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PROJECTION-ITERATION METHOD OF SOLUTION OF THE
EQUATIONS OF QUANTUM FIELD THEORY AND ITS CONNECTION
WITH THE THEORY OF RENORMALIZATION,

THE EQUATIONS OF QUANTUM FIELD THEORY AND IMPROPERLY POSED
PROBLEMS OF MATHEMATICAL PHYSICS

D.Ya. Petrina and A.L. Rebenko

The equations for the coefficient functions of the S matrix are considered in Euclidean
space-time with dimension d = 4. It is shown that they can be defined in a pair of
fundamental spaces of translationally invariant functions. The problem of finding the
solutions to such equations is improperly posed, and therefore the iterative method of
solution leads to the appearance of ultraviolet divergences. A projection~iteration
method of solution is constructed that leads to a renormalized perturbation series. It
is shown that the renormalized perturbation series is a quasisolution to the original
equations.

1. Introduction

Historically, the equations of quantum field theory have been solved by perturbation theory.
Divergences have been encountered in the higher orders of the theory, and these have been eliminated by
means of Bogolyubov’s subtractional procedure. Because of the occurrence of the divergences, the opinion
has arisen (see, for example, [1]) that the original equations have no meaning, that they are internally con-
tradictory. Their perturbative solutions are also meaningless, although the perturbation series renormalized
by means of the subtractional procedure leads in individual cases {for example, in quantum electrodynamics)
to good agreement with the experiments. '

Another view has been put forward, namely, that the equations of field theory are consistent and
that the divergences are due to the use of perturbation theory and would not arise in a nonperturbative
approach, There now exist methods of investigation that do not use perturbation theory [2, 3, 4], but as yet
they have been applied only to models in two-dimensional space-time; it is not known what happens to the
models in four-dimensional space-time.

In the pioneering papers of Bogolyubov and Parasyuk [5-7] it was shown that the divergences of the
contributions from the Feynman diagrams arise from the circumstance that these are expressed by integrals
of products of generalized functions, and the products are not defined for coincident arguments {in the con-
figuration space). If the definition of the product is modified appropriately, the integral of it converges, and
this gives the renormalized contribution of the Feynman diagram. In the momentum space and in the Euclidean
region, the contributions from the Feynman diagrams are expressed by means of integrals of a product of
ordinary functions, which decrease weakly at infinity, so that the integrals diverge @ltraviolet divergences).

A great success was the proof that the contribution from an arbitrary diagram can be renormalized
by means of the subtractional procedure (R operation) [5-7], which was developed further in [8~11].
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Later, it was found that one can write down renormalized equations for the Green’s functions or
coefficient functions [12-14] which have the property that their perturbation series no longer contain diver-
gences in their individual terms, i.e., in the renormalized contributions from the Feynman diagrams,

On the basis of these facts there has developed in quantum field theory a definite view as to how
the equations encountered in the investigation of the models are to be solved, Briefly, the system of rules
can be formulated as follows:

1) the original equations (for the Green’s functions, coefficient functions, etc.) deduced from the
unrenormalized Lagrangian are meaningless, since they lead to divergences when solved by perturbation
theory;

2) the perturbation series must be renormalized by means of the subtractional procedure;

3) the true equations are the renormalized equations, since their solution by perturbation theory is
the renormalized series, which does not contain divergences in its individual terms. This point of view has
been made into a principle. It developed historically together with quantum field theory.

What can one say about the above principles? They contain a weak point — there is no rigorous
analysis of the original equations whose solution is sought by perturbation theory. The perturbation series
were written down already at the end of the fifties, and the necessary mathematical analysis of the original
equations was not made by anyone. Note that the contributions from the Feynman diagrams were initially
written down by Feynman without any equation [15], and it was shown later by Dyson [16] that they arise on the
solution of the equation for the S matrix. The subtractional procedure was developed for the already
existing expressions corresponding to the contributions from the Feynman diagrams.

Thus, the initial equations were solved perturbatively without the necessary investigation of their
mathematical structure,

All these equations are operator equations, and the unknowns in them are sequences of functions of
an increasing number of variables; the generating operator which determines them acts on the space of such
sequences. Clearly, a rigorous mathematical investigation of these equations on the basis of functional
analysis is required. It is necessary to select a space on which the generating operator acts, find its
domain of definition and range, and also define the space in which the initial data lie, if one is considering
evolution equations, or the space in which the free term lies, if one is considering equations of resolvent type.

