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Jmurpo AxoBuu Ilerpuna
(mo 80-piuys Bij JHS HAPOIKEHHS )

Axkanemix HAH Vkpainu JImurpo dkosuy [erpuna OyB i 3aaumaerbest
BHUJIATHUM YKPaiHCBKMM BUYEHUM B TaJiy3i cydacHOi MaTeMaTrnydHoi dizuku.
Bin € omanM 3 GyHIATOPIB HEPIBHOBAXKHOI MATEMATHIHOI CTATHCTHIHOL
MeXaHIKM 1 eBKJIi/IOBOI Teopil moJid.

Axkanemik /1.4 [lerpuna 6yB gcCKpaBUM MpeICTABHUKOM HAYKOBOI KO-
au Boromo6osa — ITapacioka 3 cyuacuol maremaruanol ¢izuxu. Horo nay-
KOBI JTOCTII/IZKEHHST CTOCYIOThCSI MATEMATHIHAX MIPOOEeM KBAHTOBOI TeOpil
mosst i crarucTuynol Mexaniku. B 1961-1967 pp. H.4. Tlerpunooo cdop-
MYJIbOBAHO HANOI/IBIN 3arajbHUl KPUTEPiil CIIPaBeIMBOCTI CIIEKTPAJIHHIX
300pakeHb I aMILIITYA PO3CiTHHS Teopii 30ypeHb aHAJITHIHOI MATPH-
i po3cignans. JloBeaeHo TeopeMy PO HEMOKJINUBICTD MOOYI0BH HETOKATb-
HOl Teopii nouist 3 HogaTHUM cueKTpoM eHeprii-immysnbcy. Ha mogarky 70-x
POKiB BiH 3aIIpONOHYBAaB CHCTEMHU PiBHSHD s KoedinieHTHuX GyHKIIT
MaTPHUIll PO3CITHHS Ta BCTAHOBJIEHO 3B’SI30K €BKJIIOBOI TeOpii moJis i cra-
tucTuvHOi MexaHiku. B 1969 p. Oyna nosenena reopema boromrobosa — Ile-
TpuHA — Xalera Mpo iICHYBAHHS TEPMOIMHAMITHOI I'PAHUIN PiBHOBAYKHUX
CTaHIB CTATUCTHYIHUX CHCTEM, Ha OCHOBIi SKOI Oy/ia PO3BUHYTA CydacHa Ma-
TeMaTu4Ha craTuctuydna mexanika. B npamsax 1972-2004 pp. d.4. [lerpu-
HOIO OyJ1a PO3PO0JIEHA MATEMATHIHA, TEOPish HEPIBHOBAYKHUX CTATUCTHIHIX
cucreM. B 11bOMy HampsiMKy HEUM PO3POOJIEHI METOMM TOCJIiI2KEHHS iepap-
Xiit piBHAHL BorogobOoBa HECKIHIYEHHHX AWHAMIYHAX CHCTEM Ta, BIIEpIIE
JIOBEJIEHO iCHYBAHHSI TEPMOJIMHAMIYHOI I'PDAHMIN JJ1si HEPIBHOBAXKHUX CTa-
HiB. 3a JOMOMOrO0 KX PE3yabTariB Oyia0 po3B’a3aHO (DYyHIAMEHTAIbHY
npobjieMy OOrpYHTYBAHHS KiHETUYHOTO PIiBHSHHS BOIbIMAHA I MOIET
TBEPINX KYJIb, KE TMUPOKO BUKOPUCTOBYETHCS HE JIUIIE TTPU JOCTIKEHH]
rasis, mIa3Mu Ta, KOHIEHCOBAHUX CTaHIB CHCTEM 0ArarhOX YACTHHOK, aJie
i 7715 OMHUCY €BOJTIONIfIHUX TPOIECiB CKIAJHUX CUCTEM PI3HOMAHITHOI IPH-
pomu. B crarucruuniit Teopii kBanToBux cucrem .. Ilerpuni Hamexkarn
KJIACUYHI Pe3yJibTalu 3 JIOCJiJ?KEHHS CIEKTPIB MOJEJIbHUX I'aMiJIbTOHIa-
HiB Teopii HAAMPOBIAHOCTI ¥ HAAMIUHHOCTI Y BBEJIEHUX HUM TTPOCTOPAX

© Institute of Mathematics, 2014
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TPAHCSIiTHO-iHBapianTHUX (DYHKIIH, 0, 30KpEeMa, JO3BOJIUJIO BiIKPH-
TU HOBY TiJIKy CIEKTPY raMiJbTOHIaHiB Teopii Haanposigaocti (1970-1984
pp-, 2000-2004 pp.).

erpuna Imurpo AxoBud mapomuscs 23 Oepe3us 1934 poky y ceii
Topranosuui Crapocambipcbkoro paiiony JIbBiBchKol obacri. Burty ocsi-
Ty orpumaB y JIbBiBChbKOMY nep:kaBHOMY yHiBepcureri im. IBana ®pan-
ka (1956 p.). ¥V 1956-1965 pp. upawosas B lucruryri maremaruku AH
YPCP. Tyt Bin 3axuctus kaHaugarcbky (1961 p.) Ta JOKTOPCHKY Iu-
cepranii (1969 p.). Y 1965-1986 pp. npamosas B [HcTUTyTi T€OpEeTHUHOL
dizuku im. M.M. Boronobosa HAH Vkpaiuu (3 1978 p. 3asimysau Bimmi-
Jy crarucTudHol Mexaniku), y 1986-2006 pp. — B Iucruryri maremaruku
HAH Vxkpainu (3aBigysad Biaaiy MareMaru4HuX METOAIB B CTATUCTUYHIN
mexanini). 3 1985 poky iomy Oyso mpucsoeno 3BanHs npodecopa Kuis-
CbKOTO JeprkaBHOro yHiBepcuTeTy iMmeni Tapaca Illesuenka. B 1988 porri
J.4. Tlerpuny Oymno obpano wien-rkopecrongearom AH YPCP ta B 2006
poni — akagemikom HAH Ykpaiuun.

Tonosme micre B xkurti IMmurpa dxoBuua 3aiimana Hayka. Haykosmii
nopobok J1.41. Ilerpunn ckIama€ThCa 3 MOHOTpadiil, CIIMCOK IKUX HABEIe-
HO HAIPHKIHI crarTi, Ta nonas 170 HaykoBux npaib. oro Kkuury ysifnnim
10 MKJTY Tipanih " @yHKIIOHAJIBHO-AHAITHYHI TA TPYTIOBI METOIY CyIaCHOL
MaremarudHol dizukn" | ymocroenoro /lepxkaBnol mpemii YKpainu B rajy3i
naykwu i Texniku 2001 p. Cepito itoro pobiT OyI0 TAKOXK BiIZHAYEHO TPEeMi-
eio HAH VYkpaiau imeni im. M.M. Kpunosa 1984 poky ra mpemieio M.M.
Boromobosa 2004 poky.

Hvutpy fxoBudy Oy/a mpuTaMaHHA BHCOKA, KYJIbTYpPa, MIAPICTD, [10-
Opo3mumBicTh. 10ro BUPI3HSIIM BUCOKA MPANE3IATHICTS, IMIPOTA iHTEpe-
ciB Ta epyauiis. 3a OCTAHHE JECATUPIYYsS MU € CBiIKaMu OypPXJIUBOrO pO3-
BUTKY CY4YaCHOI CTATHCTUYHOI MeXaHiku, ogHuM 3 (dyHmaTopis sikoi OyB
akamemik JI.41. Tlerpuna. I Bxke HaBITH 3a 1ei KOPOTKUit epiom, KOMM He-
Mmae 3 Hamu JImurpa fkoBuya, cTasto 3po3yMisinm, 1o mepCreKTuBa PO3BH-
TKY #0ro izeif i HayKoBUX pe3ysnbraTiB HabaraTo OikIma, HixXK Tie 37aBaI0Ch
HA MTOYATKY.

1. O.41. Terpuna, C.C. Usanos, A.JI. Pebenko, Ypasnenus dasn xosphuyu-
eHMHBLT PyHKUul mampuuse paccesnus. M.: Hayka, 1979.

2. 1.41. Illerpuna, Keanmosaa meopua noas. Kues: Bercmasg mkosta, 1984.

3. O.4. Ilerpuna, B.U. T'epacumenko, I1.B. Mansimes, Mamemamuuecrkue
0cHo06bL KAaccuveckol cmamucmuyeckol mexanury. Knes: HaykoBa mym-
Ka, 1985.
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Semiclassical hydrodynamics of
a quantum Kane model for
semiconductors

In this paper we derive a semiclassical hydrodynamic system for electron
densities and currents in the two energy bands of a semiconductor. We use
the semiclassical Wigner equation with a k- p Hamiltonian and a BGK
dissipative term to construct the first two moment equations. The closure
of the moment system is obtained using the Maximum Entropy Principle,
by minimizing a Gibbs free-energy functional under suitable constraints.
We prove that the constraint equations can be uniquely solved, i.e. that
the local equilibrium state can be parametrized by the density and velocity
field. Some BGK-like models are proposed to mimic the quantum interband
migration.

1 Introduction

Description of the charge carriers dynamics in semiconductor devices
is certainly a severe task, especially if one wishes to keep together a
rigorous (and complete, whenever possible) physical picture with a final
result (set of equations) simple enough for the numerical implementation.
Hydrodynamic approach is an excellent compromise between the two
requirements. Our aim is the construction of hydrodynamic equations
for the electron dynamics, by means of moment method, starting from
the pseudo-kinetic formulation of quantum mechanics in terms of Wigner

© Dipartimento di Matematica e Informatica, 2014
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functions. The physical framework adopted in this paper is based on the
so called k - p method, [9, 13], a simple model for the description of charge
transport in a semiconductor with two available energy bands.

The k - p Hamiltonian has been widely studied and employed in
literature (see for instance the review [5]). In particular, it has been
exploited in [3, 4] to derive a semi-classical two-band diffusive model, with
weak or strong external fields.

The rigorous derivation of the k - p Hamiltonian from the complete
Hamiltonian of an electron in a periodic potential, under a suitable
homogenization scaling, is based on the concept of envelope functions and
can be found in [2]. The result is a 2 x 2 matrix Hamiltonian, which means
that electrons in the & - p description are pseudo-spinors (the pseudo-spin
being related to the two energy bands). A fully-quantum treatment based
on the k- p method leads to non-parabolic intraband dynamics as well as
to interband quantum transitions.

However, in the present semiclassical treatment, the latter aspect is
lost. Nevertheless, the non-parabolic dynamics is still present and leads to
non-trivial fluid models.

The semiclassical kinetic equations, that we need to get the
hydrodynamic model, can be naturally expressed in terms of Wigner
functions, describing statistical states of electrons in terms of quasi-
distributions in phase-space. Due to pseudo-spin, the standard scalar
Wigner function has to be substituted by a matrix-valued Wigner function.
Such a matrix can be projected on the two energy subspaces, thus obtaining
two distributions of electrons, corresponding to the two energy bands.
Then, the macroscopic fluid quantities can be obtained by taking moments
of the band-projected Wigner function, which have the physical meaning
of densities n4 and velocity field uy, where the subscript = means +, the
upper band, and —, the lower band (see Eqs. (24) and (25). The Wigner
formalism, moreover, permits the introduction of a well justified BGK term
(see [1, 8]]) which takes in account the interaction phenomena leading to a
local equilibrium relaxation. Thanks to this relaxation mechanism we can
assume that, in a time-scale larger that the relaxation time, the system is in
a local equilibrium state. The latter is chosen according to the Maximum
Entropy Principle (MEP), i.e. as the most probable microscopic state,
given the observed macroscopic moments ny and uy. This strategy, as
usual, provides a closure of the moment equations.

The paper is organized in the following way: in section 2 we present the
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k - p Hamiltonian. The presence of the two bands is treated introducing
a pseudo-spinorial formulation via a representation on the Pauli matrices
basis. In section 3 we deduce the Wigner-BGK equations for our model.
The Wigner matrix is decomposed in its scalar part wg and its pseudo-
spinorial part «. & is further split in a part parallel to the direction of the
pseudo-spinorial part of the Hamiltonian, wg, and a part orthogonal to
it, w, . This representation discovers itself useful in the evaluation of the
moments for the Wigner equation, since the contribution of @, vanishes. In
Section 4 we deduce the moment equations of zeroth and first order, where
appear the tensors P4 and Q4, which can be interpreted as the pressure
and effective-mass tensors. In Section 5 the application of the MEP implies
that these tensors depend on two Lagrange multipliers, a scalar one, Ay,
and a vector one, B4. The closure of the moment equations requests the
study of the dependence of the tensors on the macroscopic quantities,
n+, the numerical density and u.y, the velocity field. In Theorem 1 we
prove that By (and AL, as a consequence) is a smooth globally invertible
function of the macroscopic quantities.

Since in semiclassical limit the quantum interference terms between the
two bands disappear, in Section 6 we examine some models that enable the
reintroduction of this aspect. We propose there three different BGK-like
terms which satisfy this condition.

2 The k- p model

The simplest possible description of an electron in a semiconductor crystal
with two energy bands (e. g. “valence” and “conduction”) is obtained from
a periodic Hamiltonian by means of the k - p method [9, 13| and consists
of a 2 x 2 Hamiltonian of the following form:

2 2
—LA+E/2 LK.V
H = . (1)
PK.v  —EA-E/2
Here, I is the band-gap and K = (K1, Ky, K3) is the matrix element of

the gradient operator between the Bloch functions by of the upper (+)
and lower (—) bands, evaluated at zero pseudo-momentum:

K= / by (x) Vb_(x)dx,

lattice cell
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h is Planck’s constant over 2w and m is the electron mass. The k - p model
has to be completed by adding an “external” potential term ¢V (where
g > 0 denotes the elementary charge), accounting for all electric fields
except the crystal one. The electric potential V(x) can be either fixed or
self-consistently given by a Poisson equation.

The k - p Hamiltonian H is the quantization of the classical matrix-
valued symbol

2
B
a=+Eg/2 —iK-p

h(p) = : (2)

B
where p = |p|.

In this paper we make the choice to decompose any 2 x 2 complex

matrix in the basis of Pauli matrices

/10 (01 (0 —i /10
oo = 0o 1)/’ o1 = 1 0/ 02 = i 0 ) 03 = 0 -1/’

(the coefficients of the decomposition will be real if the matrix is
hermitian). The operators o1, 02, o3 are called “pseudo-spin components”
in this context. Putting

h
a = (ag,a,a3) := EK and v:=E;/2, (3)
we can write
2
h(p) = 53— 00 +a -pos+yos = ho(ploo +hlp) -4 (4)
where
»? -
ho(p) = h(p) = (0, p,7),

2m’
and, as usual, & = (01,09, 03) is the formal vector of Pauli matrices. Here
and in the following we adopt the arrow notation for three-vectors, such as
l_i(p), that are the pseudo-spinorial part of the Pauli coefficients. Instead,
we do not use the arrow notation for “cartesian” three-vectors such as x,
P, K, a, etc. The dispersion relation for the free Hamiltonian H is easily
obtained by computing the (p-dependent) eigencouples of the symbol h(p).
This yields to the energy bands

Ei(p) = o+ \/(a p)7 77 = . & |i(p)| (5)
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and to the corresponding normalized energy eigenvectors

- 1 vs(p) £ 1
Vi = 2(1 + v3(p)) <V1(p) + in(p)> ’ ©

where we have introduced

()  (0,a-p,7) (

h
(p) = (n1(p), v2(p), v3(P)) = h(p)] - Vi pZ+2

The two eigenprojections Py(p), that we call band-projections, are
therefore given by

EN|
~—

N

1 . -
Pi(P):iﬂi@?/Ji:i(UoiV(p)'U) (8)
and we can clearly write

h(p) = E4(p)P(p) + E_(p)P-(p). 9)

Important quantities associated to the energy bands are the semiclassical
velocities v

vy =VpEi(p) = P, *P Py Voo (10)

m lapEear m

and the effective-mass tensor My (p) defined by [2]

_ 1 2a® «
Mi'(p) = Vp ® VpEi(p) = —I+ —

w0

where I is the identity matrix.

3 Wigner-BGK equations for the k- p model

Let p;;(x,y,t), 1 <i,j < 3, be the density matrix describing the quantum
statistical state of electrons with Hamiltonian (1). The corresponding
kinetic-like description is provided by the Wigner matrix w;;(x,p,?)
defined by [14, 16, 3]

1 3 £\ —ip
wij (X, p, t) = W/RS Pij (x+ X - 2,t> e”PE/hge. (12)
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The Wigner matrix w = (w;;) is hermitian,
w(x,p,1) = w (x, p, 1),
and, consequently, its Pauli representation
w = woop + W - 7, W = (w1, we, w3) (13)

has real components w(x, p,t), 0 < k < 3.
Considering Py and 7, as defined in (8) and (7), the two scalar functions

wy = Tr(Prw) =wo £ V- @ (14)

can be semi-classically interpreted as the phase-space distributions of
electrons in the two energy bands Ey [3] and will play a central role in the
following. Moreover, if wy = 7 - W, we have the obvious relations
Wi + w— Wy — W
wy = wo + ws, w0:+77 ws:+77 (15)
2 2
and ws has therefore the meaning of “band polarization”. It will be
convenient, moreover, to introduce a notation for the perpendicular part
of w with respect to by putting

Assume now that the dynamics of the density matrix p(x,y,t) is given by
the von Neumann equation (Schrédinger equation for mixed states)

9 = (Hy — Hy)p+ (V(x) = V() oop
where Hy and Hy denote the k- p Hamiltonian (1) acting, respectively, on
the x and y variables, and V is an external and/or self-consistent electric
field. Then, using (12) and (13), it is not difficult to prove that, up to terms
of order A2, the evolution equations for the time dependent Pauli-Wigner
functions are the following

0

ﬂ+B-wao+F~pr0+oz-wa2:0,

ot m

o , (17)
a—t”nt%-wa+F-pr+a-wao€2—ﬁfz(p)><U7=0
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Here, h(p) = (0,-p,7), @ = (0,1,0) and F = —VV denotes the external
force corresponding to the electric potential V.

In order to supplement system (17), which describes a conservative
Hamiltonian dynamics, with a collisional mechanism, we insert a BGK
(Bhatnaghar-Gross-Krook) collisional relaxation-time term. This term
mimics the collisions that force the system towards a local equilibrium
and it is characterized by the relaxation time 7., which is assumed to be
the same constant for all components. The system, which will be referred
to as “Wigner-BGK” (WBGK) equations, takes the new form

5 _

y B.wa()+F-pr0+a~wa2 = u’

ot m Te

o 25 g —w

a%ur%.vxw+F.va+a-vxwoé‘2—ﬁh(p) X W= chwv
(18)

where g = goog + G- 7 is a local-equilibrium Wigner matrix that will be
specified later on.

We now extract from Eq. (18), equations for the band distributions
wy and w_ (see definition (14)). For this purpose we introduce the
orthonormal basis (71, 72, V), where ©; = €1 = (1,0,0) and 7y is chosen
such that 7i; x 7is = 7. Using the decomposition @ = w7+ @, (see ((16))
and taking account that wyo = wsi/ - € + W, - €3, with

a .
.ol N U S— (19)
(a-p)*+7° (c-p)* +72
we rewrite the first of equations (18) as

Owg «-p

p
TP Ve +F Vowy + ——— 2o Vyw,
ot  m 0 p=o (- p)2 +12
Y - - go — Wo
—— 7y - (a- Vyw ) = =——. (20)
(a-p)?+72 ( ) e

Concerning the second of equations (18), using again (19), we have

0 S, .. a-pv+yi
*(wslf-ﬁ-uu_)-kg'Vx(wsv+wL)+Ma~wao
ot m (D) + 72
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Decomposing this equation in the parallel and perpendicular parts with
respect to 7/, and using 7 - (F - V) = 0, we obtain an equation for w,:

ow a-p

5 +%-was+F-prs+—(a_p)2+72a-vxw0
+ 7 (F- Vo) = ==, (21)
and an equation for  :
ow,  p » »
W—F%-waL+(F~Vp)wS+(F~prJ_)J_
(ajy:;wa - Vxwg = %H(p) X Wy + %, (22)

(which will not be used in the following). Then, recalling (15) and (10),
equations for w4 and w_ are now readily obtained from (20) and (21):

ow
a—:+vi~vxwi+F~pri+

v - -
Vg T

L7 (F-Vpw,) = £ 1%

C

(23)

4 Moment equations and entropy closure

The local equilibrium Wigner matrix g = ggog + ¢ - & is given by the
MEP and is, therefore, the maximizer of a suitable entropy functional
(which depends on the particle statistics) under the constraint of given
macroscopic moments [10, 15]. We make the following assumptions:

1. the system is in thermal equilibrium at constant temperature 7" > 0
(e.g. with a phonon bath);

2. the electron statistics is well approximated by Maxwell-Boltzmann
distribution (in the semiclassical approach);

3. the observed macroscopic moments are the densities

ny(x,t) = /R3 wx (X, p,t)dp (24)
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and the velocity field

1

uxbt) =T

/R v (p)w(x, . ) d (25)

of the electrons in the two energy bands.

It follows from the above assumptions that the local equilibrium g must
be sought as the minimizer of the Gibbs free-energy functional

E(w) = Tr {kpT(wlogw — w) + hw} dp dx, (26)
R6
among all positive-definite Wigner matrices w sharing the macroscopic
moments (24) and (25). In (26), kp is the Boltzmann constant, h is the
matrix-valued symbol of the Hamiltonian (see (2)), and log w is the matrix
logarithm. It can be shown [3] that the solution g of such constrained
minimization problem is given by
ge(x,p, 1) = e PFEPFBevaPIrAe g, — g, (27)
where 8 = (kgT)~!, and Ay = A4 (x,t) and By = B4 (x,t) are Lagrange
multipliers to be determined from the constraint equations

/3 9+ (x,p,t)dp = ni(x,1),
: (28)
[ v (0) 02 (oo t) dp = s . s (.0

Let us now assume that the time-scale over which the system is observed
is much larger than the relaxation time 7. (the so-called hydrodynamic
asymptotics). In this limit, we have that w — ¢ and we can rewrite Eq.
(23) with wy = g+ and W, = g, = 0, obtaining that the local equilibrium
function satisfies

%+Vi “Vxg+ +F - Vpgs =0. (29)
Remark 1 The quantum interference terms (i.e. the terms containing
wy in Eq. (23)), which are responsible for quantum coupling between
the two bands [11], have disappeared in our semiclassical hydrodynamic
picture because g, = 0. When dealing with the semiclassical diffusive
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limit, however, we have to consider terms of order 7 in the semiclassical
expansion of the quantum equilibrium (our g is the leading order of such
expansion) and band-coupling interference terms appear [3, 6]. O

Integrating Eq. (29) over R?, and using the constraints (28), we have

8;'9%;—“ + Vi (niug) =0 (30)

that is the continuity equation for ny. Multiplying Eq. (29) by vi and
integrating over p, we obtain the first-order moment equation

8(ni U_:t)
ot

that is the momentum balance equation, where the tensors P4 and Q4 are
defined as follows:

Py = / Vi ® Vi gy dp, Qt = / (Vp®vi)grdp.  (32)
R3 R3

+ Vi -PL —F-Q+ =0, (31)

Recalling (10) and (11), the tensor Q4 , which “mediates” the action of the
force F, can be written as

G [ (VeoVeBigedp— [ MIE)grdp, (39
R R

showing that Q4 is the average inverse effective-mass. For suitable values
of a and v, Q_ can be negative: in this case the lower-band electrons
behave like positive-charged carriers (holes).

