ 6 F, i . e . ,  Now 

y', g, ....... = y '  R(A ..... AooFO). A ,,,Fo= 
r ~l,...,r~ra 

Then, using (4.10)and (4.11), we obtain 

~ m+l ~'~ BttPaIIag ~ B * 
v~ 

....... %,= 17, ~,g ........ ,= 71 R(A~A .. . . .  A%F~ 
a ,r . . . ,Ctm ~ , r  c t , c t i , . . . , c tm 

which completes  the proof of the theorem.  

4.3.  Regularizat ion and Quasisolutions.  We show that the renormal ized perturbation se r ies  (4.16), 
which is a solution of Eq. (4.15), is a formal  quasisotution of the original equation (2.2). For  this, we 
represen t  Eq. (2.2) in the form 

g=-~, E B~,(Pc,+Q~,) IL, F+F ~ q~,=l-P,,, (4.17) 

and substitute in Eq. (4.17) the solution (4.16) of Eq. (4.15). We obtain 

y '  B ono r-  y', oQonoF,+  (4. lS) 
ct 

o r  

F~=-~,ArFr+F~ E B~Q~II~Fr. (4.19) 

Since F r sat isf ies Eq. (4.15), for F r to be a solution of Eq. (2.2) it is neces sa ry  that 

Z B~Q~II~Fr=O. (4.20) 
t t  

Therefore ,  Z B:Q~II~Fr serves  as a measure  of the deviation of the solution of Eq. (4.15) f rom the exact 
c~ 

solution of Eq. (2.2). If ~z.~B~Q~II~FT~O, then F is a formal  "quasisolution" [28]. Note that if there exists 

an exact solution F of Eq. (2.2), then for it the condition (4.20) is satisfied. 

Besides the proposed method of solution of Eq. (2.2), there also exists another approach based on 
pre l iminary  regular izat ion of the equation and construct ion of a regular ized solution. As an example, let us 
consider  Pau l i -V i l l a r s  regular iza t ion.  The essence of this regular izat ion is that the functions Go(p)=(2n) -~ 
( /+~2)- ,  a re  replaced by the regular ized functions 

ao~(p)=~o(p)+ ~, c, (2~)' (~i-+M~2) ' (4.21) 
i 

where the coefficients c i and the masse s  M i are  chosen such that the function GM0(p) decreases  sufficiently 
rapidly as p -~ ~, and as Mi ~ 

Go u (p) -+Go (p). (4.22) 
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After  the substitution (4.21), Eq. (2.2) takes the fo rm 

F=-)~A (M) F+F ~ (4.23) 

where the ope ra to r  A(M) is obtained f rom A by the r ep lacemen t  (4.21). Since the functions dec rea se  
sufficiently rapidly,  the ope ra to r  A(M)  and all its powers  a re  defined on F ~ and Eq. (4.27) admi ts  fo rmal  
solution in the fo rm of an i te ra t ive  s e r i e s .  However ,  each t e r m  of this s e r i e s  will d iverge  as M{ -~ ~ .  
There fo re ,  the next stage is the applicat ion to it of the R operat ion.  

P a u l i - V i l l a r s  r egu la r i za t ions  (and other  regular iza t ions)  of the equations of quantum field theory  a re  
conceptually c lose  to Tikhonov 's  method of solution of i m p r o p e r l y  posed p rob lems  of ma themat ica l  phys ics .  
At the beginning of the s ixt ies ,  Tikhonov gave a definition of the solut ion of an i m p r o p e r l y  posed p rob lem by 
means  of a regula r iz ing  fami ly  of ope ra to r s  and developed methods for  construct ing such solutions [17]. The 
essence  of Tikhonov 's  method cons is t s  of rep lac ing  the original  equation, which belongs to the c l a s s  of= 
i m p r o p e r l y  posed p rob l ems ,  by an equation in which the original  opera to r  is rep laced  by a regu la r iz ing  
fami ly  of o p e r a t o r s ,  and the equation with the regu la r iz ing  fami ly  is a p rope r ly  posed p rob lem.  The regular i - -  
zing family  depends on a definite p a r a m e t e r ,  and when this p a r a m e t e r  tends to ze ro  (to infinity) the r e g u l a r i -  
zing fami ly  of ope ra to r s  tends to the or iginal  o p e r a t o r .  By solution of the i m p r o p e r l y  posed p rob lem,  one 
unders tands  the l imit  of the solution of the regu la r i zed  equations when the p a r a m e t e r  tends to zero  (to 
infinity). 

As we have seen above, P a u l i - V i l l a r s  regu la r iza t ion  (and other  regular iza t ions)  of the equations of 
quantum field theory  and the subsequent lifting of the regular iza t ion  by means  of the R operat ion have much 
in common with these methods .  

We a re  grateful  to M. K. Polivanov and O. I. Zav 'ya lov  for  a number  of c r i t i ca l  comment s  which 
have improved the text .  
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