So far as we know, such an analysis has been made only for the models of a scalar field in two-
dimensional space-time and nonpolynomial nonlocal models, i.e., models in which ultraviolet divergences
do not arise (volume divergences occur in any translationally invariant model and have a completely different
origin),

In the present paper, we shall make the necessary analysis of the equations for the coefficient
functions of the S matrix for the example of the model of a real scalar field in Euclidean four-dimensional
space-time with interaction Lagrangian

P (z)=—hp(x)*:, z=(z"..., 2%, 1.1)
where XA is the coupling constant.

We shall show that the equations for the coefficient functions can be given a well-defined mathematical
meahning in a pair of function spaces of sequences of functions of an increasing number of arguments. The
generating operator of these equations is unbounded, but has an everywhere dense domain of definition in the
space of sequences of integrable functions, and its range lies in a different space of sequences of bounded
functions. The free term does not belong to the domain of definition of the generating operator but belongs to
its range. In addition, the powers of the generating operator are not defined on any element in the domain of
definition or the operator itself is not defined on its range.

It becomes clear why divergences arise in the individual terms of the perturbation series; the
generating operator and all its powers are not defined on the free term, but each term of the perturbation
series involves powers of the generating operator on the free term. Because the powers of the generating
operator are not defined, it is not possible to solve the equations for the coefficient functions perturbatively
in the form of a series of iterations. For equations for which the domain of definition of the generating
operator does not contain the free term, one cannot even construct a formal solution by perturbation theory.
Equations of such type must be solved by direct methods, i.e., one must find an element in the domain of
definition of the generating operator that satisfies the equation.
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The problem of determining solutions of the equations for the coefficient functions and, in general,
the equations of quantum field theory can be included in the class of problems that are improperly posed in
the sense of Tikhonov [17]. It is possible that the equations for the coefficient functions do not have solutions
in the classical sense at all but only quasisolutions in the sense of Ivanov [18],

When one compares the methods of quantum field theory and the methods of solving improperly posed
problems, one is struck by the circumstance that many approaches in these fields of science have developed
independently in parallel and that even the terminology is frequently the same, It is obvious that the use of
the methods of solution to improperly posed problems in quantum field theory presents a problem ripe for
solution.

In the present paper, we show that the renormalized perturbation series is a solution, not to the
original equation, but to some modified equation, in which the generating operator is replaced by a product of
the generating operator and the operator of projection onto the domain of definition. Evidently, the
renormalized series is a formal quasisolution,

2. Equations for the Coefficient Functions

2.1. Equations of Resolvent Type. Equations of resolvent type for the coefficient functions of the
S matrix of the model (1.1) are described in [19]. For convenience, we write them in the momentum space

in the Euclidean domain. We denote by Fy(p,,...,p~) the N-th coefficient function, and p, = (p%i, ey p4 by
i=1,2,...,N,N=1,2,.... The equations have the form
oy [ 3\ (v —2s)
FN(PI!"%PN):*"‘]V— <1+s>~—7v—'———— Z qul.v.dq2_3><
== 25 ... 7&is+1
28 (P, + - - o A Pigys — T - - Gos) . -
( ) Piges z FN—2S (Qn ooy Goegy Proae s pi17 coes Digiae ey pN}’ @.u

(2m)* (g1® -+ ¥ . . . 2m)* (g, + 1)

Here, Fo=1, F_,=F_,=F_,=0, ¢*=(¢")*+...+(¢")? dg=dq'...dq*, and the symbol fi ; means that the argument p,
is omitted.

The chain of equations (2.1} can be written in the form of a single operator equation for the complete
sequence of coefficient functions F= {Fy}3_;:

F=—AAF+-F, 2.2
where the generating operator A is defined by the right-hand side of Eq. (2.1), and
Fi'=—A(2n)*8(pst ... +p.)bne 2.3)

2.2. Structure of the Operator A. To elucidate the structure of A, we consider the formal solution
of Eq. (2.2) in the form of the iteration series