We remark that the functions gi have been determined by the
maximum entropy principle and depend implicitly on the moments n4
and ug because the constraints (28). In this sense, the tensors Py and
Q4+ can be regarded as functions of n+ and u., making the hydrodynamic
system (30) + (31) formally closed.

For future reference let us summarize here the hydrodynamic model
that we have obtained: it consists of the moment equations

a% + Vi (nauy) =0,
d(ntuy)
ot

and of the closure relations (32) and (28).

+Vx Py —F Qi =0,
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5 The constraint equations

In this section we study the problem of how writing in a more explicit way
the moment equations, that is expressing the Lagrange multipliers A and
B, and consequently the tensors P+ and Q4, as functions of the moments
ny and u4.

In order to simplify the notations we note that, both in the moment
equations (34) and in the constraint equations (28), the + and — quantities
are completely decoupled (unless coupling mechanisms are introduced,
as we will discuss in Section 6). Then, we can safely drop the + labels
everywhere, bearing in mind, however, that the + and — problems are
formally identical but physically different, because energies, velocities and
effective-masses are different in the two bands.

In order to stress the dependence of the local-equilibrium on the
Lagrange multipliers we put

¢(A,B,p) = e PEEITBV(R)+A (35)

and rewrite the constraint equations (28) as follows:

/ 4(A,B.p) dp = n, / v(p) (A, B,p)dp = nu,  (36)
R3 R3

(recall that we are suppressing the labels £, and that A, B, n and u are
functions of (x,t)). Equations (36) have to be regarded as a system of four
scalar equations in the unknowns A and B = (By, B, B3), for given n > 0
and u = (uy,us,uz) € R3.

Let us introduce the function f(B) defined by

of(B) _ / ¢ PEEBY(®) g (37)
R3

By using
v(p) #(A,B,p) = Veo(4,B,p),

we obtain that the constraint system (36) is (formally) equivalent to

eAef/®) = p,
(38)

VBf(B) = u.
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From Eq. (38) we see that B only depends on u and, once B is solved
from the second equation as function of u, the remaining unknown A is
determined by e = ne~/®) Moreover, using

V(p) ® V(p) ¢(Aa B7 p) =VB® (VB¢(A5 B7 p))a

the tensor P (see definition (32)) can be written as
P—oA Ve ® (VBe—BE(pHB-V(p)) dp
R3

= " V5 ® (Vae!®) =1V @ (o/®) (V5 £(B)))
=e/® [V f(B) ® Vs f(B) + VB ® (VB f(B))]
and therefore, using Eq. (38),
P=nu®u+nVs ® (Vsf(B)). (39)

This decomposition of P shows that Vg ® (Ve f(B)) plays the role of
pressure tensor in the Euler equations (34). Unfortunately, the “mass”
tensor Q has not a similarly simple expression in terms of f(B).

As already remarked, the form (38) of the constraint equations allows
to reduce the problem of the solvability of (A, B) as a function of (n,u)
to the solvability of B as a function of u from the equation

Vef(B) =u,
which is proven in the following theorem.
Theorem 1 The mapping B € R? s Vg f(B) € R? is globally invertible.

Proof. We first prove local invertibility. Let u(B) := Vg f(B). Using (39),
and recalling that n > 0 is given, we have that
8ui 62f Pij

= = — — UUy

= | @) = u)(o,(0) — ) (A B.p) d.
R3

n

showing that the Jacobian matrix of the transformation is the covariance
matrix of v(p), relative to the probability density ¢(A, B, p)/n, which is
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semi-definite positive. The positive definiteness is readily proven by direct
inspection, since
2 du 1
i 2
&= = . — A, B,p)dp >0
ang &= /RS [€- (v(p) —w)]” ¢(A,B,p)dp

4,j=1

for every & € R3 with € # 0, which concludes the proof of local invertibility.

In order to prove the global result, we resort to the classical result of
Hadamard, that a local diffeomorphism is global if an only if it is proper
(the inverse image of a compact is compact). In the present case this
reduces to prove that, for every sequence By, € R? such that |By| — oo,
also the image sequence u; = u(Bj) € R? is such that |ug| — oo. Since
|Bk| — 0o, we are interested in the asymptotic behavior of the distribution
(A, B, p) for large |B|. Without loss of generality, we put here m = 1 and
B = 1. The critical points of ¢(A, B, p) (as a function of p) are determined
by the condition

Ve (E(p) —B-v(p)) =0.

Recalling (5) and (10), this leads to the condition

p+ Vplh(p)| =BT a-BVy(p) =0,

that is
. -B 2
pt (a-p)a 5 -BF (a )owm _o.
(- p)? +77 [(a-p)* +77
Making the change of variable
q= P
B|’
we obtain the equation
CROL B (o B)ay? _
q=+ Z T 52 =0,

_ 1/ _
Bl [(a@)* + B 72| Bl (e @)? + [B] 2

which is asymptotically equivalent for |B| — oo to

B

77:0’
B

q
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i.e. to

p = B.
Thus, we have shown that, for large |B|, the distribution ¢(A, B, p) has a
single critical point (which is clearly a maximum) at p = B. Moreover, it

decays like e~ IpI*/2 away from the maximum. This gaussian-like behavior
ensures that

1
f/ po(A,B,p)dp ~ B, as|B|— cc.
n Jgrs

Finally, since v(p) = p + 12(p)e, and v2(p)a is a bounded quantity, we
also obtain

1 1
u= */ v(p) ¢(4, B, p)dp ~ 7/ p$(A,B,p)dp ~ B,
n Jrs n Jgrs
which shows that |ui| — oo if |By| — oo, concluding the proof. O

6 Band coupling

As already remarked, the disappearance of the quantum interference terms
in the semiclassical limit makes our hydrodynamic model decoupled with
respect to the two bands. Coupling mechanisms can be introduced in two
ways. First of all, we may assume that the electric potential is composed
of two parts:

V= ‘/ext + ‘/inta

where Vi is the “external” part (taking account, e.g., of external bias,
gate potentials, and heterostructure potentials), while Vi is the “internal”
(or self-consistent) part, taking account of Coulomb repulsion between
electrons. In the simple mean-field model, this is given by the Poisson
equation

SSAVint = —q(n+ + TL_), (40)

where ¢ is the elementary charge and ey is the permittivity of the
semiconductor. The right-hand side depends on the total density ny +n_,
this coupling the upper-band and lower-band populations.

The other source of coupling derives from collisional mechanisms. In
order to introduce them, we have to go back to the kinetic level and add to
the WBGK equation (18) a suitable matrix-valued “interband” collisional
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operator C'(w) [12]. This is assumed to act on a much slower time scale
with respect to 7. (otherwise it would affect the hydrodynamic limit and
destroy the structure of our MEP-based model). Thus, we rewrite Eq. (18)
with the (generic) additional terms:

P _
ﬂ+£.vwa+F-pr0+a-wag = M—FCO(UJ),
3t m Te
90 | P oG i+ F -Vt + a-Voewo & — 2 i(p) xd = =2 4 Gi(w)
o TV p xWo €2 — % p R
(41)
Following the same arguments that led to Eq. (29), we arrive at
09+
gt + vt -Vygs +F-Vpge = Ci(gy,9-) (42)

(where we adopted a notation that stresses the fact that g only depends
on g4 and g_). Taking the zeroth-order and first-order moments of this
equation we get a modified version of the hydrodynamic system (34):

0

% + Vx (nxus) = Ni(ng,no,ug,u),
(43)

0

% + vx . Pi —F. Qi = Ui(n+7n77u+7u*)7

where, of course,
Ny = / Cx(9+,9-)dp
]R3

(44)

Ul — / v (p) Ci(gs.g-) dp,
]RS

and the dependence on (n4,n_,uy,u_) follows from the MEP closure.
Le us now list some possible choice of C'(w) in a simple BGK (relaxation
time) form, corresponding to different interband scattering mechanisms.

1. Band-flip The electron undergoes a collision which exchange its band
label from 4 to —, or from — to +. Then we put
w — Wooy w- o

Y (w) = . = (45)
bf Tof
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(where T3¢ denotes the characteristic time of band-flip scattering, which
we assume constant for simplicity), so that
Wy —wW-—

Cf (w) =3~

(from which the band-flip is evident). According to definition (44),
therefore, we have

ny —n— nyuy —nN_u_

NS =7 . Uf =%

46
be be ( )

Note that the band flip mechanism conserves the total density and the
momentum and relaxes the polarization of density and momentum, (i.e.
ny —n_ and up —u_).

2. Band relaxation An electron in the upper band undergoes a inelastic
collision which scatters it to the lower band [7]. This mechanism is
described by

U)olj—’lﬁ

C'(w) = ——— -7, (47)
Tohr
so that
w
Oif (w) = :Fia
Thr

(where 7, denotes the characteristic time of band relaxation scattering,
which we assume constant). From definition (44) we obtain
nyug

n
Nbr:¢—+, Uy =F . 48
* Thr + Tbor ( )

Note that this mechanism conserves the total density an momentum and
depletes the upper band in favor of the lower.

3. Isotropic interband scattering An electron undergoes a scattering
event that changes its band label and re-distributes its momentum
according to a isotropic, thermal distribution. This mechanism is described
by

O (w) = —2=L, (49)
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where 7;; denotes the characteristic time of interband scattering, which
we assume constant, and where g* is the isotropic version, with inverted
densities, of the MEP local equilibrium g, i.e.

" nr _ o
gi(x’p’t) — - F e /BE:(:(P), g*J_ — 0’ (50)
Z4
where
s [P0 ap, (51)
]RS
so that

[ oitxpdp=nsxt). [ vi(e)gitxp)dp =0

(note the inverted band-labels of the density). Then:

*
; W+ — g
O (w) = - =
Tis
and
i ny —n— ; ni+ut
NP =311 = : (52)
Tis Tis

Note, therefore, that this scattering mechanism relaxes the current in
both bands and the density polarization .

7 Conclusions

We can finally summarize the hydrodynamic model emerged from our
discussion. It consists of the Euler-Poisson-like system

8ni

2 T Vx (nyug) = Ny,
0
% + Vs (e @ s +1T4) + Ve (Vi + Vi) - Qi = U,

6SA‘/int = _q(n-‘r + Tl_),
(53)
where:

Ni:Ni(n+an—7u+au—)a Ui:Ui(n+an—7u+au—)
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are the coupling terms discussed above,

Ti =Vp, ® Vs, log/ o BE+(P)+Bx-v+(p) dp
R3

is the pressure tensor, described in Sec. 5,
Q4+ :/ M;l(p) e*BEi(p)JrBi-vi(pHAidp,
]Rfi

is the effective-mass tensor, also described in Sec. 5, and the Lagrange
multipliers (A4, B4) can be uniquely solved as functions of the moments
(n4,uy) from the constraint equations

/ e*ﬁEi(P)ﬂLBi'Vi(pH’Aidp =ng,
R3

/ v (p) e PEEITBL V@I AL gn
R3

as proven in Theorem 1.
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Mathematical problems of the
almost-periodic solids

In the paper we consider the problem .....

B pobori posrisiiaerbes mpobiema ......

1 Introduction

It is well known that all solids are built of light electrons and heavy nuclei.
The difference of masses is very large since an electron is about 2000
times lighter than a nucleon and a nucleus consists of tens or hundreds
of nucleons. As a result of that we can imagine a solid as a collection
of light and fast electrons moving quickly among heavy and slow nuclei.
The slow nuclei form a potential for the fast electrons and in the first
approximation the electrons follow to slow changes of the potential. It is
an essence of the adiabatic hypothesis in the solid state physics.

The nuclei form a carcass of solid and an arrangement of nuclei in the
carcass defines a structure of the solid. We classify the solids by a character
of this structure.

If the solid is a crystal it leads to important consequences which allow
to describe many properties of crystalline solids. First of all since the
lattice has a symmetry of some space group the tensors which describe
various properties of the crystal (tensor of elastic constants, tensor of
dielectric or magnetic susceptibilities, tensor of conductivity etc.) have
a symmetry of an appropriate point group. Secondly the nuclei, arranged

© Institute of Mathematics, 2014
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in a lattice, form a periodic potential for the fast electrons and therefore
an electron energy spectrum is a spectrum of the Schrédinger operator
with the periodic potential. We can prove that this spectrum is absolutely
continuous and has band structure, i.e. it is a union of closed segments
of absolutely continuous spectrum. As a result of this fact all crystals are
conductors in general.

If the nuclei are arranged randomly the solid has an amorphous
structure. In this case electrons move in a random potential and therefore
their energy spectrum is a spectrum of the Schrodinger operator with the
random potential. If this potential is of the "white noise"type then we
can prove that an appropriate spectrum is point. In this case amorphous
solids are dielectrics. Electrons are allowed to move in electric field only
by means of an electric breakdown.

We have described above two limit cases when nuclei arrangements
(and also the corresponding electron potentials) are periodic or random
functions. It appears that there exist a set of the almost-periodic functions
which include periodic functions as a particular case and satisfy the
condition of ergodicity which is the weakest possible exhibition of the
randomness property. Therefore it looks reasonable to assume that in
general case the nuclei arrangements in solid are almost-periodic [1]. Is
is indeed the case and we shall discuss this idea now in details. Before that
we explain what are the almost-periodic functions.

2 Almost-periodic structures

The theory of almost-periodic functions was created mainly by H. Bohr
in 1924-1926 years and developed further by A. Besicovitch, S. Bochner,
N. Bogoljubov, J. Favard, B. Levitan, J. von Neumann, V. Stepanov,
H. Weyl and others. A particular but very important class of the almost-
periodic functions (known now as quasi-periodic functions) was studied by
P. Bohl and E. Esclangon as early as the end of XIX century.

Now we present essentials of the theory of almost-periodic functions
and in order to make our exposition as simple as possible we consider only
one-dimensional almost-periodic functions, a generalization of results for
many-dimensial case is straightforward. We do not give proofs here, the
reader can find them himself in the literature [].

Among many equivalent definition of the almost-periodic functions we
choose the following one.
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Definition 1 Function f(x) is called almost-periodic if it is a uniform
limit in a space of trigonometrical polynomials Trig(R), i.e. for any ¢ > 0
there exist such a trigonometrical polynomial P.(x) that

sup | f(z) — Pe(z)| <. (1)
z€R
We denote the set of all continuous almost-periodic functions on R by
CAP(R). Every almost- periodic function f(x) is bounded and therefore
we may introduce the norm

I£1] = sup [ f()]. (2)
r€R

With this norm the set almost-periodic functions becomes a commutative
Banach algebra with the usual definition of addition and multiplication.
Now we enumerate some properties of the almost-periodic functions
which we shall use further.
A. For any almost-periodic function there exist a mean value

M(f)= lim — f(z)dz. (3)

It allows for any almost-periodic function to build a Fourier series

f(z) ~ Z Ay exp(idgz), An = M(f(z)exp(—il,z)). (4)

We designate the numbers \,, as the Fourier frequencies and the numbers
A, as the Fourier coefficients of the function f(x). By means of the
Fourier series we can build approximative trigonometric polynomials for
the almost-periodic function.

We say that a countable set of real numbers {\,, }$° has a rational basis
{@, }$° if the numbers «,, are linear independent and any number )\,, can
be presented as their finite linear combination with rational coefficients,
ie.

Sn

An = ZTZ ap, 1, €Q. (5)
k=1

We say that the basis is finite if it is finite set, we say that the basis is
integer if all numbers r} are integer numbers. If the a Fourier frequencies
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of the almost-periodic function have a finite and integer basis we designate
the appropriate almost-periodic function as a quasi-periodic one. A quasi-

periodic function with unique period is pure periodic one.
B.

Theorem 1 (Kronecker-Weyl) Let A\, k = 1,...,n be real linearly
independent mnumbers, 0, k = 1,...,n be arbitrary real numbers,
O, k = 1,...,n be arbitrary positive numbers. Let x(x1,xa,...,x,) be
a characteristic function of parallelepiped in R™ defined by inequalities

Ok—5k<xk<9k+5k, k=1,...,n. (6)
Continue the function x(x1,x2,...,%,) to the whole R™ periodically with
periods 27 in all variables xy, k=1,...,n.

Then uniformly in L we have

L
lim X()\lx—ﬂl,,)\nm—en)dx:ﬂfncﬁén (7)

L—oo [o

C. A number 7 is called an e—almost-period of the function f(z), z € R
if

sup |f(z +7) — f(z)] <e. (8)
zE€R
It appears that any almost-periodic function has a relatively dense set of
e—almost-periods for any € > 0, i.e. for any € > 0 there is such a number
l(¢) that in any interval of the length [(€) there exist at least one e—almost-
period.

For the almost-periodic functions there exist close connection between
e—almost-periods and the Fourier frequencies. Namely for any natural
number n and any positive number § < 7 there exist such a positive
number ¢(n,d) that all e—almost-periods of the almost-periodic function
f(z) satisfy the following system of inequalities

[Ap 7] <9, ( mod 27), k=1,2,...,n. 9)

At the me time for any € > 0 we can point out such a natural number n
and a positive number § < 7 that any real number 7, which satisfy the
system of inequalities

[Ae 7] < d, ( mod 27), k=1,2,...,n.
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is an e—almost-period of the almost-periodic function f(z).

D. Function F(x1,xs,...) of finite or countable set of variables, each
of which admits all real values, is called limiting periodic if it is a uniform
limit of periodic ones, i.e. if for any real positive number ¢ we can point
out such an integer positive number n(e) and such a periodic function
Fe(x1,22,...,2,(¢) that

sup |F(x1,22,...) = F(w1,22, ..., 250))| <€ (10)
—oco<xk,k=1,2,...<+00

It appears that for any almost-periodic function f(x) there exist such
a limiting periodic function F(x1,z3,...) of finite or countable set of
variables that

f(z) =F(x,z,...) = F(x1,22, .. )|z, —w0—.. —2- (11)

Thus any any almost-periodic function is restriction to a diagonal of some
limiting periodic function. In other words we can also characterize every
almost-periodic function by a sequence of periodic functions.

The properties of the limiting periodic function F'(z1,s,...) depends
essentially on the basis of the Fourier frequencies of the function f(z).
If the basis ai,as,... of the almost-periodic function f(x) is integer
then the limiting periodic function F(x1,x,...) is periodic with periods
21/, 27 /g, . ... If the basis aq, s, ... of the almost-periodic function
f(z) is finite then the limiting periodic function F'(x1,xo,...) depends on
finite set of variables. If the basis a1, aq, . .. of the almost-periodic function
f(z) is finite and integer then the limiting periodic function F(z1,x2,...)
is periodic function of finite set of variables.

E. Let f(z) is a complex almost-periodic function and inf, |f(z)| =
k > 0 then we can define arg f(x) = cx + ¢(x) where a constant c is called
a meam motion, and ¢(x) is some almost-periodic function. The a meam
motion ¢ and the Fourier frequencies of the almost-periodic function ¢(x)
are linear combinations with integer coefficients of Fourier frequencies of
the function f(x) (H. Bohr).

F. A continuous function f(z) is almost-periodic iff a set of functions
{f(z+h)}, —00 < h < 400 is relatively compact, i.e. if from any infinite
sequence f(z + hi1), f(z + ha),... we can chose a subsequence which
converges uniformly for all z € R (S. Bochner). In other words the function
u(z) taken from a Banach space C,(R) of continuous bounded functions
is called almost-periodic if the set {T,(-),x € R}, where T,.(-) = u(- + z),
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is relatively compact in C,(R). A closure Q of this set is known to be a
compact in metrizable Abelian group. A normalized Haar measure p on
the set Q turns out to be T,—invariant and ergodic. Thus each almost-
periodic function generates a probability space (€2, u, T,). The operation
of averaging on this space is given by

M(f) = lm / " H(Tou)de = [ uutau) (12)

H. Bohr formulated also fundamentals of the harmonic and analytic
almost-periodic functions. Various generalizations of the almost-periodic
functions (e.g. for functional spaces with other metrics, for other groups
etc.) were built by A. Besicovitch, B. Levitan, J. von Neumann,
V. Stepanov, H. Weyl and others.

Now let us return to the idea that the nuclei arrangements in solids are
almost-periodic in general and discuss different consequences.

The first important consequence of the above statement is a
classification of solids in terms of nuclei structures and a corresponding
partition solids into periodic solids (or crystals), random solids and
properly almost-periodic solids. Such a classification of solids was proposed
for the first time in [].

Crystals and amorphous solids are well known for a long time. We can
obtain easily the properly almost- periodic nuclei arrangements in crystals
by means of displacements of nuclei from equilibrium sites under influence
of waves. Indeed the following theorem is valid.

Theorem 2 Crystal, which is deformed by a finite (countable) set of waves
with linearly independent frequencies, creates a quasi (an almost)-periodic
potential.

At first we consider the one-dimensional case.

Let us assume that nuclei, located in nodes of some lattice, create a
periodic potentia V(z). We suppose that the periodic potential V(z) is
continuous function and therefore it is uniformly continuous function. It
means that for any € > 0 there exist such ¢’ > 0 that |V (x1) =V (z2)| < €
as soon as |x; — xa| < ¢’. Let us define e = min(€’,¢"). Under deformation
u(z) a crystal point with a coordinate z is transformed to a coordinate
x + u(x) where u(z) is a trigonometrical sum. If this sum contains infinite
set of summands we shall assume that it converges at a whole real axis so
that u(x) appears to be an almost-periodic u(x) function.
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Let us consider the function V(z 4+ u(x)) which describes the potential
of a crystal lattice deformed by waves. For the number ¢, defined above,
let us construct a relatively dense set of the e—almost-periods 7 common
for the functions V(z) and u(z). As it is well known we can do it always.
Each of thus constructed number 7 is simultaneously 2e—almost-period for
the function V(x 4+ u(z)). Indeed,

V(iz+71+ulxz+71))—Vie+u()l <
Viz+ulx+7))—V(e+u(z))+e< 2. (13)

Here the first inequality follows from the inequality |V (z+7) — V(z)| <,
and the second inequality follows from the inequality |u(z+7) —u(z)| <€
and the definition €. Thus for any € > 0 we can construct a relatively dense
set of 2e—almost-periods for the function V(z + u(z)). And therefore as a
result of that the function V(z + u(x)) is almost-periodic.