F= 2 (—A)"A"Fe. 9.4)

n=0

It follows [19] from the derivation of Egs. (2.1) that the series 2.4) coincides w1th the perturbation series
for the S matrix without the vacuum contributions. For example, the vector F? corresponds to the ontrl—
bution from the diagram of first order (vertex) in the theory with the Lagrangian (1.1). The vector: AF? isg
equal to the sum of the contrlbutlons from all diagrams of second order., Thus, the (n — 1)-th power of the
operator A on the vector F? generates the Feynman diagrams of n-th order, since F? is of first order in A.
In diagram language, each application of the operator A to the contribution from the diagram of {(n ~ 1)-th
order joins to the existing diagram a vertex in one of the following four possible ways:

Depending on how the new vertex is joined to the diagram of order n — 1, the operator A can be
split into a sum of four operators, each of which joins the new vertex in its own characteristic way. With
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case a), we associate the operator 4. The action of this operator on the vector F is determined by the
term of the expression (2,1) with s = —1. With case b) we associate the operator Ay, whose action on the
vector F is determined by the term of the expression (2.1) with s = 0. Similarly, in case c¢) the operator
A, corresponds to s = 1 and in the case d) the operator 4., corresponds to s = 2, The application of
these operators to the contribution from the diagram of order n depends on the topological structure of the
diagram itself. In the most general case, the diagram of order n need not be connected, i,e., it can, for
example, have k independent parts, each of which is a connected diagram. Then the operator 4,, acts

in such a way as to increase the connectedness of the diagrams by unity, and the number of external lines
by 4 — 0 = 4 (since it joins the vertex in a nonconnected manner). The operator A4,, conserves the
connectedness of the diagrams, but increases the number of external lines by 3 — 1 = 2 (since it connects
the vertex to one external line, i.e., in a weakly connected manner), The powers of the operator 4;: on o
generate skeleton diagrams or so-called trees.

The operator Ayz can generate different topologically inequivalent diagrams. It cannot change the
connectedness of the diagrams. In this case, the vertex is joined to two external lines belonging to one
connected component of the diagram. We denote the corresponding operator by A...

In the other case, the vertex is joined to two external lines belonging to two connected components.
We denote the corresponding operator by 4,,,. The operator 4,,, reduces the connectedness of the diagram
by unity. The operator 4,7 acts either as 4,, or as A4,., depending on whether the variables of integration

q, and q, (see the term in (2.1) for 8 = 0) belong to one connected component or different connected
components,

A similar classification can be given for the operator A;5. The operator 4,; joins the vertex to
three external lines belonging to one connected component; the operator A4,, joins the vertex to three
external lines, two of which belong to one connected component and the third to another; the operator A,
joins the vertex to three external lines, each belonging to a corresponding connected component. The opera-
tor A, reduces the connectedness of the diagram by unity and A4,,, by two.

A more detailed analysis is given in [20].

The operators 4., 4..,, and A., generate weakly connected diagrams. The operators 4, 4,.,
and A4,, join the new n-th vertex to a connected component of the diagram of order n — 1 by at least two
internal lines. Now the contributions from such diagrams contain ultraviolet divergences [20]. Thus, the
contributions of the strongly connected diagrams shown above diverge.

As will be shown below, the divergences of the contributions from the diagrams of order n arise,
in the language of functional analysis, because the contributions from the diagrams of order n — 1 do not lie
in the domain of definition of the operators A4,, 4,,, and 4,:; (the contributions from the diagrams of order
n — 1 may be finite), '

Thus, the operator A is the sum of the operators 4.; introduced above:

A=Z‘Au, 2.5)
i

where the indices (i, j) take the values (1,3), (1,21), (1,111), 2,2), 2,11), 3,1), 4,0).

3. The Space on which the Operator A Is Defined

3.1. The spaces %", &, and &l Thus, the (n — 1)-th power of the operator A on the vector F'
is equal to the sum of the contributions from the Feynman diagrams of order n. The contributions from the
diagrams are translationally invariant functions, and therefore the space on which the operator A is defined
must consist of translationally invariant functions. Such spaces were introduced in the papers of the first
author in connection with the investigation of models of quantum statistical physics [22] and were used to
study the equations for the coefficient functions of the model (1.1) in two-dimensional space-time [3,23]. We
shall need a modification of such a space, to the description of which we now turn,

We consider functions of N variables of the form

RE

N
fN(xia-'-yzN)=Z Z fN;m,,.,,nk($j,,...,xjm;-'-v;xln"'yxl )' (3-1)
i

h=1 ox(1,...N
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Here, 0, (1, ..., N) is a partitioning of the set of N points into k subsets {n}={zy,...,2;.},..., {m}=
{Zuy...,Zuy )}, nF...+m=N, and the summation is over all partitionings 7, of the set {N}. The function
foine. .. ng (T oo er & 5ooui Ty, ..., Ty ) 1S translationally invariant with respect to each group of variables
{Zi ooy T by {Z0 ..., 7y}, and in a special case can be thought of as a linear combination of products of
the translationally invariant functions fu(2,..., %), ., fo @0 - 71, ). In the momentum space, the function
fx(...) takes the form '

N

fu(on ..o PN)=ZZ‘5(PJ';+ ot Pig) e 8Pt P ) I (P - s Pipi e P P

k==1 O}

3.2

5
lnk!s

where f;n..,n (Pir - Pigiee i Pigevr plnk) is the Fourier transform of the function fw;n,... IR €YU A I
z,,,...,z,,,‘) with respect tothe n, — 1, ..., n, — 1 difference variables Zi—Tuye.. LT iee.s e
Zip1 ™ Tipy the Fourier transform being defined on the intersection of the hypersurfaces Q.=(p|pst...+ps,

=0),... 4Qn, =(lpy+...4+p, =0). If fy(...) is symmetric with respect to z;,...,2x(ps,...,px), the sum over
7, does not include permutation of the indices within each group.

Finally, we consider the space %’, whose elements are sequences of symmetric translationally
invariant functions f={fx)}¥_,. FEach function fx(...) in the momentum space is such that

dp dpn .
F(V; 0p) = S g s oo =g | Wi mye, g (P <+ o5 Pig3 <o o3 Pl 0 P, Y| <000 8.3)
ou S, LB BT g

We introduce a topology in the space of such sequences by means of the norm

llﬂlw=i 2 Z f(N;a), 3.4}

N={ k=i oy
where f(N;q,) is defined by the expression (3.3)}.

In addition, we consider one further Banach space &°. The elements of this space are also sequences
f={fx) of translationally invariant functions fv(...) of the form (3.1) and {3.2). We define the norm
in & by

| fller = su, su I8yt i, (Blir o v s Pipies ol Blire e o i (3.5
N, k]l:k _— pNGQm% D | Fv; e 1y P ings ¢ 01 Pl Plnk)i

The norm (3.5) defines a space of functions of the form (3.2) that are bounded on the intersection of the

hypersurfaces Q.,..., Q.

In what follows, to construct solutions of Egs. 2,2) iteratively we need a larger class of functions,
which we denote by &%, By definition, &L is the set of all sequences of functions of the form (3.2) that are
locally bounded on the intersection of the hypersurfaces Q.,,..., ;. We do not introduce a topology in &7,
since it will not be used in what follows. We also denote by D,(&7,) the set of all finite sequences whose
components are locally bounded functions on the intersection of the hypersurfaces Q,;.

2.2. Domain of Definition and Range of the Operator A. We now characterize the domain of
definition and range of A.

THEOREM 3.1. The domain of definition D(A) of the operator A contains the set DO(A) of finite

sequences f (fy=0, if N > No) of continuous functions fuw;m,...,n (Pin e Pigsee s Pras oo ptnk) concentrated on
compacta in the intersection of the hypersurfaces Q.,..., Q.. It maps sequences f€D,(4) to finite sequences
in &7.

Proof. We note first that in what follows we shall congider functions fy, ., ..., », on the intersection
of the hypersurfaces Q,..., Q., without stating this specifically.

We give the proof for each term of A. We begin with 4,,. In accordance with the definitions (2.1)
and 3.2),

N
w)N (pla Y pN)“_‘ Nz(N__ ,1)(]\?_ 2)(N-—3) i;e.;i___l{zn)ia('pil_i’ con +Pi;) fN-& (ph

N N—4

. « . 4 (2n) d . L
""pi"""pi"“"p‘v)_—NE(N—l)(N—z)(N—?)) Z ZI ZA 0Pt Pul X

95 .00 =1 k=1 6(L,.., Fteenns day0een N)
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fN-si ..., g (Pivs <+ os Pigs o3 Pigr =+ o pznk), Jaseown Tugoees biyoony by, 1y, g, 4oy ma oo +n,=N—4&. (3.6)

It follows from (3. 6) that the sequence A,,f is finite together with f and, in addition, (4;,.f)»=0
for N = 1, 2, 3, Then in accordance with the definition of the norm (3.5) in the space &7,

4 (2
| Aeflyr = sup  sup (@)

= P S . 3.7
N>8, ¥, 0 B Dy N (N — 1) (N — 2) (¥ — 3) 0= ..y P pl"k)l .7

Since the function fy—iun ...a (...) is continuous and concentrated on a compact set on the hypersurface
Q.N0...NQ, , the norm (8.7) is finite,

The estimates of the norms for the operators A4,,, A.., and A4,, are similar and differ only in
technical details, We shall therefore omit the further calculations, referring the reader to [20].