Let u(x) is a finite trigonometrical polynomial with frequencies wg, s =

1,...,m and the function V(z) has a frequency wp. Then joint e—almost-
periods of the functions V(x),u(z) satisfy the system of the inequalities
lwsT| < 6( mod 27),s = 0,1,...,m for an appropriate 4. In accordance

with the statement above they are simultaneously 2e— almost-periods for
the function V(z 4 w(z)). Therefore the function V(z + u(z)) is quasi-
periodic function.

In conclusion we remark that there is no problems to generalize this
proof for the case of d—dimensional crystal.

Thus a vibrating lattice at a fixed moment of time is an almost-periodic
arrangements of nuclei. In other words in adiabatic approximation an
electron in solid moves, in general case, in an almost-periodic potential.
By means of various reasons these wave disturbations of nuclei locations
can be stabilized and in such a way these almost-periodic arrangements
can be realized in equilibrium also.

We should only remember that in a solid there exist a lot of various of
waves: the charge density waves, the magnetic (or spin) density waves, the
concentration waves etc., and all these waves may have uncommensurable
frequences. Thus the almost-periodicity in solids can have various physical
manifestations.

In 1984 material scientist D. Shechtman discovered in Al-Mn alloys the
quasi-periodic structure (quasi-crystal), and for this result was awarded
the Nobel Prize in Chemistry in 2011. Today physicists know hundreds
of quasi-periodic solids, they are ubiquitous in many metallic alloys
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and compositions. In 1992 the International Union of Crystallography
acknowledged the possibility for solids to order either periodic or aperiodic.

3 Spectra of the Schrodinger operator with
almost-periodic potential

Sudies of spectral properties of the Schrédinger operator with almost-

periodic potential in connection with the quantum theory of solids were

initiated E.D. Belokolos (1975, 1976), Ya.G. Sinai and E. Dinaburg (1975).
We shall consider the spectral properties of the Schrédinger operator

H=—-A+u(x), (14)

where A is the Laplace and u(r),z € R? is a continuous almost-periodic
potential. First of all we present basic results about this operator.

Theorem 3 The Schridinger operator with almost-periodic potential is
self-adjoint essentially.

For the Schrédinger operator with almost-periodic potential we can
prove the existence of the number of states (or an integrated density of
states) N(A) and other similar of spectral characteristics.

Theorem 4 (Shubin, 1978) The Schridinger operator with almost-
periodic potentialt has a number of states

N(/\) = kll)ngo ‘Vkl_lNVk(A)’ (15)

where Vi, is bounded domain in R™ with the Lebesgue measure |Vi| and
Ny, (A\) is the standard distribution function of the discrete spectrum in
the domain Vj, with some self-adjoint boundary conditions.

The number of states N(\) is non-decreasing function of A and
is defined by the above expression everywhere besides the points of
discontinuity.

We can prove also the existence of other similar limits, e.g.

D) = lim [Vl 7' Y (f1bs, 9u5), (16)

Aj<A
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where 1; are eigenfunctions and f,g are arbitrary almost-periodic
functions.

By considering the inverse functions we can prove the existence of the
Fermi energy

k
. 1
EF(p) = k/ll\l/ﬁ—m ’ jz::l)\j, k — oo, |Vi| = 00, p > 0 — constant,

(17)

where A\; < Ao < ... are the eigenvalues arranged into an increasing
sequence with their multiplicity taken in account.

It is known that there exist a single-valued correspondence between any
self-adjoint operator A and a projector-valued measure Py on a Hilbert
space H which is expressed in such way

+oo
A :/ X dPy. (18)

—0o0

A point A is said to belong to a spectrum o (A) of the operator A, A € o(A4),
ifft Pix—eate) # 0 for any € > 0. We say that a point A belongs to an
essential spectrum, A\ € o0cqs(A), iff the projector Py_ r4¢) is infinite-
dimensional for any ¢ > 0. We say that a point A belongs to an discrete
spectrum, A € 0gisc(A), iff the projector Piy_c a4 is finite-dimensional
for any e¢ > 0. It is obvious that

U(A) = Oess (A) ) Udisc(A)~ (19)

It appears for the Schrédinger operator with almost-periodic potential
that the spectrum is essential.

Theorem 5 (G. Scharf, 1965) The spectrum of Schridinger operator
with almost-periodic potential is essential, i.e. it does not contain isolated
eigenvalues of finite multiplicity.

According to H. Weyl A € o(A) iff there exist such a sequence {1;}52,
that lim;_, [|(A — AI)v;|| = 0. If this sequence is compact then A €
oaisc(A), if this sequence is not compact then A € o¢s5(A).

Let us consider any function ¢ € C§°(R?) such that |[¢||] = 1 and
[|(A = AI)9|| < €/2. Shifting this function by sufficiently large j—almost
periods of the potential u(x) and its derivatives for a sufficiently small § > 0
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we can construct an orthogonal system of functions {v;, j =1,2...} such
that ||[(A— AD)y;|| < efor all j =1,2,.... By the above criterion it means
that the spectrum of the operator H is essential.

In one-dimensional case no eigenvalue can have infinite multiplicity and
that means that the spectrum is a perfect set, i.e. a closed without isolated
points.

Sometimes it is important to have any information on possible gaps
in essential spectrum. It appears that there exist a deep connection
between a smoothness of potential u(xz) and a size of possible spectral
gaps A. Appropriate studies for a one-dimensional case were initiated by
P. Hartman and C.R. Putnam (1950).

Theorem 6 (M.S.P. Eastham, 1976; V.I. Feigin, 1977) Let in a self-
adjoint operator A in L*(R), defined by differential expression —y" +u(x)y,
a real function u(x) at large |z| has p > 1 derivatives. Then in an essential
spectrum of the operator A a lacuna of a size A with center at a value X
satisfies an asymtotic equality

A =0\, (20)

Another decomposition of the spectrum o(A) is useful also. According
to the spectral theorem any self-adjoint operator A is unitary equivalent
to an operator multiplication on X in L?(R,du) for some measure p. Since
any measure p on R has unique decomposition in a sum

H = Hpp + Hac + Hsings (21)

where 1), is pure point measure, (i, is absolutely continuous with respect
to Lebesgue measure, pg;,g continuous singular with respect to Lebesgue
measure, therefore we have the following decomposition of the spectrum:

0(A) = opp(A) Uocont(A) = 0pp(A) Udae(A) Uosing(A). (22)

It appears that in one-dimensional case the number of states N(\)
determines the spectrum o(H) of the Schrodinger operator H :

Theorem 7 (Pastur, 1980)

o(H) = supp(dN). (23)
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The Lyapunov exponent v()) of the spectrum is defined as follows,

7(\) = lim [L|™ n ||T ], (24)
L—oo

where T, is a linear operator in R? mapping (¥(0),¢(0)) into
(v(L),4’'(L)) and 1 being a solution of the equation Hy = Aib.

In terms of the Lyapunov exponent the absolutely continuous spectrum
oac(H) of the Schrodinger operator H is described in such a way,

Theorem 8 (Kotani, 1982) 04,.(H) = {A € R: v(\) = 0}.

The Lyapunov exponent () and the number of states N(A) are real
and imaginery parts appropriately of a so called Floquet function which is
analytic in the upper half of complex plane C. of the spectral parameter
A. This fact leads to a following connection between the number of states
and the Lyapunov exponent,

Theorem 9 (Thouless, 1972; Avron and Simon, 1983) The Lyapunov
exponent s
—+oo
AN =20+ [ A= NN - N, (29

—0o0

where values vo(\) = [max(0, —\)]*/2 and No(\) = 7~ [max(0, —\)]'/2
correspond to the case u(x) = 0.

We can label the gaps of the spectrum by the elements of the frequency
module of the almost-periodic potential similar as it has place for periodic
one.

Theorem 10 (Belokolos, 1975; Johnson and Moser, 1982) For the
Schrddinger operator with the potential u(z) € CAP(R) and A € R\ o(H)
the number of states N(\) € Q, where Q is the frequencies module of q.

Now let us formulate and prove the main theorem.
Theorem 11 (Belokolos, 1975; Dinaburg and Sinai, 1975)

Consider the Schrédinger equation

(A +u(z))(z) = Mp(z) (26)
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with quasi-periodic potential,

u(z) =U(¢) = Ulzw +0),
rER, d=(d1,...,0n)y, w=(wi,...,wn), 0=(01,...,0,).(27)
Here
U($) = U(6r, ..., bn) (28)
is continuous and periodic in any variable ¢, kK = 1,...,n function. We

shall assume also that the potential u(z) is small, i.e.

sup  |u(z)| = sup [U(@)|=¢, 0<e<k], (29)
—oo<r<+00 peT™

where T™ is a n—dimensional torus. Evidently we have

¢)= > Ugexpl(i(q,8)), (2:0) = _ asts, (30)
qEL™ s=1
and therefore
U() = > Ugexp(i(q,w)z + (g,0)). (31)
g€z

For the Schrédinger equation in the zero approximation of the
perturbation theory we have

Yo(z) = exp(ikz), Ao = k> (32)

In the first approximation of the perturbation theory we have

(iz((g,w) — F))
(k= (gw))* )’

to(x) + 11 (x) = exp(ikz) [ 14+ ) UkeXP

qEZ™
U, |? _
— (k= (q,w))?

We have problems with the perturbation series written above only of
the presence of small denominators

k= (k= (q,w))* = (¢,w)(2k — (q,w)). (34)

)\0+/\1=k52+ Z 12 (33)

qEL™
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For example if the wave vector k satisfies the generalized Bragg—Wulff
condition

2k = (¢,w), |Ugl #0, (35)

then the standard perturbation series have no sense, we must use
the secular perturbation theory that reveals an appearance of gaps in
spectrum. But even if the wave vector k does not satisfy the generalized
Bragg—Wulff condition the convergence of series is not obvious and depends
on a rate of vanishing of numerators with growth of |g.

A rate of vanishing of denominators depends on the arithmetical
properties of the wave vector 2k and the vector of frequencies w =
(w1, ws, . ..,wy,) of the quasi-periodic potential, or, more precisely, on how
quickly the linear superpositions of frequencies (w, ¢) approximate the wave
vector 2k. It appears that some real numbers 2k are approximated by the
numbers (w, ¢) quite well and some real numbers 2k are approximated by
the numbers (w, ¢) quite bad.

A rate of vanishing of numerators depends on the smoothness of the
function U(¢) which determines how quickly vanish the Fourier amplitudes
U, of the potential u(z). For example, if the potential U(¢) has p
derivatives then |U,| ~ |¢| 7P and if the potential U(¢) is analytical function
in the strip |[Im¢| = sup; <<, |[Imoi| < a then |Uy| ~ eexp(—alq|).

If perturbation series for the wave function ¢ (z) and energy A converge
at a given wave vector k then we may build at this wave vector the
appropriate quantities by the methods of the perturbation theory. If
perturbation series for the wave function ¢(z) and energy A diverge at
a given wave vector k then we can have at this wave vector a spectral gap
and therefore must use a secular theory of perturbation.

If we have at some neighborhood of the vector £ a proper arrangement
of these gaps then we have at this domain an absolutely continuous
spectrum with gaps, otherwise we can have a point spectrum or even
singularly continuous one.

In order to deal with small denominators in the spectral problem
of the Schrédinger operator with almost-periodic potential we can use
the Kolmogorov—Arnold—Moser technique as it was done E.D. Belokolos
(1975), E.I. Dinaburg and Ya.G. Sinai (1975).

New results in this problem a reader can find in a number of consequent
publications.
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Mean field asymptotic behavior of
quantum particles with initial
correlations

Dedicated to the 80 ™ anniversary of Prof. D.Ya. Petrina

In the paper we consider the problem of the rigorous description of the
kinetic evolution in the presence of initial correlations of quantum particles.
One developed approach consists on the description of the evolution
of quantum many-particle systems within the framework of marginal
observables in mean field scaling limit. Another method based on the
possibility to describe the evolution of states within the framework of a one-
particle marginal density operator governed by the generalized quantum
kinetic equation in case of initial states specified by a one-particle marginal
density operator and correlation operators.

B pobori posrisimaeTbest mpobireMa CTPOroro Omucy KiHeTHIHOT €BOJTIONT 33
HasSBHOCTI TTOYATKOBUX KOPEJSINH KBAHTOBUX YacTUHOK. OIMH 3 PO3BUHY-
THUX I IXO/IB MOJIATAE B OMUCI €BOJIIONIT KBAHTOBUX CACTEM 0araThOX JaCcTH-
HOK B T€PMiHAaX MapriHAJIbHUX CIIOCTEPEKYBAHUX B CKEHIIHTOBIN rpanmii
cepenHboro 1oJis. 11le oamH MeTo I 'PYHTYETHCS Ha, MOYKJIMBOCTI OTIMCY €BO-
JIIOTIIT CTAHIB 33 JOMIOMOTOIO OHOYACTHHKOBOTO MapTiHAJIHHOTO OTIEpPaTOpa
TYCTUHU, SKUI BU3HAYAECTHCA y3araJibHEHNM KBAHTOBUM KiHETWIHHUM DPiB-
HSHHSAM Y BUITQIKY TIOYATKOBUX CTAHIB 33IaHUX OJHOYACTUHKOBUM Mapri-
HAJIbHUM OITEPATOPOM T'YCTHUHU 1 KOPEIAIIHHUME OIIEPATOPAMHU.

© Institute of Mathematics, 2014
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1 Introduction

As is known the collective behavior of quantum many-particle systems can
be effectively described within the framework of a one-particle marginal
density operator governed by the kinetic equation in a suitable scaling
limit of underlying dynamics. At present the considerable advances in the
rigorous derivation of the quantum kinetic equations in the mean (self-
consistent) field scaling limit is observed [1]-[6]. In particular, the nonlinear
Schrodinger equation [3]-[10] and the Gross-Pitaevskii equation [7]-[15]
was justified.

The conventional approach to this problem is based on the
consideration of an asymptotic behavior of a solution of the quantum
BBGKY hierarchy for marginal density operators constructed within the
framework of the theory of perturbations in case of initial data specified
by one-particle marginal density operators without correlations, i.e. such
that satisfy a chaos condition [16],[17]. We note, that for the first time a
perturbative solution of the quantum BBGKY hierarchy was constructed
by D. Petrina [18] (see also [19]).

In paper [20] it was developed more general method of the derivation of
the quantum kinetic equations. By means of a non-perturbative solution of
the quantum BBGKY hierarchy constructed in [21] it was established that,
if initial data is completely specified by a one-particle marginal density
operator, then all possible states of many-particle systems at arbitrary
moment of time can be described within the framework of a one-particle
density operator governed by the generalized quantum kinetic equation
(see also [22]). Then the actual quantum kinetic equations can be derived
from the generalized quantum kinetic equation in appropriate scaling
limits, for example, a mean field limit [23].

Another approach to the description of the many-particle evolution is
given within the framework of marginal observables governed by the dual
quantum BBGKY hierarchy [24]. In paper [25] a rigorous formalism for the
description of the kinetic evolution of observables of quantum particles in
a mean field scaling limit was developed.

In this paper we consider the problem of the rigorous description of the
kinetic evolution in the presence of initial correlations of quantum particles.
Such initial states are typical for the condensed states of quantum gases
in contrast to the gaseous state. For example, the equilibrium state of the
Bose condensate satisfies the weakening of correlation condition specified
by correlations of the condensed state [26]. Thus, our goal consists in the
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derivation of the mean field quantum kinetic equation including initial
correlations.

We outline the structure of the paper. In section 2, we establish the
mean field asymptotic behavior of marginal observables governed by the
dual quantum BBGKY hierarchy. The limit dynamics is described by
the set of recurrence evolution equations, namely by the dual quantum
Vlasov hierarchy. Furthermore, the links of the dual quantum Vlasov
hierarchy for the limit marginal observables and the quantum Vlasov-
type kinetic equation with correlations are established. In section 3, we
consider the relationships of dynamics described by marginal observables
and within the framework of a one-particle marginal density operator
governed by the generalized quantum kinetic equation including initial
correlations. In section 4, we develop one more approach to the description
of the quantum kinetic evolution with correlations in the mean field limit.
We prove that a solution of the generalized quantum kinetic equation
with correlations is governed by the quantum Vlasov-type equation with
correlations. The property of the propagation of initial correlations is also
established. Finally, in section 5, we conclude with some perspectives for
future research.

2 The kinetic evolution within the framework
of marginal observables

The kinetic evolution of many-particle systems can be described within
the framework of observables. We consider this problem on an example
of the mean field asymptotic behavior of a non-perturbative solution of
the dual quantum BBGKY hierarchy for marginal observables. Moreover,
we establish the links of the dual quantum Vlasov hierarchy for the limit
marginal observables with the quantum Vlasov-type kinetic equation in
the presence of initial correlations.

2.1 Many-particle dynamics of observables

We consider a quantum system of a non-fixed (i.e. arbitrary but finite)
number of identical (spinless) particles obeying Maxwell-Boltzmann
statistics in the space R3. We will use units where h = 27h = 1 is a
Planck constant, and m = 1 is the mass of particles.
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Let the space H be a one-particle Hilbert space, then the n-particle
space H, = H®" is a tensor product of n Hilbert spaces H. We adopt the
usual convention that H®® = C. The Fock space over the Hilbert space H
we denote by Fy = @, Hn.

The Hamiltonian H,, of the n-particle system is a self-adjoint operator
with the domain D(H,) C Hn,

n n
Hy, =Y K(i)+e Y  ®(i1iz), (1)
i=1 11<to=1

where K (i) is the operator of a kinetic energy of the ¢ particle, ®(iy,i2)
is the operator of a two-body interaction potential and € > 0 is a scaling
parameter. The operator K (i) acts on functions 1,, that belong to the
subspace L3(R3") C D(H,,) C L*(R3") of infinitely differentiable functions
with compact supports, according to the formula: K (i), = —%Aqﬂ/)n-
Correspondingly, we have: ® (i1, i2), = ®(qi,, ¢, )n, and we assume that
the function ®(g;,,q:,) is symmetric with respect to permutations of its
arguments, translation-invariant and bounded function.

Let a sequence g = (g0, 91,---59n,--.) be an infinite sequence of self-
adjoint bounded operators g, defined on the Fock space F3. An operator
gn defined on the n-particle Hilbert space H,, = H®" will be also denoted
by the symbol g, (1,...,n). Let the space £(F3) be the space of sequences

g = (90,91, -+, Gn,--.) of bounded operators g, defined on the Hilbert
space H,, that satisfy symmetry condition: g,(1,...,n) = gn(i1,...,in),
for arbitrary (i1,...,i,) € (1,...,n), equipped with the operator norm

Il-Il¢(3,.)- We will also consider a more general space £,(F3) with the
norm

: 7"
N = max — ||gn ;
Ly(Fu) >0 nl I H‘Q(H")

g

where 0 < v < 1. We denote by £ o(Fy) C £,(F3) the everywhere dense
set in the space £,(Fy) of finite sequences of degenerate operators with
infinitely differentiable kernels with compact supports.

For g, € £(H,) it is defined the one-parameter mapping

Rl St gn (t)gn KN 6itH7Lgn€7itH", (2)

where the Hamilton operator H,, has the structure (1). On the space £(H,,)
one-parameter mapping (2) is an isometric *-weak continuous group of
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operators. The infinitesimal generator N, of this group of operators is a
closed operator for the x-weak topology, and on its domain of the definition
D(N,,) C £(Hy,) it is defined in the sense of the x-weak convergence of the
space £(H,) by the operator

* . 1 . .
where H, is the Hamiltonian (1) and the operator N,g, is defined
on the domain D(H,) C H,. Therefore on the space £(H,) a unique
solution of the Heisenberg equation for observables of a n-particle system
is determined by group (2) [22].

In what follows we shall hold abridged notations: Y = (1,...,s), X =
(J1,---+Jn) C Y, and {Y \ X} is the set, consisting of a single element
Y\X =(@1,...,8)\ (J1,---,Jn), thus, the set {Y \ X} is a connected
subset of the set Y.

To describe the evolution within the framework of marginal observables
we introduce a notion of the (1 + n)th-order (n > 0) cumulant of groups
of operators (2) as follows [21]

Ripn(t, {Y\ X}, X) = (4)
= > )PP =) TT Grocxoi (8, 6(X0),
P: ({¥\X}, X)=U, X; X;CP

where the symbol ), means the sum over all possible partitions P of
the set ({Y' \ X}, 41,...,7n) into |P| nonempty mutually disjoint subsets
X; € {Y\ X},X), and 6(-) is the declusterization mapping defined as
follows: ({Y \ X}, X) =Y. For example,

2y (t, {Y}) = gS(t>Y)?
mQ(ta {Y \ (.7)}’]) = gs(t7Y) - gsfl(th\ (]))gl(t’])

In terms of observables the evolution of quantum many-particle systems
is described by the sequence B(t) = (By, Bi(t,1),...,Bs(t,1,...,5),...)
of marginal observables (or s-particle observables) B(t,1,...,s), s > 1,
determined by the following expansions [24]:

BtY) =Y L Sl (Y \ XL X) B, (VA X), (3)

n=0 " jiF#..Fjn=1
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where B(0) = (B, BY(1),...,B%(1,...,s),...) € £,(Fx) is a sequence
of initial marginal observables, and the generating operator 2A;,,(¢) of
expansion (5) is the (1 4+ n)th-order cumulant of groups of operators (2)
defined by expansion (4). The simplest examples of marginal observables
(5) are given by the expressions:

By (t7 1) =20 (t’ 1)3?)6(1)7
By (t,1,2) = Ay (¢, {1,21) BY“(1,2) 4+ Az (£, 1,2)(BY(1) + BY<(2)).

If v < e !, for the sequence of operators (5) the estimate is true:
HB(t)H):W(fH) <e’(1- 76)_1HB(0)H£7(&)'
We note that a sequence of marginal observables (5) is the non-

perturbative solution of recurrence evolution equations known as the dual
quantum BBGKY hierarchy [24].

2.2 A mean field asymptotic behavior of marginal
observables

A mean field asymptotic behavior of marginal observables (5) is described
by the following statement [25].