Thus, Theorem 3.1 establishes that all terms of the operator A, and, hence, the operator A itself
are defined on a domain that is everywhere dense in %7, namely, the domain D (A) of finite sequences with
components concentrated on compact supporis. However, the set DO(A) does not exhaust the complete
domain of definition of A, It is readily noted that the terms d.., A;.,, and 4,s whose definitions include
integrations over the variables q, (for A,, and A4,.) and q, and q, (for A,s), can be defined on finite
sequences whose components are not necessarily concentrated on compacta; all that is needed is sufficiently
rapid decrease at infinity with respect to the momentum variables. And the remaining terms of the operator A
are defined on all finite sequences D,(%") in %* and map vectors in D,(H") to finite sequences D,(&") of the
space &7. In addition, the domain of definition D(A) of A may include nonfinite sequences f={fx)3_, whose
components decrease sufficiently rapidly with respect to the number N, and vectors j™=(0,..., 0, fx,0,...) €
D(4),N=1,2,.... Then also the vector

=Y 1meD(4).

3.3. The Powers of the Operator A. Irrespective of the topology of the space on which the
operator A is defined and the space in which its range lies, the powers of the operator A are defined
nowhere. To see this, we show that for any sequence f the sequence A%f contains divergences.,

Since the operator A can be represented in the form (2.5), A? is a sum of products of the form
A; 4, . We consider, for example, the products A,.4., and A,.4... These operators contain terms that are
operators of multiplication by functions corresponding to loop diagrams (§2.2). These functions can be
expressed by the divergent integrals (for d = 4)

f g, dgs 1 (3.8)
(2m)* (g 1) (2n)*(g2+p*) (2n) [ (pi—qi—go) 2 +p2] "
dQ1 1
. 3.9
j (2m)* (g+p”) (Zn)‘[(q~p..--pez)2+‘u2] 8.9

Therefore, the operator A? is defined nowhere. The divergence of the integrals in (3.8) and (8.9) also shows
that the vector F' does not lie in the domain of deflmtmn of A, since the expressions (3.8) and (3.9) are
equal to the values of the operators Ai ; and 4., on 7,

Besides the above products, the operator A’ contains terms of the type Aiodiy, 45,450, Aiausds,, ete.,
which, essentially, are operators of multiplication by bounded functions., These operators are well defined
on the set of all finite sequences D,(#") and map vectors in D,(%*) to vectors in D, (&7). It then follows from
the definitions of the operators A.,, 4ss, A2, and Ay, that they are defined not only on %%, but also on
the set of finite sequences of the space &7, and

A Dy (&7)YcD (&) for i,j=40; 3,4; 2,11; 1,414,
Moreover, for the same reason .
AiiDo(&100) Dy (o).

This enables us to extend somewhat the domains of definition of the individual terms of A. We define the
set D* as follows:

D*=D(A)UD, (&™) UD, (&is), (3.10)

where D(A)c:.%“" is the set of all sequences on which the operator A is defmed the sets D(&") and Do(&L,)
are defined above. Then the operators A4,; A,,, 4., are defined on p* only on D(A), and the operators
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Aoy Arnyy Aag s an_d A., are defined on the whole of D*. In this connection, we introduce further notation,
Let D*(A_) be the set of vectors in D* on which the operator A, is defined, i.e., such that A_f for €D’
belongs to one of the spaces %%, &7, or &L,.

Thus, in this section we have shown that Eq. 2,2) is defined as an operator equation of resolvent
type considered for the pair of function spaces %’ and &7. We have also established the reasons that preclude
application of the method of successive approximation (the method of iteration) to the finding of a solution to
this equation,

In the following sections, we shall discuss possible ways of solving Eq. (2.2) correctly.

3.4. The Improperly Posed Nature of the Problem of Solving Eq. (2,2). Thus, Eq. (2.2} can be
considered in the pair of Banach spaces %" and &7. The operator A is unbounded in #7, and D{4)*%", and
its range R(A), like the range R{I + M) of the operator I + XA, lies in &7, and it is not ¢lear whether
R(A) and R(I + XA) coincide with &7. It may happen that F€R(I+rd), and therefore the probiem {2.2)
fails to satisfy not only the criteria for a properly posed problem of Hadamard [25] but alse the criteria of
Tikhonov [26].

As Tikhonov has shown [17], "improperly posed" problems arise in the description of many real
physical phenomena. It will be seen from the following analysis that the methods of their solution have much
in common with the methods developed in guantum field theory independently of the theory of improperly
posed problems. It will be shown in the following section that the well-known method of solving the equations
of quantum field theory by means of perturbation theory and renormalizations is equivalent to a certain
projection~iteration method, and that the resulting series {the renormalized perturbation series) is,
generally speaking, a quasisolution of Eq. 2,2). In addition, we shall trace the analogies between problems
of quantum field theory and some improperly posed problems.

4. Construction of an Iterative Series

As we have already noted, the method of iteration is inapplicable to finding a solution to Eq. 2,2},
since the first iteration already leads to contributions from the loop diagrams (see §2.2) that diverge.
However, a solution to Eq, (2.2) free of ultraviolet divergences may exist. Such a situation can he illustrated
by an elementary example.

Consider the integral eguation

,«\
N
.
=t
il

f(@)==1 | dyl—n(e=r+la—y)) 1f(y) ~lal.

It is readily seen that already the first iteration of Eq. (4.1) diverges:

fu@ == [ (et la—yl) lyldy=—.

However, an exact solution to Eq. (4.1} can be obtained by applying the theory of Fourier transformations of
generalized functions. The solution is
p+i

— ipx —— GR"
fz) Idpe p‘+pz+2nk’ P

and if A>0 f(z)€L.(R").

By analogy with Eq. (4.1), it can be hoped that such a solution of Eq. (2.2} also exists, but it cannot
be constructed iteratively. The existence of a solution to Eq. (2,.2) remains an open problem,

For what follows, we shall need some ancillary constructions, to which we now turn,

4.1. The Set of Contributions of the Renormalized Feynman Diagrams, In D*, we consider the
set G, which consists of sequences of contributions from the renormalized Feynman diagrams. To construct
such a set, we introduce the operators Ais«, Aiay i Avuga Ausu e Asatui Aoy, g0 300 diga, . 6 COTTE-
sponding to fixed variables pu, ..., Piy, k=1, 2, 3, 4, in the kernels of the operators 4,; Then

W= Y U s ™ 4.,2)

i, F i
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where k = 1 corresponds to the operators Ais 4:x, and Ay ui; k=2, to the operators A.. and 4,,; k=3, to
the operator A4s;, and k = 4, to the operator A.,, and the summation in (4.2) is over all sets of numbers
L% ... %, in 1, ..., N, For brevity, we introduce the index a=(i, j; is,..., &) and denote the operators
defined above by A . The operator A is the sum of the operators A over all admissible a:

The formal expression A,,...4..F" is the contribution (possibly divergent) from a definite Feynman diagram.

We denote by R(A.....A4..F°) the contribution from the diagram corresponding to A.,...4,.F° when
it is renormalized by means of the R operation, We form finite sequences consisting of functions of the form

Bay, ...\ (lm=R (Am e AGmFo)y (4:. 3)

where the indices ay,..., an take all admissible values. We define the set G as the linear hull of these
sequences. It follows from the properties of the R operation [5-11] that the contributions gu, ..,.. are
locally bounded functions, and therefore the sequence g belongs to D(&L,). It is obvious that also G=D, (&,
<D,

4.2, Construction of an Equation "Close" to Eq. 2.2). The operators Aisu, 4iss 4, Aoz s are not
defined on the whole of D*, and therefore to construct the iterative series we introduce operators that are
"close" to the operators A .

We shall say that the operators AY are "close" [27] to the operators A  if for f€D(4.)
Aa.rj"——Aaf. (4. 4)

We construct the operators A? such that they are defined on the complete D*.* We do this successively in
several steps. We introduce first in &7, &, and D* the operators T, . For @ =1,3; 1

. _ 1 -
I Y ™ L Y eopemamess Do WAL S 20 o oy DB 4.5)

Py, py and Ppu—Pr~—py€{n}, i.e., pyv—s, pv and p,—px—.—pr belong to one of the connected components.