Theorem 1 Let for BY¢ € £(H,), n > 1, in the sense of the x-weak
convergence on the space £(Hs) it holds: w*—lim._,o(e "B — b0) = 0,
then for arbitrary finite time interval there exists the mean field limit of
marginal observables (5): w*—lim._,o(e *Bs(t) — bs(t)) = 0, s > 1, that
are determined by the following expansions:

s—1 ¢ tn—1
be(t,Y) = /dtl... / dt, ] 610t —t1,10) (6)
n=0 j 0 LLeY
s
X Z Ning (41, 1) H Gi(ty —t2,12) ...
i1#£j1=1 12€Y\(j1)
s
H gl (tn—l - tru ln) Z Mnt(lna]n)
lney\(jlvuajnfl) in #jnzl,
in7jn 75 (jl: e 7jn—1)

X H gl(tnaln+1)bgfn(y\ (]hv]n))

ln+1€Y\(J1,--,Jn)
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In expansion (6) we denote by the symbol My (i1, j2) the operator defined
on g, € L(Hn)

Mnt(i17j2)gn = _Z(gnq>(zl7j2) - q)(217j2)gn)

The proof of Theorem 1 is based on formulas for cumulants of
asymptotically perturbed groups of operators (2).

For arbitrary finite time interval the asymptotically perturbed group
of operators (2) has the following scaling limit in the sense of the *-weak
convergence on the space £(Hs):

w—hm QStY Hg1t] (7)

Taking into account analogs of the Duhamel equations for cumulants of
asymptotically perturbed groups of operators, in view of formula (7) we
have

1
w"— lim (Gin*ml—kn(t, {Y \ X}vjlv s 7jn) -

e—0
tn—1
/dt1 / dty H Gi(t —t1,11) Z Ning (41, j1)
ey i1#j1=1
X H Gi(ty —t2,12) .. H Gi(tn-1 —tn,1n)
l2€Y\(j1) L €Y \(J1,--30n—1)
s
X Z Mnt(i7zaj7z) H gl(tn7ln+1))gs—n = 0;
in 7£ Jn =1, ln+1€Y\(.j1a~-wjn)
inajn # (jla-“ajnfl)

where we used notations accepted in formula (6) and gs—, =
Is—n((1,...;89\(J1,---,4n)), n > 1. As aresult of this equality we establish
the validity of Theorem 1 for expansion (5) of marginal observables.

If 8% € £,(Fy), then the sequence b(t) = (bo,b1(t),...,bs(t),...) of
limit marginal observables (6) is a generalized global solution of the Cauchy
problem of the dual quantum Vlasov hierarchy

Y):ZN(j>bs(t7Y)+ Z Mnt(jl;jQ)bsfl(tvy\(j1)>7 (8)

J1#j2=1

ba(t) li=o=b3, s>1, (9)
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where the symbol N (j) denotes the infinitesimal generator defined on g,, €
Lo(Hy,) of the group of operators Gy (t, j) of j particle

N(])gn = —i(gnK(j) — K(j)gn)-

It should be noted that equations set (8) has the structure of recurrence
evolution equations. We give several examples of the evolution equations
of the dual quantum Vlasov hierarchy (8) in terms of operator kernels of
the limit marginal observables

—(-A, + A ,)bl(t,ql;QE%

2
2
Z —Ag +Ay)

1=

1
+(®(q) — ¢b) — (g1 — @2)))ba(t, a1, a2 1. 45) +
+(®(q) — @) — (g1 — q2)) (b1(t, q15 41) + ba(t, a5 45)).

We consider the mean field limit of a particular case of marginal
observables, namely the additive-type marginal observables B(1)(0) =
(0, BY¢(1),0,...). We remark that the k-ary marginal observables are
represented by the sequence B®*)(0) = (O, ..., 0 Bg’e(l, ..., k),0,.. ) In
case of additive-type marginal observables expansions (5) the following
form:

.0
zabl(tquqi):

M\H

0
{ abz(t Q1,QZ7Q17QQ

BW(t,Y) = Ay (t) Z BY(j), s>1, (10)

where 2,(t) is s-order cumulant (4) of groups of operators (2).

Corollary 1 If for the additive-type marginal observable B06 € L(H),
it holds w*—1lim,_o(e ' BYC — b9) = 0, then, according to the statement
of Theorem 1, for addztwe type marginal observable (10) we have
w*— limeﬁo(e_ngl)’e(t) —bgl)(t)) =0, s > 1, where the limit additive-type

marginal observable bgl)

b (t,Y) /dh /dts 1 H Gi(t—t1,hh) Z Nint(71,71)  (11)

lLey i17£j1=1

< I Gt —tal).. 11 Gi(ts—2 —ts—1,15-1)

12€Y\(41) lq—ley\(jl ~~~~~ Js—2)

(t) is determined by a special case of expansion (6)
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s
X Z /\/int(isfhjsfl)
is—1 # js—1 = 1,
is—1,0s—1 7 (J1,- -1 Js—2)
X H gl( s—1,1 ) ?(Y\(jla"'vjs—l))'

Ls€Y\(j1,-ds—1)

We make several examples of expansions (11) for the limit additive-type
marginal observables

bV (t,1) = Gi(t,1) (1),

t

2
b(l)(t7112 /dtlngl t_th mt ]- 2 Z t17
A — j=1
Thus, for arbitrary initial states in the mean field scaling limit the
kinetic evolution of quantum many-particle systems is described in terms

of limit marginal observables (6) governed by the dual quantum Vlasov
hierarchy (8).

2.3 The derivation of the quantum Vlasov-type
kinetic equation with correlations

Furthermore, the relationships between the evolution of observables and
the kinetic evolution of states described in terms of a one-particle marginal
density operator are considered.

Let initial states specified by the one-particle marginal density operator
F{]’é € £1(H) in the presence of correlations, i.e. initial state is defined by
the following sequence of density operators:

n
Fe= (1, F) (1 921_[F0e )y gn [ FYCG), ), (12)

where the bounded operators g, = g,(1,...,n) € L£(H,), n > 2, are
specified initial correlations. We note that such assumption about initial
states is intrinsic for the kinetic description of a gas. On the other hand,
initial data (12) is typical for the condensed states of quantum gases,
for example, the equilibrium state of the Bose condensate satisfies the
weakening of correlation condition with the correlations which characterize
the condensed state [26].
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We assume that for the initial one-particle marginal density operator
F{* € £(H) exists the mean field limit lime o [[e F{" = 0] 31 ;) = 0
then in the mean field limit initial state is defined by the following sequence
of operators:

fo=(1,£0 gQHf1 cgn [T G, ). (13)
=1

We consider links of the constructed mean field asymptotic behavior of
marginal observables with the nonlinear Vlasov-type kinetic equation in
case of initial states (13).

In case of initial states specified by sequence (13) the average values
(mean values) of limit marginal observables (6) are determined by the
following positive continuous linear functional [22]

Zi' 1om n(t,1,...,n)gn(1,...,n)Hff(i). (14)

For b(t) € £,(Fx) and f{ € £'(H), functional (14) exists under the
condition that || f0]le1(3) <.

Consequently, for the limit additive-type marginal observables (11) the
following equality is true:

CRIONSEDY 1, Try B (1, 8)ga(, . 8) [[ £26) =
S =1
= Try (1) f1 (8, 1),

where the operator b{" (t) is given by expansion (11) and the limit marginal
density operator fi(t,1) is represented by the series expansion

tn 1
t 1 Z /dtl / dt TI'Q n+1g1( t+t1, ) (15)
e (1,2) H Gi(—t1 +t2,51) - H Gi(—tn +tn,in)
Ji=1 ip=1
n+1 n+1

XZMnt kn,n+1) Hg1 tns Jn)g14n(l,...,n+1) Hf1
k=1 dn=1
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In series (15) the operator N:%,(j1,72)fn = —Nit(j1,72)fn is adjoint
operator to operator (3) in the sense of functional (14). For bounded
interaction potentials series (15) is norm convergent on the space £!(H)
under the condition: ¢ < tg = (2 [|®|| (3 1/ |22 20)) -

The operator f;(t) represented by series (15) is a solution of the Cauchy
problem of the quantum Vlasov-type kinetic equation with correlations

O R = N + (16)
2 2
+Tr2(_Mnt)(1v 2) H gl(_tvil)gl({L 2}) H gl(tviQ)fl(ta 1)f1(t7 Q)a
=1 ia—1
fit)]e=o = f7- (17)

This fact is proved similarly as in case of a solution of the quantum BBGKY
hierarchy represented by the iteration series [18],[22].

Thus, in case of initial states specified by one-particle marginal density
operator (13) we establish that the dual quantum Vlasov hierarchy (8) for
additive-type marginal observables describes the evolution of a system of
quantum particles just as the quantum Vlasov-type kinetic equation with
correlations (16).

2.4 The mean field evolution of initial correlations

The property of the propagation of initial chaos is a consequence of the
validity of the following equality for the mean value functionals of the limit
k-ary marginal observables in case of k > 2

(0@, 1) = T b1 s)as(L, ) [T G = (18)
s=0 j=1

k
1 .
= T k(L k) ‘]‘7[1 Gi(~t.in)gi({1,.... k})
k k
< [T Gt i) T[] fit.0), k=2,
do=1 =1

where the limit one-particle marginal density operator f1(t,4) is defined by
series expansion (15) and therefore it is a solution of the Cauchy problem
of the quantum Vlasov-type kinetic equation with correlations (16),(17).
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This fact is proved similarly to the proof of a property on the
propagation of initial chaos in a mean field limit [25].

Thus, in case of the limit k-ary marginal observables a solution of
the dual quantum Vlasov hierarchy (8) is equivalent to a property of
the propagation of initial correlations for the k-particle marginal density
operator in the sense of equality (18) or in other words the mean field
scaling dynamics does not create correlations.

We remark that the general approaches to the description of the
evolution of states of quantum many-particle systems within the framework
of correlation operators and marginal correlation operators were given in
papers [28],[29] and [30], respectively (see also a review [22]).

3 On relationships of dynamics of observables
and the kinetic evolution of states

We consider the relationships of dynamics of quantum many-particle
systems described in terms of marginal observables and dynamics described
within the framework of a one-particle marginal density operator governed
by the generalized quantum kinetic equation in the presence of initial
correlations. If initial states is completely specified by a one-particle
marginal density operator, using a non-perturbative solution of the
quantum dual BBGKY hierarchy we prove that all possible states at
arbitrary moment of time can be described within the framework of a
one-particle density operator governed by the generalized quantum kinetic
equation with correlations.

3.1 Quantum dynamics of states and correlations

In case of initial states defined by sequence (12) the average values (mean
values) of marginal observables (5) are defined by the positive continuous
linear functional on the space £(F)

n

(B(t), F) = Z%Trl,_“,n Bu(t, 1) ga(1,.,m) [ F°(0). (19)
n=0 "

i=1

For F{° € £'(#) and B%¢ € £(H,,) series (19) exists under the condition
that ||F107€||£1(H) <e L
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For mean value functional (19) the following representation holds
(B(), F) = (B(0), F(t | Fi(1))), (20)

where B(0) = (Bo, BY“(1),...,B%¢(1,...,s),...) € £,(Fy) is a sequence
of initial marginal observables, and F(¢ | Fi(t)) = (1,Fi(t), Fa(t |
Fi(t)),...,Fs(t | Fi(t)),...) is a sequence of explicitly defined marginal
functionals Fy(t | F1(t)), s > 2, with respect to the one-particle marginal
density operator

o0 n+1
1 €/
Fi(t,1) =) —Tratn Aapn(—)gnsa(1n + 1) [ 76). (21)
n=0 =1

The generating operator ;. ,(—t) = A11n(—t,1,...,n + 1) of series
expansion (21) is the (1 + n)th-order cumulant of groups of operators
Gn(—t), n > 1, adjoint to groups (2) in the sense of functional (19).

The marginal functionals of the state Fi(t | Fi(t)),s > 2, are
represented by the following series expansions:

F(t,Y | Fi(t)) = (22)
[ele] 1 s+n

= Z ] Trot1,. stn O14n (t7 {Y},s+1,...,s+ n) H Fy(t,14),
n=0 i=1

where the (1 + n)th-order generating operator &i.,(t),n > 0, is
determined by the expansion

G1n(t,{Y}X\Y) = (23)
n n N—mN]—...—MNp_1 1
D NEILD SN >
k=0 ni=1 np=1 (n—ny—...—nyg)!
XﬁllJF”*"l*m*”k (tv {Y}a s+1,...,s+n—n1 —...— nk)

k
1

<11 > o

| D, !

Jj=1 D]‘:Z]’:Ulj )(1,].7

IDj|<s+n—ny —---—nj

s+n—mi—...—n; 1

X > I w4 tyir, Xp).
X! x| (E iy, Xi )

i1#. Fip, =1 Xi;CD,
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In formula (23) we denote by >_p ., | y, the sum over all possible

dissections of the linearly ordered set Z; = (s+n—mn1—...—n;+1,...,5+
n—mny—...—nj_1) on no more than s+mn—ny —... —n; linearly ordered
subsets and we introduced the (1 + n)th-order scattering cumulants

§11+n(t7 {Y}’ X \ Y) =
s+n
= Ql1+n(_t7 {Y}’ X \ Y)gl+n({Y}’ X \ Y) H 2 (t’ Z'),

i=1

where it is used notations accepted above. We give examples of the
scattering cumulants

&1 (t,{Y}) =2 (£{V}) = 2 (—t, {Y Do (V) [ [ 28, 4),
i=1
s+1
Go(t, {Y} 5+ 1) = Ao(—t, {Y}, s + Dg2({Y}, s + 1) [[ 2 (t,7) -

=1

—i (=t YD (YD) [T 2 (t,9)
i=1
X ZmZ(_ta ia s+ 1)92(27 5+ ]-)Qll (tv Z)Qll(ta 5+ 1)
i=1
If [|Fy(t)]|er ) < e~ 35+?), then for arbitrary ¢ € R series expansion
(20) converges in the norm of the space £(H,) [22].
We emphasize that marginal functionals of the state (22) characterize

the correlations generated by dynamics of quantum many-particle systems
in the presence of initial correlations.

3.2 On an equivalence of mean value functional
representations

We establish the validity of equality (20) for mean value functional (19).

In a particular case of initial data specified by the additive-type
marginal observables, i.e. B (0) = (0, B{"“(1),0,...), equality (20) takes
the form

(BO(t), F) = Ty By (1) Fi (¢, 1), (24)
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where the one-particle marginal density operator Fj(t) is determined by
series expansion (21). The validity of this equality is a result of the direct
transformation of the generating operators of expansions (10) to adjoint
operators in the sense of the functional (19).

In case of initial data specified by the s-ary marginal observables i.e.
B®)(0) = (0,...,0,B%(1,...,5),0,...), s > 2, equality (20) takes the
following form:

(B®) (1), F°) = %HL,,,,S BO(L,...,)F(t.1,....s | Fi(8),  (25)

where the marginal functional of the state Fi(¢ | Fy(t)) is represented by
series expansion (22).

The proof of equality (25) is based on the application of cluster
expansions to generating operators (4) of expansions (5) which is dual
to the kinetic cluster expansions introduced in [20]. Then the adjoint
series expansion can be expressed in terms of one-particle marginal density
operator (21) in the form of the functional from the right-hand side of
equality (25).

In case of the general type of marginal observables the validity of
equality (20) is proven in much the same way as the validity of equalities
(24) and (25).

3.3 The generalized quantum kinetic equation with
correlations

As a result of the differentiation over the time variable of operator
represented by series (21) in the sense of the norm convergence of the
space £'(H,), then the application of the kinetic cluster expansions [20] to
the generating operators of obtained series expansion, for the one-particle
marginal density operator we derive the identity [27]

0

gFl(t, 1) = —N()F(t,1) + € Tro(—Nins (1, 2)) Fo (¢, {1, 2} | F1(2)), (26)
where the collision integral is determined by the marginal functional of the
state (22) in case of s = 2. This identity we treat as the non-Markovian
quantum kinetic equation. We refer to this evolution equation as the
generalized quantum kinetic equation with correlations.
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We emphasize that the coefficients in an expansion of the collision
integral of kinetic equation (26) are determined by the operators specified
initial correlations.

We remark, that for initial data (12) specified by a one-particle
marginal density operator, the evolution of states described within the
framework of a one-particle marginal density operator governed by the
generalized quantum kinetic equation with correlations (26) is dual to the
dual quantum BBGKY hierarchy for additive-type marginal observables
with respect to bilinear form (19), and it is completely equivalent to the
description of states in terms of marginal density operators governed by
the quantum BBGKY hierarchy.

Thus, the evolution of quantum many-particle systems described in
terms of marginal observables can be also described within the framework
of a one-particle marginal density operator governed by the generalized
quantum kinetic equation with correlations in the sense of functional (19).

4 The mean field asymptotic behavior of the
generalized quantum kinetic equation

We establish a mean field asymptotics of a solution of the non-Markovian
quantum kinetic equation with correlations constructed above. This
asymptotics is governed by the quantum Vlasov-type kinetic equation with
correlations derived above from the dual quantum Vlasov hierarchy for the
limit marginal observables.

4.1 The mean field limit theorem

For solution (21) of the generalized quantum kinetic equation with
correlations (26) the following mean field limit theorem is true [23].

Theorem 2 If for the initial one-particle marginal density operator F{)’E €
LU(H) exists the limit lim, o [|e F{"¢ — fPllera) = 0, then for finite time
interval t € (—to, to), where to = (2|P|| e, 17 | 2130)) " there exists the
mean field limit of solution (21) of the Cauchy problem of the generalized
quantum kinetic equation with correlations (26)

lim [|e Fy (1) — fu(t)

L1(H) =0, (27)
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where the operator f1(t) is represented by series (15) and it is a solution
of the Cauchy problem of the quantum Vlasov-type kinetic equation with
correlations (16),(17).

The proof of this theorem is based on formulas of asymptotically
perturbed cumulants of groups of operators G,(—t), n > 1, adjoint to
groups (2) in the sense of functional (19). Indeed, in a mean field limit for
generating evolution operators (23) of series expansion (22) the following
equalities are valid:

1
lim ‘|Z®1+n(t7 {Y}’X \ Y)fs+’ﬂH£1(H

e—0

0, n>1, (28)

stn)

and in case of the first-order generating evolution operator we have

lim [[(1(1, {Y}) - (29)

S S
— [T (-t @Y} T 61t 52) fill s gy = O
Ji=1 jo=1
respectively.

In view that under the condition ¢ < to = (2| ®||¢(p,)ll€ I3 ei))
for a bounded interaction potential the series for the operator € Fi(t) is
norm convergent, then for ¢ < ty the remainder of solution series (21)
can be made arbitrary small for sufficient large n = ny independently of
€. Then, using stated above asymptotic formulas, for each integer n every
term of this series converges term by term to the limit operator f;(¢) which
is represented by series (15).

As stated above the mean field scaling limit (15) of solution (21) of the
generalized quantum kinetic equation in the presence of initial correlations
is governed by the quantum Vlasov-type kinetic equation with correlations
(16).

Thus, we derived the quantum Vlasov-type kinetic equation with
correlations (16) from the generalized quantum kinetic equation (26) in
the mean field scaling limit. It is the same as the kinetic equation derived
from the dual quantum Vlasov hierarchy for mean field limit marginal
observables.

4.2 A mean field limit of marginal functionals of state

As we noted above the all possible correlations of a system of quantum
particles are described by marginal functionals of the state (22).
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Since solution (21) of initial-value problem of the generalized quantum
kinetic equation with correlations (26) converges to solution (15) of
initial-value problem of the quantum Vlasov-type kinetic equation with
correlations (16) as (27), and equalities (28) and (29) hold, for a mean
field asymptotic behavior of marginal functionals of the state (22) is true

lim ||65Fs(t, 1,...,8| Fi(t)) —

_Hgl —t,71)91({ HgltJQHfltZHQl(H) 0,

Jji=1
s> 2.

This equalities mean the propagation of initial correlations in time in the
mean field scaling limit.

5 Conclusion and outlook

In the paper the concept of quantum kinetic equations in case of the
kinetic evolution, involving correlations of particle states at initial time, for
instance, correlations characterizing the condensed states, was considered.
Two approaches were developed with a view to this purpose. One approach
based on the description of the evolution of quantum many-particle
systems within the framework of marginal observables. Another method
consists in the possibility in case of initial states specified by a one-particle
marginal density operator to describe the evolution of states within the
framework of a one-particle marginal density operator governed by the
generalized quantum kinetic equation with correlations.

In case of pure states the quantum Vlasov-type kinetic equation with
correlations (16) can be reduced to the Gross—Pitaevskii-type kinetic
equation. Indeed, in this case the one-particle density operator f;(t) =
|t) (14| is a one-dimensional projector onto a unit vector |i;) € H and
its kernel has the following form: f(t,q,q’) = ¥(t, ¢)v¥*(t,¢'). Then, if we
consider particles, interacting by the potential which kernel ®(q) = d(q)
is the Dirac measure, from kinetic equation (16) we derive the Gross—
Pitaevskii-type kinetic equation

0 1
+/dq’dq”g(t,q,q;q’,q”)d)(t,q”)w*(t,q)zb(t,q),
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where the coupling ratio g(¢, g, ¢; ¢, ¢"’) of the collision integral is the kernel
of the scattering length operator H?l:l Gi(—t,i1)g1({1,2}) H?2:1 Gi(t,i2).
If we consider a system of quantum particles without initial correlations,
then derived kinetic equation is the cubic nonlinear Schrodinger equation.

Observing that on the macroscopic scale of the variation of variables,
groups of operators (2) of finitely many particles depend on microscopic
time variable e ~1't, where € > 0 is a scale parameter, the dimensionless
marginal functionals of the state are represented in the form F,(s7!t |
Fi(t)). As a result of the formal limit processing ¢ — 0 in the
collision integral, we establish the Markovian kinetic evolution with the
corresponding coefficient g(e~'t).

This paper deals with a quantum system of a non-fixed (i.e. arbitrary
but finite) number of identical (spinless) particles obeying Maxwell-
Boltzmann statistics. The obtained results can be extended to quantum
systems of bosons or fermions [29].

We emphasize, that one of the advantages of the approach to the
derivation of the quantum Vlasov-type kinetic equation from underlying
dynamics governed by the generalized quantum kinetic equation with
correlations enables to construct the higher-order corrections to the mean
field evolution of quantum interacting particles.
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The Chapman-Enskog method is generalized for the investigation of
processes in the vicinity of hydrodynamic states of a gas. The generalization
is made on the basis of the Bogolyubov idea of the functional hypothesis.
A theory that describes a nonequilibrium state of a gas by the usual hydro-
dynamic variables and arbitrary additional local variables is constructed.
The gradients of all these parameters and the deviations of the latter
variables from their hydrodynamic values are assumed to be small and
are estimated by two independent small parameters. The proposed theory
is nonlinear in the additional variables too. It leads to linear integral
equations with an operator, given by the linearized collision integral. Some
of them are eigenvalue problems for this operator and describe kinetic
modes of the system.

The proposed theory is applied to the solution of a modified Grad
problem in which nonequilibrium states of a gas are described by the usual
hydrodynamic variables and small deviations of the energy and momentum
fluxes from their hydrodynamic values. In the simplest approximation
this leads to a theory of the Maxwell relaxation. It is shown that the
distribution function of the 13-moment Grad approximation corresponds
to the approximation of zero order in gradients and to small fluxes.
Moreover, in that theory the investigation of the relaxation phenomena
in the system is reduced to a very approximate solution of the above-
mentioned eigenvalue problems. The Bogolyubov idea of the functional
hypothesis gives an adequate solution of the problem.
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Meton Yenmena—Emckora y3araabHIOETHCS 1T JOCJTIIKEHHS TPOIIECIB TT0-
63y Bif rigpoawHAMIYHUX CTAHIB rady. Y3arajbHEHHS POOUTHCS HA OC-
HOBI ifel dyukmionaasuol rimore3n Boromobosa. [Tobymosano Teopito, ska
OINMCYy€ HEPIBHOBAXKHI CTAHM Ta3y 3BUYUANHUMU TiIPOJUHAMIYHUMU 3MiH-
HUMH 1 JTOBUIBHUMH JIOJATKOBUMU JIOKAJIBHUMU 3MiHHUMU. ['pagienTu BCix
OUX IapaMeTpiB i BIAXWUIEHHS OCTAHHIX 3MIHHHMX BiJ IX riapoauHaMigHUX
3HAYEHh BBAYKAIOTHCS MaJMMH. Po3pobiieHa Teopist € HesHIHHA TaKOXK 1
II0 JOJATKOBUX 3MIHHIX. BoHaA Beze 1o JiHIMHUX IHTErpaJIbHUX DIBHAHD 3
OIIepaTOpPOM, IO JAETHCS JIHEAPU30BAHUM iHTErpajoM 3iTKHeHb. /ledki 3
HUX € CIIEKTPAJIHLHOIO 33Ja9€I0 1 ONMUCYIOTh KiHETUYHI MOIU CHCTEMU.

PoszBunyTa Teopis 3acTocoBaHa A0 po3B’sa3yBaHHA MOAUMIKOBAHOI IIPO-
6memu 'pesa, B sKiil HEepiBHOBaKHMII CTAH ra3y OMUCYETHCA 3BUIANHUMU
TiAPOAVMHAMIYHUMHY 3MIHHUMHA 1 MAJIUMU BIIXUJIEHHSIMU TTIOTOKIB €Heprii Ta
iMIysibCy Bif IX rigpoguHAMIMHIX 3HAYMEHD. Y HAMIpOCTioOMy HAO/MKeHH]
e Bejie 70 Teopil MakcBe LTBCHKOI pesakcarii. I[Tokazyerncs, o dyHKIis
po3mnoainy 13-momenTHOro HabMKeHHs ['pena BiAMOBigae HyJIHOBOMY Ha-
O/IMKEHHIO 33 IPAJi€HTaMu i MajmM HOTOKaM. Binbie Toro, B il Teopii
JOCJILIZKEHHS PETAKCAINHNX ABUI B CUCTEMI 3BOAUTHCS 10 AyzKe HabIIm-
JKEeHOTO PO3B’sI3Ky BKa3aHOI CIEKTPAJIBHOI 3a1ati. Inest dbyHKIioHATIHHOT
rinmore3u BorooboBa /1a€ agekBaTHUI pO3B’ 30K MpOOIeMHu.

1 Introduction

The problem of the solution of the Boltzmann equation in order to build
hydrodynamic equations was posed by Boltzmann as soon as he derived
his equation

f,(z,t f,(z,t
P ) — 0, 280 1,0, 0
which describes nonequilibrium states of a rarefied gas in terms of the
distribution function (DF) f,(z,t) (I,(f) is the collision integral, v, =
p1/m; we restrict the discussion to a one-component system).

In any approach the starting point for the construction of hydrodynamic
equations on the basis of the kinetic equation (1) is the energy, momentum,
and particle number conservation laws in differential form, which follow
from the relations

/dBPCMpIp(f) = 07 (CHP : Epv Pi, myg Ep = p2/2m) . (2)
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The above-mentioned conversation laws have the form

Oc _ Ogn  Om _ Ot Op_ Omn
ot Oz, ot~ Oz, ot Oz,

3)

where the energy density ¢, the momentum density m;, the mass density
p (variables (,(x,t)), and the densities of the corresponding fluxes gy, ti,
m, are given by the formulas

ez/d?’pepfp, Tn :/d?’ppnfp, p:/dgpmfp;

dn = /d3p 5pvnpfp7 ti, = /dgpplvnpfp- (4)
The mass velocity v,, and temperature T" are defined by the relations
Tn = pUn, €=¢°+ pv?/2, €°=3nT/2 (p=mn). (5)

An important role in hydrodynamics is played by the Galilean transforma-
tion from the laboratory reference frame (LRF) to the accompanying
reference frame (ARF)

Gn = @0 + 12+ (€° + pv?/2) vy, i = 15, + pUivy (6)

(A° is a quantity A in the ARF). Finally, the time equations for usual
hydrodynamic variables T'(z,t), v, (z,t), n(x, t) (denoted below by £, (x, 1))
become

al——v 8T—i 8(]? t9 v %——’U %_iat?n
ot~ "oz, 3n\dx, "Mox,) ot  "Ox, mnz,’
on  Onu
a - 8$l ’ (7)

The next step is to express the fluxes ¢7, 2, in terms of the hydrodynamic
variables &, (z,t) by functionals ¢ (x,£(t)), t2,(x, £(t)) that leads to closed
equations of the form

0, (x,t
Kl — M, 600) ®
(M (x,€) are some functionals of &,(x)). The hydrodynamic variables

€.(x,t) are expressed only in terms of the simplest moments of
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the distribution function f,(z,¢). Therefore the number of parameters
that describe the system state is reduced as we go from kinetics to
hydrodynamics. Therefore the parameters §,(x,t) (or equivalent variables
Cu(z,t)) may be called reduced description parameters (RDP) of the
system.

A considerable contribution into the solution of this problem was
made by Hilbert [1], who formulated the concept of the normal solution
f,(x,&(t)) of the kinetic equation (1). This solution is a functional of the
hydrodynamic variables ¢, (z,t) as functions of the coordinates, and it
depends on the time only through their mediation. Hilbert developed a
perturbation theory in a small parameter g for calculation DF f,(z,£) on
the basis of the estimates I,(f) ~ g1, f,(z,t) ~ ¢°. The parameter g
(the Knudsen number) is given by the formula g = I/L where [ is the
gas mean free path, and L is a characteristic dimension of the system
inhomogeneities. In the main order of the perturbation theory the DF
fp(x, &) coincides with the Maxwell distribution wy,

wy = Wl w=— e F  (L(w)=0). (9
P e P (2mmT)3/2 P

In practical terms the Hilbert perturbation theory was improved by
Enskog [2], who managed to derive hydrodynamic equations with account
for dissipative processes. His method is called the Chapman—Enskog
method [3], because the same results were obtained by Chapman on the
basis of Maxwell’s ideas. The Chapman-Enskog method reduces to the
solution of linear integral equations of the form

Kg, = hy, (10)

where g, is the sought-for function, and h, is a known function (the
Fredholm integral equation of the first kind). The kernel K, of the
operator K is defined by the linearized collision integral

Kg, = /d3p'Kmo/gp/7

5L (F)
WKy = —Mppwy, My = # . (11)
P lf—w

The integral equations are solved with additional conditions which follow
from the definition of the hydrodynamic variables (4) and (5). In fact, in
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the Chapman-Enskog method the perturbation theory for the DF f,(z,§)
is built in small gradients of the hydrodynamic variables according to the

estimate
asgll (I) ~ gs
812[1 ...al‘ls '

Burnett proposed the method of Sonine orthogonal polynomial S (z)
expansion [4, 5] for the approximate solution of integral equations of the
form (10) related to the Boltzmann equation. The use of these polynomials
is due to the fact that the DF f,(z,£) proves to be proportional to the
Maxwell distribution, and therefore the orthogonality relation

(12)

_ 1020 (s+a+1)
/dgpwz€3 V25 (Bep) S (Bey) = TP 0. (13)
(a is some parameter; 3 = T~!) is obviously helpful. In fact, the
polynomial series is truncated artificially, and one-, two-, etc. polynomial
approximations are built. Kohler proposed a variational principle [6] for
the solution of integral equations of the form (4) which is based on the

Hilbert result that the bilinear form
{gp, hp} = /d?’pd?’p’wprp/gphp/ (14)
(gp, hp are arbitrary functions) has the properties

{g;m hp} = {hpagp}a {gpvgp} > 0;

{999} =0 = 9= Cup, (15)

(Cup are defined in (2)). This variational principle justifies the convergence
of the Burnett procedure of approximate solution of the integral equation
(10) with increasing number of polynomials.

It is also worth noting at this point that on the basis of (15) it is easy
to show, following Hilbert, the symmetry of the operator K (11), i.e. the
relation (g,, Kh,) = (Kgp, hp). Here, the scalar product is defined as

(9p Bp) = (gphp),  (9p) = /d3pwpgp' (16)

The positiveness of the eigenvalues of the operator K also follows from
(15). Its eigenfunctions can be assumed to be orthogonal in the introduced
scalar product.
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In this paper we construct theory which describes nonequilibrium
states close to hydrodynamic ones. These states are described by usual
hydrodynamic variables &, (z,t) (or (,(x,t)) and some additional variables
vi(z,t) that vanish at usual hydrodynamic evolution. Therefore, variables
@i(z,t) describe relaxation phenomena and one receives an opportunity
to study forming the hydrodynamic evolution. The proposed theory is
given by our generalization of the Chapman—Enskog method based on the
Bogolyubov idea of the functional hypothesis [7] (see discussion this idea,
for example, in [8]). Relaxation processes are considered at their end that
allows to build a perturbation theory in magnitude of variables ¢;(z,t)
which is additional one to usual perturbation theory in gradients.

The idea of investigation of relaxation processes at their end was used
in a series of papers: in theory of relaxation of polaron gas velocity
and temperature in polar crystals [9], in hydrodynamics of phonon
subsystem of dielectrics taking into account drift velocity relaxation [10], in
hydrodynamics of two-component plasma taking into account temperature
and velocity relaxation of the components [11].

Plan of the paper is as follows. In the Section 2 the Grad approach
to solution of kinetic equations is discussed in connection with the
Bogolyubov reduced description method. Particular attention is paid to
the analysis of his 13-moment approximation (we call this theory the Grad
problem). In the Section 3 the general theory is constructed which describes
nonequilibrium processes in the vicinity of hydrodynamic states. Section
4 gives application of the developed theory to a modified Grad problem.

2 The Grad problem and the Bogolyubov
reduced description method

Grad proposed a method [12] in which solutions of the Boltzmann equation
are sought from the very outset as a truncated series in the orthogonal
tensor Hermite polynomials H;, ;. (Z). The use of these polynomials is
justified by the same reason as the use of the Sonine polynomials, namely,
by the form of their normalization condition

/ BpwiHy, 1 (B/m) Y25 Hy ., ((8/m)V/?p) =

s/

= ndssr 251110(1)--- T (17)
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(o is an arbitrary permutation of the numbers 1, ..., s). In the Chapman-—
Enskog method, a hydrodynamic gas state is described by moments of the
DF f,(x,t) with the functions (,, defined in (2). In the 13-moment Grad
approximation the system is described by the moments of the DF with the
functions

Cup7 EpVip, hln(p)/m (hln (P) =PnDi1 — 6nlp2/3)

which are taken in the ARF. According to (4) this state is defined by the
variables ¢, (z,t), ¢ (x, 1),

7rlon (:L'v t) = t?n (1'7 t) - 5lntfnm(ma t)/3

where ¢ (z,t), t}, (z,t) are the densities of the gas energy and momentum
fluxes in the ARF ({,(z,t) can be used instead of (,(z,t)). The Grad
equations for fluxes are obtained from the kinetic equation by direct
substitution of the DF expansion in the Hermite polynomials, which leads
to their quadratic nonlinearity because the collision integral I,(f) is a
quadratic function of the DF f,,. In the G-13 approximation, equations
(7) are final equations, and they are supplemented by the time equations
for the fluxes ¢7(x,t), 77, (z,t).

The equations of the G-13 approximation were considered by Grad
as a means to investigate nonequilibrium states that precede standard
hydrodynamic ones. On this basis he discussed [13] the hydrodynamic
evolution, studying normal according to Hilbert solutions, with the fluxes
¢ (z,t), w7, (x,t) that are functionals of the usual hydrodynamic variables
a7, C(1)), ¢, (2, C(1).

The situation may be clarified further if we will base the consideration
on the Bogolyubov idea of the functional hypothesis and his idea of
hierarchy of nonequilibrium states of a system during its evolution. These
ideas are basis of the Bogolyubov reduced description method (RDM)
of nonequilibrium processes [7] and can be applied to investigation of
evolution of a system described by the Liouville equation or kinetic
equations (see review in [8]). On this basis the Chapman-Enskog method
is generalized in the present paper.

Usual hydrodynamic states are realized in the system at times ¢ > 7y,
where 7y is the mean free time. Nonequilibrium Grad states are realized
at t > 71, where 7y is a characteristic time such that 7, < 79. According
to the idea of the functional hypothesis we have

fp(z,t) 577 o2, C(1), ¢° (1), (1)), (18)
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i.e. at times ¢t > 7 the DF f,(z,t) becomes a functional of the RDP
Cu(z,t), g (x,t), nf, (x,t) as functions of the coordinates and depends on
the time only through their mediation. This functional is universal in the
sense that only the RDP (,(z,t), ¢7(z,t), 7}, (x,t) on the right-hand side
of (18) depend on the initial system state described by the DF f,(x,t = 0).
To the functional hypothesis (18) definitions of the RDP

/ d3p EpUip fp-‘,—mv(x)(x, Ca qo’ WO) = Qf(l’),
/ d3p R (p)fp+7rw(x) (1[,’7 Cv qov WO)/m = 7'('2)” (.’E),
[ EGutlec.a0.n7) = (o) (19)

must be added.

The idea of the functional hypothesis is obviously a generalization of
the Hilbert idea of normal solutions. However, in Bogolyubov’s research
it became a result of his investigations into non-linear dynamic systems,
in which the synchronization of the solutions of their dynamic equations
with the evolution of some parameters is observed. The term “the
functional hypothesis” was introduced by Uhlenbeck. By now, thanks to
Peletminsky’s investigations, this idea has largely lost the status of a
hypothesis. In some important cases it can be proven [14]-[16] (see also [8]).
The right hand side of the functional hypothesis (18) contains asymptotic
value of the distribution function f,(z, t). Transition to asymptotics implies
some coarsening procedure. This procedure corresponds to possibilities of
experimental observations and make possible the reduced description of
the system.

In fact in the G-13 approximation, the DF f,(z, (,¢°, 7°) is given by
the formula

1
fp(.’L‘, <7q07ﬂ-0> = U);(’I’L,T) {1 + anplﬂ-rotl(x)—*—

1 2¢ep

- “ep o
Taperiler ~ D (””)}pﬁp—mvm ’ (20)
n—n(z), T—T(z)

to which there are no corrections in the framework of Grad’s theory
(wy(n, T) = wy in (9)). A comparison of (20) with the functional from (18)
shows that (20) corresponds to an approximation of small fluxes ¢} (z,t),
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77, (x,t) and the zero-order approximation in gradients. Moreover, we show
further on the basis of the developed in the Section 3 theory that expression
(20) corresponds to one-polynomial approximation.

Below we call problem of reduced description of the nonequilibriun
system by variables (,(z,t), ¢7(x,t), ], (x,t) the Grad problem.

3 Description of nonequilibrium processes
in the vicinity of the hydrodynamic states

3.1 The basic equations of the theory

Consider a generalization of the Grad problem to the case of description
of the system by arbitrary parameters that are additional to usual
hydrodynamic variables. The corresponding stage of evolution precedes
in time hydrodynamic stage. The use of the two reference frames (the
laboratory and the accompanying ones) brings a certain complication to
the theory. Therefore in this section we choose the densities of the integrals
of motion (,(x,t) as the basic hydrodynamic variables.

According to Bogolyubov, at the hydrodynamic stage of evolution the
reduced description can be built on the basis of the functional hypothesis

Lt 5 Bed0k [ @rinh@d =G, @

Here, the second formula is the definition of the parameters CN# (z,t), for
which the gas energy, momentum, and mass densities are taken (see (2) and
(4)). Let at t > 71 (79 > 71) the gas be described by the hydrodynamic
parameters ¢, (z,t) and the deviations ¢;(z,t) of the parameters with the
microscopic values 6;;, from their hydrodynamic values 6;(x,t) (notation
wi(z,t) is less descriptive than §6;(z,t) but leads to compact formulas).
Then the functional hypothesis at these times has the form

£y (,6) = £, (2, C(£), 9(0):
/ Bp ity (e,C.0) = pi(a) + 6:(x, ), / &p 0§y (2, ) = 0,(2,0);

/ B3 Gty (,C,0) = (), (22)
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where the last three formulas define the RDPs (,(z,t) and ¢;(z,t).
According to kinetic equation (1), the introduced parameters satisfy
the following time equations

ag“éf’t) = Lu(@.C1), Lu(,Q) = —8% / @ Cupvnnfyp (@, )7 (23)
Kalbsl) _ 1 01,00,
Lu(0:69) =~ [ EpGupngly, o) (24)
@%?Qz Lt 0.8
= fz 5 x/C) 2., 0) — %/dgp(?ipvnpfp(fmé,s&H
+/Ew%@waaw> (25)
The considered problem implies that the relations
Q) TG, it 50
b (5, C(0),(0) 5, CC0) (26)

are true, whence we have the identities
fp(CU»Ca‘PZO) :%P(x7<-)7 Lu(xaC7(p:0) :'Z’H(xvc)a

Li(x7 Cp= O) =0. (27)

According to Bogolyubov’s MRD, the asymptotic DF are the exact
solutions of the kinetic equation

ol2n ) _ ), B8 SO) 1, 1),
W _ _Ulp%;“ﬁ)) + L (6 (2, (), 0(2). (28)

By their meaning, they describe the system state at ¢ > 7y and ¢ > 79,
respectively. However, the solution of equations (26) can be continued to
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t = 0, that introduces the effective initial conditions to time equations

(23)-(25).
Equations (28) together with relations (23)-(25) yield the following
integro-differential equations for the DF f,(z, () and f,(z, ¢, ¢)

E:/ﬁ'“xc o', =~y 2B ), 9

Z/da ,0f, IC; 2 Lo(@,C,0) +Z/ds ,6f5(pl ), Li(a!,C, ) =

f
=~ ZEC) 4,6, ) (30)

They should be solved in a perturbation theory in the gradients g of the
RDP (,(x), (u(x), pi(z) and in the parameter X that estimates the order
of the variables ¢;(z) according to

G L) e

— , L Y 31
&ml...axls g 89@1...89@5 g 856[1...(91'15 g ( )

In doing so,the RDP definitions (21) and (22) should be used as additional
conditions.

3.2 Construction of the perturbation theory

According to (27), we can restrict ourselves to the solution of equation
(30) only. The structure of its solution in the perturbation theory is given
by the formulas

=0 + £V + 0(g%), £ = £00 4 £0D 4 10 1 0(4°X?),
£ = £(LO) 1§11 4 O(g'A%);

i’

Ovy,
Bphnl (p) }P—>p—mv )

Bz
FOD — gy {Zcil £+Zdi . @%} (32)
P P - pa.’L'l ™ pep zafEl

o or
£10) = wo{1 +3 Appn +
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Here and in what follows, A("™) is the contribution of the order g™, and
A(lm1) g the contribution of the order ¢g™A™ to the quantity A, and the
results are given in terms of the gradients of the variables ¢, (z,t), i.e.
T(z,t), vn(z,t), n(z,t). In (32) aip, biip, Cip, dipp are some momentum
functions to be computed. The contribution f,(,l’o) coincides with the first-
order approximation in gradients of the usual Chapman—Enskog method.
The scalar functions A,, B, satisfy the known integral equations

- 1 (5 g
o - - _ P A o _ .
K Appl T <2 T)pla < p5p> 0;
K°Byhn(p) = 1h() (33)
plnl\P) = mT ni\P),
where
Kth - /dgp/ngzgp’ hopr, Ky = Kpimo pramo
) = [ Epugh, (34)

(the kernel K, is defined in (11); h, is an arbitrary function). The
second formula in (33) is the additional condition that follows from the

RDP definition in (22). The functions fl()o,o) and f,(,l’o) define the main

contributions M,Sl’o) and M,SQ’O) to the usual hydrodynamic equations (8)

or 2_ov 1.0 oy T On 10T
M(lvo) = —U,=— — 7T7n M( ) ) =9 — ——
0 v Ox, 3 Ox,’ ! v 0x, mndx; mox’
onuy;
MM = - 35
20 _ 2 861?(1’0) " to(l,O)@ 20 _ 1 87510,51’0)
0 3n Oz I 9z, |’ ! mn Oz,
M0 <. (36)

In (35) the expressions for the reversible fluxes

@0 =0, Y =psy,  p=nT
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are taken into account (p is the pressure). Equations (36) include the
dissipative contributions to the fluxes

¢o10) or P00 _ <3’Uz N Ovn 2, 8vm) ’

= oz, in O, ' Oz 3 Oz,

2,4 4m
k=—=(e7A,)°, =-——
3< p 10> n 15
where x and 7 are the gas heat conductivity and shear viscosity, respecti-
vely.
According to (25) and (32), in the zero-order approximation in gradients
the equation for the parameters ¢; has the form

(e3Bp)° (37)

Dpi
= L+ L0 4 0(g" X g,
0,1 0,2
LE ) e Z Mz‘i’@i’; LE ) - — I/ii/i” sﬁi/@i//, (38)

where the coefficients
tiir = {O0ip, airp},

1 o
Vigrirn = {Hip, bi'i”p} =+ 5 /dsp dsp/wpﬂiprp/puai/p/ Qi prt (39)
and the function K/,

_ 3Ly(f)
LS TOF T

(40)

wprp/pII = —Mpp/p// wpl ’U‘)p//7 Mp

are introduced. According to (22) and (30), these coefficients g/, vi7;» and
functions a;p, bi;rp from (32) are the solutions of the integral equations with
the additional conditions

Kaip = Z Qi pfhi’i, <aipC,LLp> =0, <aiP9i’;D> = diir; (41)

3

Kby, = Z AipVigrirn + Z (biirpptiir +iirpiir ) —

1
_5 /dgp/dBPI/Kpp/p//ai/p/ai”p”7 <bi/i”p<up> = O7 <bi/i”p'9ip> = O (42)
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Expressions (39) for the coefficients p;;/, v;i74 follow also from the integral
equations (41) and (42) when the last relations in (41) and (42) are taken
into account. However, as will be shown below, these expressions for p;;/,
vy are not needed for the solution of equations (41) and (42).