For a = 1,21 the action of the operator 0, is defined by the expression (4.5) with the only
difference that the operator acts on functions for which two of the variables py_,, px, and p,—py-—px belong
to one connected component, and the third to another connected component.

For o = 2,2; ii, 12

1

=TI, (D e (P B) = s vy fress(Brye o ooy Do ooy Py Pt Di—Dw) 0
(4.6)
P, Pictpi—pai{n.
For the remaining o, we set [, = 1.
Using the operators I, we represent the operators A o in the form
Ao=BIl,. 4.7
For o = 1,3;1, and @ = 1,21;1,
Bef)wo(Puy - oy pw) =4(27)* (N+23V(N+1) J‘ (2n)"iqqiz+uz) (2n)46(iZ:z+uz) Fraeo(puo ooy Pxy @1 2) - “.8)
For o = 2,2; ii, i2 122" ;
Bef)wolpur-, o) = | Gy FrvaeBo - o). «.9)

For the remaining @, B, = A .

It is readily verified that the operators B, like A «» are defined on a set that is everywhere dense
in %7, namely, the set of finite sequences of functions Do(%%) that are concentrated on compact sets, and

* We recall that the operators A are not defined on the complete domain D*, and therefore A% and A do
not coincide outside D(A ).
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that they map this set to the set of finite sequences in &". By anology with the set p* (A, ), we introduce the
set D (B_), which consists of vectors f € D* and such that the vector B, f belongs to one of the spaces
& &7, or &L . To construct the operators A%, we introduce in D* the operators of projection onto D (B }

loc
in accordance with the rule

(o) if FRED*(Ba), |
*) ( )7 lf fN —ngax ..... o’ gED* (A(Z)s (40 10)
)n(...) in all other cases.

Paf)y~ ()=

Here, (f.')» is defined by the formula
(Befa ) v~ =R (Auda, ... AunF ") x, 4.11)

and fo'c is the part of the function £ that lies in D"(B o). It is obviously sufficient to define the operators P,
on functions corresponding to trivial partitionings of the set of variables Pyy ov.s Py. For the sequences
corresponding to arbitrary partitionings the operators P, will act on the connected components on which A
acts. We do not fix the procedure for separating f since in what follows we shall deal with only vectors
in G. However, we shall describe in more detail the procedure for separating f

To define (f,")» we must in Eq, (4.11), regarded as an equation for fa for known R{4.44, ... 4 F"),
invert, as it were, the operator B, . This can be readily done by using the following arguments.

The right-hand side of Eq. (4.10) is the contribution from the renormalized diagram and is defined
in accordance with the R operation as the result of subtraction from the function equal to the product of the
Feynman propagators of functions equal to the values of a definite number of propagators and their derivatives
at fixed points and integration of the resulting rational function Q({...) with respect to the independent
momentum variables* Ay o ey 9gs i.e.,

dg, dq:
Hglttpn) T 2u) (g4
For simplicity, we consider here the case when the expression A«da, ...A:.F° corresponds to a connected
Feynman graph. Since the expression R(4u4.,...A..F’) corresponds to the renormalized Feynman contribu~
tion, the integrals over gq {» +-+» q; converge absolutely In the first part of the expression 4.12), we now
separate the operator B, . Then what remains is f We do this for the example of the operator B, i.e.,
@ =1,3;i,. Using (4.8), we find

N j‘ dgs dq,
4(2m) (N+2) (N+1) J (2m)* (g +p?)  (2m)* (g7 +n?)

Similarly, we obtain B,, , &

Qaa:[ o (Ph'-"pNyqia---SQI}- (4-12)

R(4, Au,...AamFO)N(pi,...,pN)=5(p,+...+pN)j o

fzf;,z(pi,---,PN,q“CJz) Qutz( ..... L (P&, . 7pNaq1yqzrq3w--sql)' (4'13)

Finally, we define the operators A’ "close" to A by the formula

Ay =B P11, 4,14
and the operator

4=y 4o
Then the equation

F=—)\AF+F° 4.15)

is "close" to Eq. (2.2).
We formulate our main theorem,
THEOREM 4.1. A formal solution of Eq. {4.15) is the iterative series
F,= Z (=) "4, F". 4.16)

n=0

Each term of the series (4,16) belongs to G. The series (4.16) is equivalent to the renormalized perturbation
* The rational function Q(...) depends both on the external momenta p,, ..., py as well as on the internal

independent momenta q,, ..., q,, where ! is the number of independent cycles of the Feynman diagram
corresponding to the contribution 4.4q,...4e.F"
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series for the S matrix in the model of Euclidean quantum field theory with the Lagrangian (1.1).