Further analysis of the integral equations (41) and (42) without
specifying the parameters ¢; (and the functions 6,,) is difficult. However,
it is easy to show that the quantities ¢; are linear combinations of the
gas kinetic modes ¢,. To demonstrate this, consider the right and left
eigenfunctions of the matrix p;;

g Hiit Ui’ o = Aalia, E Vialiit = AaViras
i’ i

Z Ui Vi) = 5040/7 Z Ui Vit = 61'2'/, (43)
% «
with additional normalization and completeness conditions. Then

0i=Y UinPa;  Pa= Z Piia (44)

and, according to (38), the quantities ¢, satisfy the equation

0
gota — 7>\as0a — O%/ l/aa/a//saa/saa// + O(gOAg),g])’
VO(O['O(” = Z Uia”ii’i”ui’a'ui”a” (45)

iilil!

In this case, (41) gives the integral equation
kaap = )\aaapa <a'apgup> =0, <aap9a'p> = doa’ (46)

for the functions anp = ), @ipltia (Bap = Y, 0ipUia). Thus, we have
arrived at a spectral problem for the operator K , l.e. for the linearized
collision operator. The positiveness of its eigenvalues A, and the possibility
of considering its eigenfunctions to be orthogonal in the scalar product
(16) are mentioned above. The spectral problem (46) describes the kinetic
modes of the system because the second condition in (46) means that
the eigenfunctions a., are orthogonal to the hydrodynamic ones ¢,
(KC.p = 0). Thus the variables ¢;, as the problem under consideration
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implies, really attenuate with the time. The functions ¢, are the gas kinetic
modes. Relations (46) define the type of these modes.

The integral equation (42) should be solved for the quantities b
and v;;;». This equation is simplified if, using the eigenfunctions (43),
we introduce the variable

bao/p = Z bii’puiaui’a’ (47)

i1/

that yields the equations

Kboz’(x”p = Z aapl/ao/o// + ba’a”p(A(x’ —+ )\a//) —+ h’a’a”p;
(e

<baa’p Cup> =0, <baa’p ea”p> =0, <haa’p Cup> =0 (48)
for the quantities byqrp and Vo (€quations (48) may be called equations
(42) in the a-representation). Here, a,, is the eigenfunction that is found
from equation (46), and haqp is @ known function that depends on aqyp.
Besides the eigenfunctions a,, (their number equals to the number of the
parameters ¢;), the operator K has eigenfunctions a,,, and additional ones
asp. All these functions are orthogonal each to other and a,, are obtained
by the orthogonalization of the functions ¢, (K¢, = 0). The solution of
the integral equation (48) can be sought in the form of expansion in the
operator K eigenfunctions

boz’a”p = E bg/a//aap + E bz(/a//asp + E bg/a//aup,
«a s m

ha’a”p = Z hg’a”aap + Z hi/auasp + Z hg,a”a“p. (49)
o s n

The second and fourth formulas in (48) show that the coefficients b, .,
h*, .. are equal to zero. Then the integral equation (48) yields

VOCO/a” + ha/ " h/s i
ba/ "= aa bsl " = @ . 50
A v s vy v M vy woarss v

The coefficients vyqa/o~ are now found from the third formula in (48) with
account for the last relation in (46), which yields

bg/a// + Z bg’a” <asp0(xp> =0. (51)
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So, the integral equation with the additional conditions (42) has an unique
solution for the quantities b/, and v;;;.

Let us now discuss the calculation of the first-order contribution in
gradients Ll(-l) to equation (25) for the parameters ¢;. According to (25),
with account for (22) and (27) the main contribution can be written as

LY = *%/d?’p@ipvnpféo’l) Z o, %)

/ &p d®p' i My £V / Epd®p dp" 0y My £ 010D (52)

(Lgl’o) = 0). Here, Lf}’l) is the right-hand sides of the hydrodynamic
equations for the variables (,, and thus for any function h of the
hydrodynamic variables the following formula can be used

Z 8<H 1 1) Z M(l 1) (53)

Expressions for functions M,ﬁl’l) follows from equations (7) and (8)

M(Ll) _ 2 6(]0(0 Y + to(O,l)@ M(Ll) _ 1 81&0(0 b
0 “3n\ dxy; "™ 9x, |’ ! mn Ox,
M =0 (54)
with fluxes

o o 0,1 o
02OV =D epvnpipemo) @iy =Y (Prnpip-mo) i (55)

A 7

Further simplification of formula (52) for Lgl’l) requires the specification
of the parameters ¢; and the corresponding microscopic quantities 6;;.

According to (30) and (53), the contribution fél’l) to the DF satisfies
the equation

6f01 0 £ oty
Z (10) Z pr11)+Z o L(11) Unp apx +
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(1,1) (1,1)
<afp Lo 9 >L(0’1)—

2

dpi | 00¢; [0z, Bz, |

- / & d*p" My £ D100 4 / d*p My £5°7). (56)

Taking into account expressions (32) for the DF and the expressions for the
right-hand sides Mﬁl’o), Lgo’l), Lgl’l), Mﬁl’l) of the equations for RDP from
(35), (38), (52), (54), we obtain the integral equations for the functions
Cinp) diunp

Kcinp = Z Ci'npli’i + Z Qi pQlitjm + hin]h (57)
Kdip,np = Z di’p,npﬂi’i + Z ai’pBi’ip,n + hiun;ﬂ (58)

which, according to (32), define the DF fz()l’l). Here hinp and hi,p, are
known functions (h;,np, depends on ¢;,,) and the coefficients i, Biirun
are given by formulas

Qijjrn = {eip,ci’np}; Bii’yn = {eip; d’i’,unp}' (59)

The additional conditions for equations (57), (58) are given by the formulas
respectively

(CupCinp) = 0, (Bip Cirnp) = 0, (Cuphinp) = 0; (60)

(Cupipmp) =0, (Oip dirpnp) =0, (Cuphipnp) = 0. (61)
Expressions (59) for the coefficients i, Biirun follow from equations
(57), (58) with account for the relation (a;y0;,) = 5 from (41). However,
these relations are not needed for the solution of equations (57), (58), and
the integral equations are linear (this is similar to the situation with the
solution of equations (41) and (42) without regard for (39)). Equations
(57), (58), and (60), (61) are simplified in the a-representation

Kcomp = Comp/\a + Z a'pQa’an T hompv
(CupCanp) =0,  (BapCarnp) =0, ((uphanp) = 0; (62)

Kda;m,p = daunp)\oz + Z aa’pﬂa’aun + haynpa

o

<<updau’np> = 07 <9(xpda’unp> = 07 <<uph(xu’np> = 0. (63)
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The solution of these equations may be discussed in a similar way to the
solution of equation (48) and needs more information about parameters
Pi-

The calculation of the DF fél’l) allows us to find the contribution M,SZ’l)
to the right-hand side of the hydrodynamic equations (8). According to (8),
the following formulas hold

yen 2 g Lot Ou e L ot
0 3n oz, oz, |’ ! mn Ox,
MY =0 (64)
with fluxes
qz(lvl) - /d‘n’pgpvmjflgl’l)7 t;’él»l) _ /d?’pplvnpfz(,l’l). (65)

In summary, we have investigated the equations for the RDP ¢; and
&, in the following orders of the perturbation theory

Op;
8? = L0V L 4 LT+ 0(0"N ' N, g°A g7),
0
% _ ﬂ[lSl,O) + Z‘[;S,l,l) + M,(f’o) +Mlg2,1) +O(gl)\2,g2)\2,g3), (66)

where the quantities LEO’I), LEO’Q), Lgl’l), M,ﬁl’o), M,Sl’l), MF(LQ’O), M,SQ’l)
are given in formulas (35), (36), (38), (52), (54), (64). Clearly the above-
described procedure of sequential calculation of the DF and the right-hand
sides of the RDP time equations can be continued. A detailed analysis
of the obtained integral equations for the contributions to the DF is
only possible when the parameters ¢; and the corresponding microscopic
quantities 0;;, are specified. This will allow us to use rotational invariance
considerations, which can greatly simplify the calculations, and to perform
the required Galilean transformation.

4 Modified Grad problem

Consider application of the developed theory to the Grad problem in which
nonequilibrium states of a gas are described by hydrodynamic variables
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Cu(z,t) as well as by energy flux ¢9(x,t) and traceless momentum flux
70 (x,t) taken in ARF. Specification of RDP simplifies the consideration
because allows us to make Galilean transformation for transition from LRF
to ARF and to use rotational invariance in calculations.

It was stressed above that solution of the Grad problem in framework of
the RDM can be based on the functional hypothesis (18) supplemented by
definition of the RDP (19). It is obvious that the Grad DF (20) corresponds
to the zero order approximation in gradients and to an approximation of
small fluxes. In this section according to the general theory developed
in Section 3 a modified Grad problem is investigated. In this problem
the deviations of the fluxes d¢2(z,t), o), (x,t) from their hydrodynamic
values g2 (z,¢(t)), 77, (z,¢(t)), which are functionals of the hydrodynamic
variables (,(x,t), are taken as the RDP. These deviations are assumed
to be small values of the same order A. Specification of the result of
Section 3 for the problem considered here is quite simple. For example,
the functional hypothesis considers the DF as a functional of the form
£y (2, C(1), 8g° (2), 67°(2)).

The time equations for the fluxes ¢y, 7}, follow from their definitions
(19) and kinetic equation (1) and can be written as

oy, Y onp, o Ov, (o vy, 0 ovy B 25 o v, n
ot " Oxm MO, " O Oy 3 Oy
ov,  Ov, 2. Ovupy, O n.m ()
- T a5 n - ’ n f )

" <8mn oxr; 3 ! 8xm> O0xm + Bin(f) (67)
ouf 94 v 50w 1,0, 5Ton,
ot "oz, % oz, 3q" 9z,  mn "™ dzx,  2m Oz,

1. ., b onT  Oq(f) v,
—|—%(ﬂ'ln + QnTéln) 0. om, Tin,m (f) pr. + Ry(f) (68)

where the notation

1 1
Rin(f) = E/dgp hln(p)Iermv(f)v Ri(f) = m /dgpgppleerv(f);

1
71'ln,m(f) = m2 /d3p hln(p)pmfzﬂrmw

1
tﬂn(f) = 2 /dgpepplpnfp+erv (69)
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is introduced. Equations (67), (68) are satisfied by the functionals

qn(x ¢@) = ¢, mp (z,¢((t)) = 77, and the usual hydrodynamic DF
fp(z,¢) = wp + f (10 4 O(g?) (see (27), (32)). Therefore, according to

(67) (68) , the exact time equations for the deviations have the form

ooy, Y oony, 0 Ovp,
ot ™ OTm lna
dun, o vy Ovs
(5 lma +om nma 5ln6ﬂ-sma ) +
00T n.m
et it Lk 5 n = L "
axm + Rl l (70)
Qdqp _ 90q7 o ,0un , du 5T dmy,
ot = Uam,  Ua, 6"8xn+2m Dzn T
41 1 50 86772m+ 1 _, 85w2m+ R oro ™
mn Tin a mn — Ty a mn Tin a
onT  0dqy Ovu,, B
o0 G~ G g HOR= L (7D

where the notations
SRy, = Rin(f) — Rin(f), OR; = Ry(f) — Ri(f);

67Tln,m = 7Tln7m(f) — Tin,m (F)a 5an ={din (f) - an(f) (72)

are introduced. To continue the derivation of the time equations, one needs
to calculate DF f,(z,(,0¢°%, 67°) using the general theory developed in
Section 3 and substitute it into (72).

Here we restrict ourselves to the calculation of the contribution f,EO) of
zero order in gradients to this DF. According to (32) in this approximation
the DF f,(z, (,d¢°, dn°) has the structure

B9 = w31+ any 065 + auny 075, + O(6°A%) bpsp o,

Anp = QpPrs  Gnip = bp it (D) (73)

where a,, b, are some scalar functions. In view of (70)-(72), the time
equations for the deviations of the fluxes ¢f,, 77, in the zero order in
gradients have the form

ddqy
ot

= _)\q(sqlo + O(go)‘2agl)7
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5 o
ag;ln = 7}\7‘[’57‘[-?” + O(gOAz,gl) (74)
where ) )
)\q = %{plEp»Plap}O, A = %{pzpn, hl’n(p)bp}o. (75)

These quantities are written using the following bilinear form
{9ps hp}? = /dgdePInggp’gphp’ (76)

which is a specification of the form (14) {gp, h,} for the ARF (see also
(9), (11), (34)). According to formulas (32), (41) of the general theory, the
functions ay, b, from (73) satisfy the integral equations with the additional
conditions

Koappl = )\qappla <€pap>o =0, <€§ap>o = 3/2a (77)

o o 15
K°bphin(p) = Axbphin(p), <512sz> T 3m (78)
As would be expected, these equations are eigenvalue problems for the
operator K° defined in (34). According to the remark given after formulas
(16), its eigenvalues are positive and equations (71) describe attenuation
of the flux deviations ¢S (z,t), 077, (x,t) i.e. the processes

Q) =@, 1), (e ) o @ C(0).  (79)

This phenomenon is called the Maxwell relaxation. In the Grad theory
[13] relaxation equations of the type (74) for fluxes ¢2(z,t), f, (z,t) are
obtained too, but describe simple attenuation of these fluxes.

Equations (74) give contributions Ll(o’l), Ll(g’l) to the right-hand sides
Ly, Ly, of the time equations for RDP (70), (71). According to the general
theory, contributions to L;, Ly, that do not depend on the parameters dq2,
onp, are absent, and therefore
(20 — (80)

In

LY=o, LM —o;

3

LY =0, L

(see, for example, equations (66)). In the present paper other contributions
will not be discussed. Consider only approximate solution of the integral
equations (77), (78) using the Burnett method of a truncated Sonine
polynomial expansion.
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Solution of the equation (77) with account for its tensor dimensionality
is found in the form of the series

a, =Y a.537(Be,) (81)

s=0
(B =T~1). Additional conditions (77) thus give
ag =0, ay = —26%/5n. (82)

Integral equation (77) leads to the following infinite set of linear equations
for the coefficients a4

ZASS/aS = (83)
s'=1

where the notations

Ay = {p1S32(Be,), ;S (Bep) Yo (wswe) /2,

< 2mn 2l'(s +5/2)
Go=a)” A=k m=ToaE— (8
are introduced. According to the properties of the bilinear form (76) the
matrix A,y is symmetric and positively defined. Solution of equations (83)

in one- and two-polynomial approximations gives

a[ll] =ai, S\E] = Aji;
B G 2 AN A
! ’ 2 T2 A ’
M = {(Ap + Agg) — [(An1 — Az2)? + 442,]1/2} /2 (85)

(here A" is a quantity A taken in n-polynomial approximation). Note
that in the two-polynomial approximation eigenvalue 5\?] of the smallest
value was chosen.

With account for the tensor dimensionality of equation (78) its solution

is found as the following series expansion

= b.SY2(Bep). (86)
s=0
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Additional condition (78) define the first coefficient of the expansion
bo = 3%/2mn. (87)

Integral equation (78) leads to the infinite set of linear equations for the
coefficients b,

Z BSS/BS' = 5\7\’65 (88)
s'=0
where the notations

By = {hln(p)SSS/Q(/BEp)a hln(p)S§/2(65p)}o(ysys’)_1/2a

_20(s+7/2)

_ 8m2n)\
Ty yS —_— 8!7'['1/2

b =b? he=

are introduced. According to the properties of the bilinear form (76) the
matrix By is symmetric and positively defined one. Solution of equations
(88) in one- and two-polynomial approximations gives

(89)

b([jl] = bo, AN = Boo;

212 _ 21/2 3 _ By,
1 712" By, 0>

M = {(Boo + B11) — [(Boo — Bi1)* + 4B5;]/*}/2. (90)

b([)2] = bo,

Note that in the two-polynomial approximation the eigenvalue S\E I of the
smallest value was chosen.

So, in the one-polynomial approximation the following expression for
DF (73) of the zero order in gradients is obtained

1
0) o o
fz(J ) — w? {1 + 72mnT2p"pl67Tl” +

1 2¢p 02

—zPn(z 75 — 1)dg; + O(g7\7) (91)
nI2" "5 T " s pm

For the selected independent variables this expression coincides with the
Grad DF (20). Therefore, the statement given at the end of section 2 is
confirmed and his DF contains only contributions of the orders g°A%, g° !
and takes them in the one-polynomial approximation.
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In the one-polynomial approximation our attenuation constants are
given by the formulas

2 5 nT
m__ 2 o_ 0 nT
Ad' = Tgngs PiEn PiEn}” = 5
1 nT
n_ o_
Ael = 10m2nT?2 {hin(p), hin(p)}° = 77[1] (92)

where the expressions for the heat conductivity x*) and the shear viscosity
1]

n!1 in the same approximation are used to compare. Famous result of the
theory [3] is given by the formula
kM = 15pM1 /am (93)
which leads to the relations
AT = 2AM/3. (94)

Note that the Grad theory [12] gives also expressions (92) for attenuation
constants. However, in his theory this constants describe unphysical
attenuation of the fluxes ¢f(x,t), 7}, (x,t) to zero and cannot be corrected.

As the final remark note that it is not possible to rigorously prove the
method of a truncated polynomial expansion for solution of eigenvalue
problem for operator K. However, the proposed calculations additionally
show limitation of the Grad method as an alternative to the Bogolyubov
reduced description method.

5 Conclusion

The Chapman-Enskog method has been generalized for the investigation
of processes in the vicinity of hydrodynamic states of a gas. The genera-
lization is made on the basis of the Bogolyubov idea of the functional
hypothesis. A theory that describes a nonequilibrium state of a gas
by the usual hydrodynamic variables (,(x,t) and arbitrary additional
local variables 6;(x,t) has been constructed. The gradients of all these
parameters and the deviations ¢;(z,t) of the variables 6;(z,t) from their
hydrodynamic values 6;(z, ((t)) are assumed to be small and are estimated
by two independent small parameters g, A. The proposed theory is
nonlinear in the variables p;(x,t) too.
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The usual Chapman—FEnskog method leads to the solution of Fredholm
integral equations of the first kind with an operator K given by the
linearized collision integral. The proposed theory leads to the solution
of linear integral equations of a more complicated nature with the same
operator K. Some of them are eigenvalue problems for the operator K and
describe the kinetic modes of the system.

The proposed theory is applied to the solution of a modified Grad

problem. Grad formulated his problem in his 13-moment approximation
for the solution of kinetic equations. In his theory nonequilibrium states
of a gas are described, in addition to the usual hydrodynamic variables,
by the fluxes of energy ¢f(z,t) and traceless momentum =}, (z,t) =
o(x,t) — 10, (z,t)01,/3 in the accompanying reference frame. In fact
these fluxes are considered as small quantities of the same order A and
the Grad distribution function includes only terms of the orders g°\°,
g°AL. Moreover, it corresponds to the one-polynomial approximation. In
our modification of the Grad problem a nonequilibrium state of a gas
is described by the usual hydrodynamic variables and small deviations
0q2(x,t), omf (x,t) of the above-mentioned fluxes from their hydrodynamic
values ¢2(z,((¢)), 72, (z,¢(t)). In the simplest approximation this leads to
a theory of the Maxwell relaxation.

The consideration shows that in the 13-moment Grad approximation
the investigation of the relaxation phenomena in the system is reduced to
a very approximate solution of the eigenvalue problem for the operator
K. The Bogolyubov reduced description method, based on his idea of the
functional hypothesis, gives an adequate solution of the problem.

The proposed theory can be applied to evolution described by arbitrary
kinetic equations, and to the evolution of dense systems described by the
Liouville equation.
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Power series and conformal mappings
in one boundary value problem for
monogenic functions of the biharmonic
variable

Dedicated to the 80 ™ anniversary of Prof. D.Ya. Petrina

Considered a boundary value problem (BVP) for monogenic functions
of biharmonic variable taking values in a two-dimensional commutative
Banach algebra. This BVP is associated with the main biharmonic problem
for biharmonic functions of two real variables. Developing a reduction’s
scheme for this BVP for monogenic functions to BVP in a disk by using of
expansions in power series and conformal mappings in the complex plane.
For some particular cases this problem is solved in a complete form.

Posriismaersea kpaiioBa 3amada /i MOHOTeHHUX (MYHKIHH 6irapMOHIIHOL
3MiHHOI 31 3HAYEHHSIMM B JBOBHMIpHI# KOMyTaTwBHiil aare6pi. Jlana 3a-
Jada acoIiifoBaHa 3 OCHOBHOIO OIrapMOHIYHOMIO 33jadero Ha IuiomuHi. Po-
3pObJIAETHCA CXeMa PeayKIll 1€l 3a/1a4i 11 MOHOT€HHUX B OTHO3B A3HUX
obmactsax dyHKIiH 10 BiAMOBiAHOI KpaioBoi 3a1adi B Kpy3i GirapMoHid-
HOI TITONWHA, 3aCTOCOBYIOYH PO3BUHEHHS B CTEIIEHEBU PsiT AHAJI THIHUX
dbyHKIiil KOMIITTEKCHOI 3MiHHOI Ta KOH(OPMHI BimobpakeHHs KOMILIEKCHOL
mwromuan. HaBeerno 4acTuHHI BUIIAIKM, KON TaHa 33/7a9a PO3B SI3YE€THCS
y 3aMKHeHi#l dhopwmi.

1. Introduction. Monogenic functions in a biharmonic plane.
We say that an associative commutative two-dimensional algebra B with

© Institute of Mathematics, 2014
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the unit 1 over the field of complex numbers C is biharmonic if in B there
exists a biharmonic basis, i.e., a basis {e1, ea} satisfying the conditions

(6% + 63)2 =0, e% + 6% 7é 0, (1)

In [1], I. P. Mel'nichenko proved that there exists the unique biharmonic
algebra B and all biharmonic bases form an infinite collection belonging to
the algebra B, moreover, B is generated by a non-biharmonic bases {e1, p},
where p? = 0.

Here and elsewhere we mean by the biharmonic bases {ej,e2} the
following:

=1 ex=i—zp, (2)

where ¢ is an imaginary complex unit. Therefore, we have equalities
e% =1+ 2ies and
p =2+ 2ies. (3)

Consider a biharmonic plane p:= {( = ze; + yeq : ,y € R} which is
a linear span of the elements ey, es of biharmonic basis over the field of
real numbers R.