Proof, We prove the theorem by induction. For n = 0, the theorem is trivial, since F' ¢ G by
the definition of the set G.

Forn =1,

A= 2 B.PILF.

For a=4,0; iy, ..., i, a=3,1; iy, @s &s, a=2,11; iy, i and a=1,111; i, F* €D{4.=B,), and therefore B,P,IL.F"
=AF° and for a=1,3; i,, a=1,21; i, and a=2,2; i, i, B.PII.F'=R(A.F°)=g.6G in accordance with the definitions
4.10) and 4.11),

Now suppose A;”Fo € F, i,e.,

4rr= V. gaa,= ¥ R 4o F).

1000 ®m

Then, using (4.10) and (4.11), we obtain

ATt p= N BPlligo.a, = Y Bagiuo,= Y, Rldeda.. Ao F),

which completes the proof of the theorem,

4.3. Regularization and Quasisolutions. We show that the renormalized perturbation series (4.16),
which is a solution of Eq. (4.15), is a formal quasisolution of the original equation (2.2). For this, we
represent Eq. (2.2} in the form

F=—3, Z‘B,, (PotQo) ILF+F, Qu=1—P., 4.17)

and substitute in Eq. (4.17) the solution (4.16) of Eq. (4.15). We obtain
Fo=— 2 BoPIIF,—\ ZBGQQHGF,+F° 4.18)

or

F,=-M,F,+F°-x2 BoQ,IL.F,. 4.19)

Since F, satisfies Eq,({4.15), for F, to be a solution of Eq. (2,2) it is necessary that

ZIBGQJL,Ff=0. 4.20)

Therefore, B.Q.II.F, serves as a measure of the deviation of the solution of Eq. 4, 15) from the exact
Q

solution of Eq, (2.2), If EBaQGHaF,?EO, then F_ is a formal "quasisolution" [28]. Note that if there exists

an exact solution F of Eq. 2.2), then for it the condition (4,20) is satisfied.

Besides the proposed method of solution of Eq. (2,2), there also exists another approach based on
preliminary regularization of the equation and construction of a regularized solution, As an example, let us
consider Pauli~Villars regularization. The essence of this regularization is that the functions G,(p)=(2xn)"*
(p*+p’)~t are replaced by the regularized functions

Gau(p)=co(p)+2m, 4.21)

where the coefficients ¢, and the masses M; are chosen such that the function Gl(‘)’-’ {p) decreases sufficiently
rapidlyas p > «, andas M; = «
Go™ (p) ~Go(p). 4.22)
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After the substitution (4.21), Eq. 2.2) takes the form
Fe—A(M)F+F", 4.23)

where the operator A(M) is obtained from A by the replacement {4,21). Since the functions decrease
sufficiently rapidly, the operator A(M) and all its powers are defined on FO, and Eq. (4.27) admits formal
solution in the form of an iterative series. However, each term of this series will diverge as M, — =,
Therefore, the next stage is the application to it of the R operation,

Pauli—Villars regularizations (and other regularizations) of the equations of quantum field theory are
conceptually close to Tikhonov’s method of solution of improperly posed problems of mathematical physics.
At the beginning of the sixties, Tikhonov gave a definition of the solution of an improperly posed problem by
means of a regularizing family of operators and developed methods for constructing such solutions [17], The
essence of Tikhonov’s method consists of replacing the original equation, which belongs to the class of .
improperly posed problems, by an equation in which the original operator is replaced by a regularizing
family of operators, and the equation with the regularizing family is a properly posed problem. The regulari--
zing family depends on a definite parameter, and when this parameter tends to zerc {to infinity) the regulari-
zing family of operators tends to the original operator. By solution of the improperly posed problem, one
understands the limit of the solution of the regularized equations when the parameter tends to zero {to
infinity).

As we have seen above, Pauli—Villars regularization (and other regularizations) of the equations of
quantum field theory and the subsequent lifting of the regularization by means of the R operation have much
in common with these methods.

We are grateful to M, K, Polivanov and O. I. Zav’yalov for a number of critical comments which
have improved the text,
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