Let D be a domain in the Cartesian plane 2Oy and D := {{ = z+yes :
(x,y) € D} be a domain in p, and D, := {z =z + iy : (z,y) € D} be a
domain in the complex plane C. In what follows, ( = = + yea, 2 = x + iy
and z,y € R.

Inasmuch as divisors of zero do not belong to the biharmonic plane, one
can define the derivative ®'({) of the function ®: D¢ — B in the same
way as in the complex plane:

2'(¢)

= lim_ (@(C+h)—(O) A" @

We say that a function ®: D — B is monogenic in a domain Dy if and
only if its derivative ®’({) exists in every point ¢ € D.. Note, that the limit
(4) can be considered according to the euclidian norm a := /|21 |? + |22/2,
where a = z1 + z9e9 € B, 21 and 25 in C.

In [2], it is established that a function ®: D, — B is monogenic in
a domain D¢ if and only if the following Cauchy-Riemann condition is

satisfied: 08(0)  05(0)
92(¢) _ 92(¢) _
ay = Tor e V(=1x+ ey € Dc. (5)
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Note, that in [2] the condition (5) is written in an equivalent form by each
component.

In [3], [4], there were established basic analytic properties of monogenic
functions similar to properties of holomorphic functions of the complex
variable: the Cauchy integral theorem and integral formula, the Morera
theorem, the uniqueness theorem, the Taylor and Laurent expansions, a
property of monogenic functions to be infinitely times monogenic.

Any function of a type ® : D¢ — B is expressed in the form

®(Q) = Ui(z,y) +Us(z,y) i+ Us(x,y) e2 + Us(x,y) iea, ¢ =x+yes, (6)

where Up: D — R, k=1,4.
Every component Uy, 1 < k < 4, of monogenic function (6) satisfies in
the domain D the biharmonic equation

m o ot ot
(Ak)" u(z,y) = <8a:4 +2W + 8y4> u(z,y) =0,m=~k=2, (7)

due to the relations (1), an existence of derivatives ®*) of the order F,
1 < k < 4, and the equality (A2)* ®(¢) = (€2 + €2)20@W (().

In [5], there were introduced hyperanalytic functions taking values in
real Clifford algebras of an arbitrary dimension, so-called, holomorphic
Cliffordian functions. Any real component of holomorphic Cliffordian
function (similar to Uy in (6)) satisfies the polyharmonic equation of the
type (7) with some m > 2 and k = 2m.

In [6], V.V.Karachic and N.A. Antropova used Almansi representation
formula for solving the inhomogeneous Dirichlet problem for the
homogeneous biharmonic equation with polynomial boundary data.

2. Statement of (1-3)-Problem for monogenic functions.

Consider the following boundary value problem: to find a monogenic
function ®: D — B which is continuous in the closure D of the domain
D¢ by given boundary values u1, us, respectively, of the first and the third
components of the expansion (6):

Ui(z,y) = u1(C), Us(z,y) = us(C) V{=x+ey€dDc.  (8)

Problems of this type was first considered by V.F. Kovalev [7] and
was called as the biharmonic Schwarz problem because it is analogous in
a certain sense to the classical Schwarz problem on finding an analytic
function of complex variable when values of its real part are given on
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the boundary of domain. Note that V.F. Kovalev stated only a sketch
of solving of the biharmonic Schwarz problems in an integral form for
semi-plane and discussed a possibility of the reduction this problem for an
arbitrary domain to an integro-differential equation without investigation
conditions of solvability of these problems.

Certain relation between the (1-3)-problem and Theory of 2D-
elasticity is discussed in [8] for a case of a disk. Dwell on a case
of an arbitrary simply connected domain D € R? corresponding to
the domain D¢ in the biharmonic plane p. The main biharmonic
problem (see, for example, [9, p. 202]) is to find a biharmonic function
V : D — R by given limiting values of its partial derivatives

(z,y)=(x0,Y0), (z,y)ED ox 1\%o, Yo) (9)
oV (z,y)

im ——> = ug(xp, Y (o, € dD.
(@.9) = (z0.00), (w)eD Oy (@0, 30) (o, 30)

In [7], there was considered a reduction scheme of the main biharmonic
problem to the (1-3)-problem. Consider a modification of this scheme.
Let ®; is monogenic in D¢ function

(I)I(C) = V($7y> er + ‘é($7y) Z.el + V3($7y) €2 + Vzl(xay) 7;627

which has as the first component the required biharmonic function V (x, y).
It follows from the Cauchy-Riemann condition (5) with ® = &; that
OVs(x,y)/0x = OV (x,y)/0y. Therefore,

1% Vs % 0)%
(I)/]_(C) _ éz7 y) e + 2((§§7y) iel + éZ7 y) es + 4a(§7y) i€2 ,

and the main biharmonic problem with the boundary conditions (9) can
be reduced to the (1-3)-problem on finding a monogenic in D, function
®(¢) := P1(¢), then, solving the latter problem, we recover functions
M(z,y) := W and N(z,y) :== %Z’y) defined in D. In a conclusion,
obtain a solution of the main biharmonic problem in the form of the
following curvilinear integral

(z,y)
Via,y) = /( M(z,y)dz + N(z,y) dy,

Z0,Y0)
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where (29, yo0) is a fixed point in D, integration means along any piecewise
smooth curve, which joints this point with a point with variable coordinates
(@,9)-

In [8], investigated the (1-3)-problem for a case, when D, is an upper
semi-plane of the biharmonic plane or a unit disk {¢ € p : ||¢|| < 1}.
Solutions of these problems are found in an explicit form by means of
some integrals similar to a classis Schwarz integral in the complex plane.

Below we consider the (1-3)-problem for a sufficiently large class of
domains D, using the technique of conformal mappings D, to the disk
Dy :={¢ € p: ||¢|| < 1}, which is generated by a conformal mapping of
D, to the unit disk in C. We notice some sufficient condition to the domain
D¢ and boundary data u; and ugz for a reduction of the (1-3)-problem to
a suitable boundary value problem on finding some B — valued function
defined in D;. For some particular cases of domains D, this reduction
recover a solution of the (1-3)-problem in an explicit form.

Proposed method of solving boundary value problems for monogenic
functions of the biharmonic variable analogous to the method of
N. I. Muskhelishvili of solving boundary value problems of 2D-Elasticity
based on using a technique of conformal mappings of complex plane and
power series expansions of analytic functions of complex variable (cf., e.g.,
[10, §63]).

3. Using technique of conformal mappings for (1-3)-problem
in a simply connected domain. There is an expression (cf., e.g., [3] —
[12]) of an arbitrary monogenic function ® : D, — B via two analytic
functions F, Fy of complex variable z € D,:

B(C) = F(2)e, — (Zg F'(z) — Fo(z)> p  VCeD. (10)

Consider a problem on solving of the (1-3)-problem in a domain D,
which is congruent to a simply connected domain D,. Let N be a set of
natural numbers, Ny := NU{0}, Z be a set of integer numbers. Taking into
account any conformal mapping of the type w: D; — D,, we generale
a domain D;. Denote I'y := {z € C : |z| = 1}. For any complex-valued
function of the type G(z), z = w(r), 7 € Dy, we will denote by G(7) an
expression G(w(7)). For any 7 in the disk D; denote by (7, ¢) its polar
coordinates, i.e., 7 = nexp{ip}, by (1,6) we will denote polar coordinates
of points o = exp{if} € I'y. Obviously, that if a function G is analytic in
D., then G is analytic in Dj.
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For any z € C by Rez and Imz we mean, accordingly, real and imaginary
parts of z: z = Rez 4 iImz. Denote ®,(7) := @ (Rew(7) + Imw(7) e2),
7 € D;. Then the equality (10) transforms to the form

®,(r) = F(1) — <; Y(r)F'(1) - ﬁ0(7)> p VreDy, o (11)

where Imw(r)
Y(r):= e

Therefore, receive that the (1-3)-problem for monogenic function ®
reduced to an auziliary (1-3)-problem on finding the first, V7, and the
third component, V3, for a function (11) ( ﬁ, F, are unknown analytic in
D, functions of complex variable 7):

(12)

D.(7) = Va(7) + Va(7)i + Vs(7)ez + Va(r)ies, (13)

where 7 = 7 + i1, 7 € R, k = 1,2, Vi : D1 — R, k = 1,4,
furthermore, we assume, that @, is continuous in D; and the following
boundary conditions fulfilled

Vi(o) = @n(0), k=1,3, Voel, (14)

where uy : I'y — R are given continuous functions. Boundary functions
U, k = 1,2, are connected with boundary data u; and ug (see (8)) of the
(1-3)-problem for a function (6), which is monogenic in D¢, by means of
the following relations:

ﬂk(o) = uk(C)v w(o) =z, k=13, (15)

where 0 €', z =w(o) ==z +iy € C, ( :=x + exy € ID,.
Using polar coordinates, deliver equivalent denotations for boundary
functions u; and us:

U (0) = ug(cosf +sinfes), k=1,3,0< 0 < 2r. (16)
Let I, is a totaly of consequences of the type (ag, aq,...,ag,...), where
ar €R, k=1,2,...,and >, |ag| < co. Denote by {a},,, m € Ny, any

consequence of the type (a, m1,...) € 11, and conversely.
We say, that the ordered quadruple of consequences
({2}, {8}, {a}o, {B}1) belongs to the class & if and only if
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there exists a constant M > 0, natural number p and a sequence {v},, for
which the following inequality fulfilled

v
joul 186 < 1 v > a7)

This definition can be naturally generalized to an ordered quadruple of
consequences of the type ({a@}n,, {BO}n,, {a}n,, {BIN.), Nim € N,
m=1,4.

Theorem 2. Let the following conditions fulfilled:

1* conformal mapping w: D1 — D, is such, that the series

oo

IIle/U{O(';-) = Y 60" Voely, (18)

n=—oo
s absolutely convergent on I'y,

2* boundary functions uy, us of the auziliary (1-3)-problem expressed
by absolutely and uniformly convergent on the segment [0,27] the
Fourier series:

= 50 +Z a, cos kO + by, sin k6) (19)
k=1
ag = .
= 50 + Z ay, cos kO + b, sin k0) . (20)
k=1
3* The system of equations
> a
a0+ 200" + 3 (k+ D) annnd + By ) = T, (21)

k=0

O+ 201 0)+Z (k1) (@185, 4+ B AT, ) = an ¥V € N, (22)
k=0

~Bu=280+ 3 (k1) (41T g Brs1AT, ) = ba ¥V € N, (23)
k=0
o0 a/
25 + ’;)(k +1) (ak+16Lk — 5k+15ﬁk) = 307 (24)
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-280) + Z(k’ +1) (akﬂl\fn,k - Bk+1A;n’k) =al, VYneN, (25)

k=0
220 =Y (k+1) (ak+1A; - +Bk+1Ain7k> —0, VneN, (26)
k=0

where 8,,,0! are, respectively, a real and an imaginary parts of
coefficients 6, in expression (18): &, =: &/, + 0 for all n € Z;
A, =00 k0 A =00 k6" forn € N and k € Ny,
is solvable and its general solution belongs to the class &, if, besides,
the system of equations (21) — (26) with a, = aj, = bry1 = by =0,
k=0,1,..., is solvable and its general solution belongs to the class

£.

Then a general solution of of the auxiliary (1-3)-problem is expressed
by the following formula

0. =) - (§2D P - Rm)p vred @

where
F(r) = chT”7 Fo(r) = ZC;O)T" V1 € Dy, (28)
n=0 n=0
and an ordered quadruple of consequences ({a®}o, {8}, {a}o, {B}1),
formed by real components «,, a%o), T(LO), Bn+1, n=0,1,..., of complex
coefficients ¢, = oy, + 153, 9 =0+ zﬂ?(lo) in the expression (28), is a

general solution of the system (21) — (26).

Proof. Expansions (28) of the Taylor series hold for functions F and Fy
in the disk Dy with unknown coefficients ¢, = o, 4165, c%o) = aSLO) —Hﬂ,(@O),
where «a,, = Rec,, 8, = Imc,, a%o) = Rec%o), ,(LO) = Imcf), n=20,1,....

It follows from (28) that

F'(r) = i(n + 1)epr ™ VT € Dy (29)

n=0

Assume, that the series (28) and (29) are absolutely and uniformly
convergent on D1, and further, verify the validity of our assumption.
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Using the following equalities for products of absolutely convergent on
'y series > p g ako®, Y0 s bpo®, S0 hogo*

Zaka Zbka Z(Z akbnk>0"7
k=0 k=0

oo o0 oo oo oo oo
S adt St = Y (S ahoion )o 3 (L i )"
k=1 k=1 n=1 “k=1 n=0 ‘k=n

multiply series (29) and (18), obtain the equality

(o) () /S Z o™ Yo eTy, (30)

n=—oo

where for any integer n:

o0
cn = Z(kz + 1)ek410n—k =: ¢, 1 +icy, o,

k=0

Cha = Z(k +1) (ary10, 1, — Br16n 1) » (31)
k=0

Cho = Z(k + 1) (4105 g, + Brr18y_y) - (32)
o

Using the Moivre formula rewrite the equality (30) in the form

~ 1 >
F'(0o) IEIOZ:)T coa + Z ¢ 1+ ¢y cosnf+
+ Z o — ) sin nf+

oo
ticyo +1 g (¢" o+ o) cosnb+
n=1

Z ¢*,1)sinnd Vo =exp{if} € I'1. (33)
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Then using the equalities (3) deliver formulas for components V; and
V3 from the expression (13) on I'y:

Vi(0) == Va(o) = ao+2a8"+¢5. 0+ (an +20) + 7,5 + ¢, 5 ) cosnd+

n=1

+ Z (—5n - 289 + Ch1— c*,nd) sin nf, (34)
n=1
V3(0) :=V3(0) = cg1 — 25(()0) + Z (—267(10) +clq+ 0271) cos nf+
n=1

(o)
+ Z (—204;0) +el,a— CZ7Q> sin nd. (35)
n=1

Equating coefficients near cosmf and sinn#, respectively, in the
qualities (34) and (19), (35) and (20), receive, using the denotations (31)
and (32), a system of equations (21) — (26) according to coefficients of
required series (28).

Summarize obtained results, we have that restricting a solvability of
the system (21) — (26) in the class £, that means, firstly, a condition to
the geometry of the domain D, and, secondly, a condition to the choice
of the boundary functions u; and wug, obtain, that the series (28) and (29)
are absolutely and uniformly convergent on D; and a function (27) is a
general solution of the auxiliary (1-3)-problem. The theorem is proved.

Remark. A choice of the class £ can be done by any another way,
choosing conditions for functions of the class for which series (28) and (29)
are absolutely convergent on I';.

Theorem 3. Let conditions of Theorem 1 are satisfied, then the formula

O(¢() =Pu(1) Y(=z+4yes € D¢, 7€ Dy :w(r) =2 :=x+ies € C (36)

generates a general solution of the (1-3)-problem.

Examples.

1. Let a domain D¢ be a unit disk D;. Then a mapping w is the identity
mapping, i.e., w(z) = z for all z € D, Imw(c) = sinf. The auxiliary
(1-3)-problem coincides with the the (1-3)-problem for D;. Furthermore,
&, = 4,07 = —3, 6/ = 0 for another integer n, and &, = 0 for all
integer k. It is easy to check, that for this particular case the system
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of equations (21) — (26) transforms to the system (22) — (31) from the
paper [13] for » = 1, a condition of solvability of which can be written
in the form b; = a}. The proposed method gives a required solution of
the (1-3)-problem, for example, if boundary functions u; and wug satisfy
conditions of Theorem 1 in the paper [13]. Note, that for our case in (17):
vp = k=0T k =1,2,..., a > 0, and a general solution of the (1-3)-
problem with zero data u; = uz = 0 is a function ®(¢) =i (b — aea + (),
where a, b and c are arbitrary real numbers.

2. Let a boundary of the domain D¢ be the Pascal’s limacon D¢ := {z+
eoy}, where x = R(cos@—i— %00529), Yy = R(sin9—|— isinZH), 0<60 <2,
and any fixed constant R > 0. Then a function w has a form

1 _
w() =R (c + 4<2> V¢ € De. (37)
Consider the (1-3)-problem with boundary conditions, for which
ap=ay =0,k=01,2, by =b, =0,k =1,2, (38)

and the following inclusions holds

({a'}o, {b}1, {a}o, {0'}1) € &, ({a}o, {V'}1, {a"}o, {b}1,) € &. (39)

In this case an expression (18) has a form

W' (o) 16 32 64 32 & 2
Then

8, =0VkeZ ¢, =0Vnec{3,4,..} (40)

1 7 7 25

"o - noo_ n_ n_ _ =7
02 = 8’ 0=1 16’ % 32’ 0 64’ (41)

9 1\"

(i 2.3 ... 42

Denote for any symbol variable v the expression

n—2 n—~k
9 1 25
P (V) = 3 E (k+1) (—2> Ukl = o Mn—
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7 7 1
fﬁ(n + Doy + E(n + 2)vp42 + g(n + 3)vp43Vn > 3. (43)

Taking into account relations A" , = Ay, , = 0forn € Nand k € Ny,

A=A, =00 forn >3 and k € Ny, formulas (38) — (43), obtain,

2,n,k
that the system of equations (21) — (26) transforms to a form
7 7 3
0¢0+2a(()0)—3—2041+§a2+§(1320, (44)
67 (0) 3 21 1
- 2 - — —_ — = 4
pa @1 t2m —qgoat gaat 5 =0, (45)
25 25 21 7 5
0[2+204g0)+58a17372@27§a3+10[4+§045:0, (46)
an +209 + 94, () =a,Vn € {3,4,...}, (47)
11 o 11 21 1
_ 2 - — — — =
6461+ By 1652+1653+254 0, (48)
7 (0) 7 21 7 5
— LB+ L By Byt S Byt 2By = 4
128514— B +32ﬂ2 3253-1-454-1-855 0, (49)
B+ 28 + ¢n(B) = —bpVn € {3,4,...}, (50)
o 7 7.3
Bo 3251+8ﬁ2+853 ; (51)
© 3 3 21 1
2 N - JR— o =
By +64ﬁl 1652+1653+254 0, (52)
() 25 25 21 7 )
2 _ —_ — —_ — — — =
B b i - S Byt Bt S =0, (53)
2ﬂ£0) +wn(ﬂ) = 7(Z;IV7L € {374a~"}7 (54)
0 93 11 21 1
2 - - _— —_ =
o 61 O 16a2+16a3—|—2a4 0, (55)
0 7 25 21 7 5
2é)—@al—3—2a2—§a3+1a4+§a5:0, (56)
200 4 p, () = b, ¥n € {3,4,...}. (57)

Solving obtained system (44) — (57) conclude, that a solution of the
required (1-3)-problem has the form:
®(Rer + eolmr) = F(7) — (; Y () F'(1) — ﬁ0(7)> p  VreD, (58)
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where coefficients of expansions (28) are expressed by the formulas

—2A+iC VAand C € R,

¢, = 4iB, cy =iB  VBER,
Cn=an+b,+ila, —by),n=34,...,

3
céo):—ﬁ(a3+b’)+A+z (bs —a})  VAER,
21 1 21 1
R IR AR {ORRARE] ECRVARS O

0 7 5
o) = 2 (a4 0) — £ (aa + ) — 1 (a5 + )+

(21 7 5
Hi (B =)+ L=+ s b)),

16
) = 177580@,4- 1128 by + 76(a4+b4) g; (a5 + b5) — Z(a6+bg)+
+i (11218 az — 17258 bs + 176 (ay — bs) — g% (a5 —bs) — g (ag — b6)> ;
o) = g an 8+ BUT B s ) -
21 (ag +bg1)6 (ar +15) (22576 (b — o) 11a;3—225b4+

35 2, 7,
+ 2 (a0 = B e t0) - 5 (&5 - ).

o 9 n 1 n—k+1 25
o)) = 32 Z(k‘f' 1) (—2) (aks1 +bhpn) + o0
2

128 "t

25n — 64 7
+T b;l 64(7’L+1) (an+1+b{n+1)—

1
_ﬁ(n + 2) (U,n.:,_z + b;H-Q) 16 (TL + 3) (an+3 + bf,l+3) +

9 n—2 1 n—k+1
+i <32 Z(k—f—l)( 2) (Ahgr — brt1) +



Power series and conformal mappings 103

25m — 64 25 7
+T a,/n — @nbn + 62(77; + 1) (a/n_‘_l — bn+1) —

7 1
- 33(71—&- 2) (ap 4o — bny2) — TG(n+3) (ahys — bn+3)> Vn > 5.

This research is partially supported by Grant of Ministry of Education
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Generalized kinetic equations for dense
gases and liquids far from equilibrium
in Renyi statistics

Dedicated to the 80 ™ anniversary of Prof. D.Ya. Petrina

Based on the Zubarev nonequilibrium statistical operator method and
the maximum entropy principle for the Renyi entropy the nonequi-
librium statistical operator and the generalized kinetic equations for the
nonequilibrium one- and two-particle distribution functions are obtained
for description of kinetic processes in gases and liquids far from equilibrium.

Jis onmcy KiHeTWYHHUX IIPOLECIB y ra3ax Ta PiAMHAX JAJIEKHUX Bl PIBHOBa-
I'Y Ha OCHOBI MeTOy HEPiBHOBAYKHOTO CTATHUCTUIHOIO OII€PATOpa 3ybapeBa
Ta MPUHITUITY MAaKCUMyMy eHTporii Peni orpuMano HepiBHOBaKHUM CTATH-
CTHUYHUI OTIEpPATOp Ta y3arajbHeHI KiIHETWYHI DIBHSAHHSA NI HEPIBHOBAXK-
HUX OJHOYACTHUHKOBOI Ta JBOYACTHHKOBOI (DYHKIIH PO3IOIiTy JaCTHHOK.

1 Introduction

The ideas of D.Ya. Petrina for investigation of urgent problems in
statistical theory of many-particle system based on the strict mathematical
approach to the Bogoliubov equations [1, 2, 3, 4] remain important

© Institute of Mathematics, 2014
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nowadays. The study of nonequilibrium processes in gases and liquids
far from equilibrium or in finite quantum systems (nanosystems) are
among them. These investigations are actively developed by the followers
of D.Ya. Petrina [5, 6, 7, 8].

Different models and approaches are applied for the study of nonlinear
kinetic fluctuations in dense gases, liquids and plasma far from equilibrium
with the typical long-range interactions which remains urgent in statistical
theory of nonequilibrium processes [9, 10, 11, 12, 13, 14].

In the present paper, for description of nonequilibrium processes in
dense gases and liquids we propose to use the Renyi entropy which depends
on parameter ¢ (0 < ¢ < 1) and coincide with the Shannon-Gibbs entropy
at ¢ = 1. In reference [14] based on the Zubarev nonequilibrium statistical
operator (NSO) method [15, 16] and the maximum entropy principle for the
Renyi entropy there were obtained the NSO and the generalized transport
equations for the parameters of the reduced-description of nonequilibrium
processes in extensive statistical mechanics. Here, we apply this approach
to description of kinetic processes in dense gases and liquids far from
equilibrium, when the nonequilibrium one- and two-particle distribution
functions are chosen for the reduced-description parameters.

2 Zubarev nonequilibrium statistical
operator in Renyi statistics

Within the framework of the Zubarevn NSO method, when the
basic parameters of a reduced description (P,)! are selected accor-
ding to N.N. Bogoliubov, the nonequilibrium statistical operator
p(x1,...,xN;t)=p (CIJN; t) can be presented in general form as a solution

of Liouville equation with taking into account a projection [15, 16]:

p(a™t) = pra(a®;t) (1)

t
- / DTt )1 — Py ()il prei(zN s ) dt.
Here, T (t,t') = exp, {— f:, [1— P (t)) iLth’} is the evolution opera-

tor with regard to projection, exp, is the ordered exponential, iLy is the
Liouville operator for a system of interacting particles, which in classical
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case has the following form:

. al o 0
iLy _]71 m arj Z a* <ap a;z)'
We use the following notations: z; = {pj,;} are the phase variables of
the particle j, ® (r;;) is the interaction energy of two particles, pj is the
j-particle momentum and m its mass, r; = |7, — 7| the distance between
a pair of interacting particles. P.;(t) is the generalized Kawasaki-Gunton
projection operator whose structure depends on the form of the relevant
statistical operator:

dpre dpre
Prelp/:<p7“el(t)_z 5p d >/dr +Z P l /dr Pnp

prel(zN;1') is the relevant statistical operator which is equal to p(z";t)
at the initial moment of time. We will determine p,(z™V;t') using the
Lagrange method from the condition of entropy functional maximum for
the Renyi entropy [14]

Sr(p) = 1 ! qln/dFNpq(t).

The corresponding functional at fixed parameters of the reduced descrip-
tion, taking into account the normalization condition, has the following

form:
iqln/dFNpq(t) - a/dFNp(t) - zn:Fn(t)/szanp(t)

where, F,,(t) are the Lagrange multipliers. Equalizing its functional
SLR(p) q
op

Lr(p) =

= 0 and determining parameter o = = -

don F,(t)(P,)! we obtain the relevant statistical operator in the form:

! > Fu(t)sP,

derivative to zero

1
q—1

: , @)

Prel (t) = ZR(t)

where

Z(t) = /dFN l1 - ‘%1 3 F.(t)8,
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108
is the partition function, §P,, = P, —(P,)!. The Lagrange multipliers F}, ()
3)

are defined from the self-consistency conditions:
t

<pn>t = <Pn>rel~

The variation derivative of the relevant statistical operator can be

[

presented in the form:
6prel(t) _ 1 -1 . 5Fn(t) s
5<Pm>t = prei(t)d [qiﬁ (t) (Fm(t) Zn:d<pm>tépn>] )
where 6[...] =[...] = (.. ])%,, and we use the notation
(4)

o4t :
Y(t) =1 ; ;Fn(t)éPn.

We calculate the derivatives of the Lagrange multipliers with regard to
the reduced-description parameters in the following way:

0Fa(t)
SFL (1)

6(Pr)t

This can be done in general case. Thus,
§<pm>t 5 6prpl(t)
= [ dI'yP, -
5F(t) / NS (8)
in the right-hand side of relation we obtain

and after calculating 55” 1;2’((:))
the set of equations for the desired derivatives
3(Prm)* 5L 1t 5By 5 L1 ch
= (0P, - — (0P, — P, .
5Fn(t) <5 mqw (t)>rel¥5Fn(t) <6 mqw (t)5 n>rel
The solution in matrix form is
5(P)! [ ST } ST
=—|I—-(0P=- e F(t oP- t)oP), ., = f(t),
po G PO GP L (03P = 1(0)
where . R
3(Pm)* a(P)*
= = fmn(t
<6F(t) Fn(t)
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Thus, the functional derivative can be written in the form:

5Prel(t) - } - 1
m = prei(t)d lqd’ ( me 5P, )

Then, the Kawasaki-Gunton projection operator has the following
structure:

Pra(®d = pralt) / iy

+ S pral)s l;w*(t) (me 3 f;i(t)5Pn>
X

(/ﬂﬂﬂ%d—ﬂ%Y/ﬁﬁwv-

It is further necessary to explore an action of the operators P,..;(t)iLy
on the relevant statistical operator. Since

iLNprel( ) = _p76l Z F p = )prel (t)a

then Prei(t)ilnprei(t) = Prei(t)A(t)pre(t) = [P(t)A(t)] prei(t), where
P(t) is the projection operator which now acts on dynamic variables:

Pt)... = (.,

+ Y6

m

(...0P,)!

) (qu) 3 fmw)aﬁn)

Since
A(::——w E:F

we can present [1 — Pre;(¢)]iLnprei(t) as follows:
(1 = Pra(t)]iLnpra(t) = [1— P(t)] iLNprel( ) (5)

= _ZI prel()

where

L(t) = [1 - P(t) gwum
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are the generalized flows. Taking into account (5), we can now write down
an explicit expression for the nonequilibrium statistical operator (1):

pNit) = prala™;t) (6)

_ Z/ W=D Y () Fo () prea(a™ ).

This allows us to obtain the generalized transport equations for the
reduced-description parameters. They can be presented in the form:

0, - R t - ,
S = Pafat Y [ R, ()

where
Pmn (t, t/) = /dFNPmT(tv tl)In(t/)pT'el(tl) (8)

are the generalized transport kernels (memory functions) — the time
correlation functions describing the dissipative processes in the system.
They are built on the generalized flows I,,(¢). Transport equations (7)
describe non-Markovian processes and when @, (t,t") = @mad(t — t')
describe Markovian processes. The set of transport equations is not
closed. The nonequilibrium Lagrange multipliers in it (the nonequilibrium
thermodynamic parameters in the case of hydrodynamic description) are
determined from the self-consistency conditions (3). From this point of
view, the set of transport equations is closed. Nonequilibrium statistical
operator (6) and transport equations (7) compose a complete instrument
for description of nonequilibrium processes when the reduced-description
parameters (P,)! are selected.

In the following section we apply the presented approach to description
of nonlinear kinetic fluctuations in gases and liquids far from equilibrium.

3 Generalized kinetic equations
in Renyi statistics
For description of kinetic processes in classical gases and liquids far

from equilibrium the nonequilibrium one- and two-particle distribution
functions can be selected as the basic parameters of the reduced description

Alat) = (@), folz,2it) = (a(z,2")), (9)
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where

are the microscopic phase densities of N particles in volume V. The
latter completely satisfy conservation laws of particles density, momentum
and energy since they define microscopic densities of particles number,
momentum and energy:

i) = [, 50 = [
i) = [l
gint( /@/@/M@ 7| ) (7,

() = / i D / A5 (7. 7O,

%1
ﬁl
%L

and

@) = [doh g

(£ (7)) / /dp/dT@\T—T ) fo (7, 057, 55 1).

Conservation laws for average particles number, momentum and total
energy have the following form:

o () = —— - (B, (10)

S EEN == (G @) + (™))

(
where (£(7))" = <A’“”(7“)>t + (e
of total energy density and V = (%.
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is the nonequilibrium average value of the kinetic part of stress tensor
density,

(Tt = ;/d*/dﬁ/dr"w@(h?ﬂ) (11)
X

is the nonequilibrium average value of the potential part of stress tensor

density,
2

gy = [ar - pnea

is the nonequilibrium average value of the kinetic part of energy flow
density,

is the nonequilibrium average value of the potential part of energy flow
density. It follows from the above relations that the nonequilibrium
one-particle distribution function defines the macroscopic nonequilibrium
densities of particles number, momentum as well as kinetic part of
total energy, stress tensor and energy flow. Whereas, the two-particle
nonequilibrium distribution function defines potential part of total energy,
stress tensor and energy flow. Thus, in systems far from equilibrium
the nonlinear hydrodynamic fluctuations are caused by the nonlinear
fluctuations of nonequilibrium one- and two-particle distribution functions
for which the kinetic equations should be built. Therefore, in the case when
the nonequilibrium one- and two-particle distribution functions fi(z;t) =
(1 (2))t and fo(z,2';t) = (Ra(x,2))t are selected as the parameters of the
reduced description, according to (2) the relevant distribution function has
the following form:

Prei(t) = ZRl(t){l — ql[/daza(x;t)éﬁl(x;t) (12)

q
1

+ / dw/ d“"b@w’;t)am(%f”'?t)}}q ’
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where

Zr(t) /dI‘N{l - q_l[/dxa(m;t)éﬁl(z;t)

q
+ /dm/dx’b(x,x’;t)éﬁg(x,x’;t)] }q

is the partition function of the relevant distribution function. The para-
meters a(z;t) and b(z, 2’; t) are determined from the self-consistency condi-
tions:

(i1 (2))' = (M (@))rers  (P2(z,2)))" = (A2(,27)) - (13)

The relevant distribution function (12) can be presented in a slightly
different way

p,.emt):l{l - q‘ql[ [ doat i) (14)

ZR(t) 1
+ / da / 'V (2, 2'; t)ia(a, x’)} }“

writing down the Lagrange parameters in the form:

a'(x;t) = a(x;t){l + %

y [/dma(m;t)fl(x;t)+/dx/dac’b(x,x’;t)fg(x,x’;t)]}_17

V(z,2';t) = b(l‘,x’;t){1 N %
X {/dma(x;t)fl(x;t) +/d:c/dx/b(x,x';t)fQ(x’x/;t)]}1.

It is important to note that in the case of ¢ = 1, d/(z;t) = a(x;t),
b(x,2';t) = b(x,2';t) and we obtain the relevant distribution function
corresponding to Gibbs statistics.
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Now we can present the nonequilibrium statistical operator as follows

t
prei(t) + / da’ / DTt ) a(a! s t) I (25 ) pres (t)dt’ (15)

t
+ /dx’/dx"/ DT b, 2 ) I (!, 2”5t ) pre(t)dE .

p(t)

Here,
I0(t) = [1 - P(1)] %w”@)mm(m),
I®(a,2/:1) = [1 — P(#)] éw_l(t)iLNﬁg(x,x’)

are the generalized flows in which the function ¢ (t) equals to

P(t)=1- % {/daz a(z;t)ong (z;t) + /da: /dx'b(x,x';t)dﬁg(x,x’;t)

Using the NSO (15) we obtain a set of the generalized kinetic
equations for the reduced-description parameters (9) fi(z;t) = (fq(z))!
and fg(l’ 2';t) = (fe(z,2’))" according to (7):

/dx O (z, 2 t)a(a';t) (16)
/dx /dm”@:fn xya’ a s )b(x 2 t)
/dx / W=D (0 ot a2 ) dt!
/dx /dm”/ =( E=Dp12 (g 25t t)b(2, 2" t)dt
9 2L ( "
angxx /da:‘I) (x,2"52";t)a(x";t) (17)

/d.r// / dl:///‘I)22 x 1: x .TN/ t)b(z//7 J:/N; t)
/dm”/ =021 (g o2t a2 ) dt!
/dx”/dx”’/ V022 (ol 2"t )b(a 2 ) dt
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Here,

1 .
q);f(xaxl;t) = /dFNPa($)§¢7IZLNP5($/)PWZ($N§t)a (18)

cp?flp (x;2"5t,t') = /dPNiLNpa(x)T(t, VI (s ) pra(zNst'),  (19)

are the kinetic transport kernels, where we use the notation p,(x) =
{n1(z), N2 (x,2’')}. Neglecting the two-particle correlation at ¢ = 1 the
generalized kinetic equation in Renyi statistics transforms into the kinetic
equation within Gibbs statistics [16] with the transport kernel calculated
using the relevant distribution function p,..;(t) = H;\Ll h (Ie“ ) In this case,
at ¢ = 1, within the NSO method [15, 16] the Liouville equation should be

solved with the boundary condition

N
&p(xN;t)—&—iLNp(xN;t)——s p(x H xj’
that corresponds to the Bogolyubov hypothesis of weakening of correla-
tions between particles.

For a more detailed calculation of structure of correlation functions
(18) and transport kernels (19) let us consider an action of the Liouville
operator on 71 () and 7 (x, 2’):

L B o 1> 0 =
ZLan(LU) = _371?. E](Tym F F(ramu (20)
where
) N
J(7p) =Y 58 (7 = 75)8(5 — 5j) (21)
j=1

is the microscopic momentum density in the space of coordinates and
impulses,

F(7.5) = Z — N0 — )07~ 7)) (22)
I#]

is the microscopic force density in the space of coordinates and impulses.

o o 1= o 13
iLyny(z,2') = o EJ(T p)na(x )—n1($)a7'a.7(7ﬂ,ﬁ) (23)
0 5, ) J =
+8_, F(7,p)ha(z )—&—nl(a:)@-F(F”,ﬁ').
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Taking into account calculations (20)-(23) we obtain, particularly:

o0 0
11 ) . .
‘I),,m(l‘,x/,t) - [an(xazlvt) . ﬁ - QTLF(xazlvt) ' @ (24)
0 0
O (2,258, 1) L%;D”(x it t) - 77 (25)
o) 1o} 0 1o}
7?'DFj($,$/;t7t/)‘ﬁf%'DJF(I,QZ,t,t/) @
0 0
—-D Lt =
+aﬁ FF(x7$7 5 ) 3]57 )
02 (z, 2 2" 2"t t) = (26)

0 0 o)
W'[Djnjn(l',aj/,:L'H,I’N/;t, tl).af"’ +Djnnj(xaxlvx//,fﬂ”/;t,t/)af,"}

0 0 0
—W-[Dnjjn(x o2 2"t t/)'ﬁ + Dyjnj(x, 2, 2" 2"t t’)-aiﬁ”]

0 0 0
+87p. Dppjn(z, 2’2", 2"t t/).af’” + Dppn;(z, 2", 2", 2" ¢, t/).BF’”_
+i~-DnF in(z, 2 2" 2" ) = + Dy (x, 2’ 2" 2"t t) b ]

op | o' J o |

o[ 0 0

. D nFn 12 ", t t/ D n ", t tl .
+a7?_]p(aca:x:c )8ﬁ/+JF(:cx:cx )817”_

o T 0 0
+E--Dnjpn($ 2" 2"t ) — o + Dyjnrp(z, 2’ 2", 2" ¢, t/).aﬁ”_
—ﬁ_,- Dpnpn(x, o’ 2" 2", 1) + Dppnr(z, 22" 2"t 1) 0]

ap i 8137/ aﬁ/l-
—%~-anpn(x,x’,m”7x”;t,t’)~ — + Dyppnp(z, 2’ 2", 2" t,1) (3 ,

6p i 8p/ 8p//
where
5 1 _ 3
Djj(w,a';t,1) =/dFNJ(l‘)T(t,t/)(l—P(t/))*lﬂ Y)j (@) prer(z™; 1),
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Drr(z, o't t') = / dT N F(2)T(t,#)(1 — P(t'))%w_l(t)ﬁ(x’)prel(:c]v;t’),

are the generalized diffusion and friction coefficients in the spatially-
impulse space within Renyi statistics. Herewith,

/dﬁ/dﬁDjj(Q?,,’B/;t7t/) = Djj(F,F"';t,t/),

/dﬁ/dﬁDFF(I,I/;t,t/) = DFF(T?,’F/;t,t/)

which at ¢ = 1 become the generalized diffusion and friction coefficients
in Gibbs statistics. The obtained kinetic equations contain correlation
functions of the second, the third and the fourth order €,;, Qur,

Qnjs Qunry Qonjny Qnnrrn in dynamic variables 7(z), j(:c), f(x) Q are
the correlation functions describing nondissipative processes. D are the
generalized memory functions — the time correlation functions built on the
dynamic variables 2(z), j(z), F(z), [1 — P(t)]j(z), [1 — P(t)]F(z) — and
describe non-Markovian dissipative processes in the system. At ¢ = 1 they
transform to the memory function of Gibbs statistics. Memory functions
like Dy, ;n; and D, rpnr have an interesting structure

Dnjnj (%,{E/, $H,$/”; t,t/) _
N 1 2
- / A0 (@) VT ()L = P (O} e (a5,
DnFnF(xv ZL'/, (E”, x//l; ta tl) =

- / dT () F (@'Y T (¢, ¢)[1 - P(t')]éw*<t>ﬁ<x">ﬁ<x"'>pm<ﬂ;t'>,

they can be approximated in the following way:
Dnjnj ~ D'rijj + Dnijny DnFnF ~ DnnDFF + DnFDFn-

This corresponds to the ideology of the mode-coupling theory.
Generalized kinetic equations (16), (17) with regard to (24)-(26) by
their structure are the equations of Fokker-Planck type. They can serve as
a basis for transition to the generalized hydrodynamic equations which are
based on the set of equations of conservation laws for particles number,
momentum and energy densities (10). Indeed, multiplying the set of
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transport equations (16), (17) by the first moments of the nonequilibrium
one-particle distribution function fy(7,7;t): (1,7, p?/2m) and by (|7 —
7'|), we obtain the generalized equations of hydrodynamics with the defined
generalized viscosity and heat conductivity coefficients having separated
kinetic and potential contributions.

4 Summary

By means of the Zubarev NSO method and the maximum entropy principle
for the Renyi entropy we obtained the nonequilibrium statistical operator
and the generalized kinetic equations for the nonequilibrium one- and
two-particle distribution functions fi(z;t) = (fy(x))t and fo(x,2';t) =
(fg(z, 2"))t for description of kinetic processes in gases and liquids far from
equilibrium. We investigated an inner structure of generalized memory
functions which permitted to show that the kinetic equations contain
correlation functions of the second and higher order (Q,;, Qnr, Qnnj,

Qnr, Qnngn, Qunrrn) in dynamic variables 7(z), f(x), ﬁ(x) By contrast
to Q describing non-dissipative processes, the dissipative processes in the
system are described by the memory functions of the kinetic equations D

=

built on the variables #(z), j(z), F(z), [L — P(t)]j(x) and [1 — P(t)]|F().
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The Bogoliubov c-number
approximation for random boson
systems

Dedicated to the 80 ™ anniversary of academician D.Ya. Petrina

We justify the Bogoliubov c-number approximation for the case of
interacting Bose gas in a homogeneous random media. To this aim we
take into account occurrence of generalized extended/fragmented Bose-
Einstein condensation in an infinitesimal band of low kinetic-energy modes,
to generalize the c-number substitution procedure for this band of low-
momenta modes.

1 Introduction

One of the key developments in the theory of the Bose gas, especially the
theory of the low density gases currently at the forefront of experiment,
is Bogoliubov’s 1947 analysis [2], [3] of the many-body Hamiltonian
by means of a c-number substitution for the most relevant operators
in the problem. These are the zero-momentum mode boson operators,
namely by — z, by — z*. Later this idea triggered a more general The
Approzimating Hamiltonian Method [6]. Naturally, the appropriate value
of z has to be determined by some sort of consistency or variational
principle, which might be complicated, but the concern is whether this
sort, of substitution is legitimate, i.e., error free.

© Institute of Mathematics, 2014
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The rigorous justification for this substitution, as far as calculating the
pressure of interacting (superstable) boson gas is concerned, was done
for the first time in the paper by Ginibre [10]. Later it was revised
and essentially improved by Lieb-Seiringer-Yngvason (LSY) [15], [16]. In
textbooks it is often said, for instance, that it is tied to the imputed
"fact"that the expectation value of the zero-mode particle number operator
No = bjbo is of order V' = volume. This was the second Bogoliubov ansatz:
the Bose-Einstein condensation (BEC) justifies the substitution [26].

As Ginibre pointed out, however, that BEC has nothing to do with it.
The z substitution still gives the right answer for any value of the Gibbs
average of the operator Ny. On the other hand, the zero-mode translation
invariant condensation (the first Bogoliubov ansatz) plays a distinguished
role in the Bogoliubov Weakly Imperfect Bose theory [26].

The problem of justification becomes delicate in a (bona fide)
homogeneous random external potential: first of all because of the
translation invariance breaking and secondly because of the problem with
nature of the generalized BEC for this case even for the perfect Bose-gas
[11], [12]. The aim of the present note is to elucidate this problem for
interacting boson gas in a homogeneous random potential following the
LSY method. The later allows to simplify and make more transparent
the arguments of [13] versus the generalized condensation d la Van den
Berg-Lewis-Pulé [24].

This note is based on the lecture delivered by the author on the
Workshop "Mathematical Horizons for Quantum Physics: Many-Particle
Systems"(09 - 27 September 2013) in the Institute for Mathematical
Sciences of the National University of Singapore. Invitation and financial
support extended to the author by the Institute for Mathematical
Sciences and the Centre for Quantum Technologies (NUS) are greatly
acknowledged.

2 The Bogoliubov c-number approximation

2.1 Imperfect Bose gas

Let interacting bosons of mass m be enclosed in a cubic box A = LXL XL C
R3 of the volume V = |A| = L3, with (for simplicity) periodic boundary
conditions on 9A: ty := (—h*A/2m)pp.c.. Let u(zx) be isotropic two-body
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interaction with non-negative Fourier transformation:
v(q) = / 3z u(x)e " u € LY(R?)
R3

The second-quantized Hamiltonian of the imperfect Bose-gas acting as
operator in the boson Fock space § := Fposon(H = L2(A)) is

1
Hy =) exbibi + o > (@) b, 1qbiy—gbrabr,
keA* k1,ka,gEA*

where (dual) set A* = {ke€R®: k,=2mno/Let ng € Z,a=1,23}
and {ey}ren = Spec(ty). Here {ex = h%k?/2m > O}pea- is the one-
particle excitations spectrum. The perfect Bose-gas Hamiltonian and
particle-number operators are

TA = Z Ekabk y Nk = b:bk y NA = Z Nk .
keA~ keA*

Here {b},bx},c- are boson creation and annihilation operators in
the one-particle eigenstates (kinetic-energy modes) verifying the CCR
[bk7b2] = (Sk’q .

1
P () = —= ikz xa(z) €H, ke A*

3

by o= b (k) = / dz Pr ()b (z) , b = (b ()"

Here b# (x) are boson-field operators in the Fock space over H.

2.2 Grand-canonical (3, 1)-ensemble

Recall that the grand-canonical (8, u)-state generated by Hy on algebra
of observables A(F) [20], is define by

(AV g, o= Trg(e PHA=INA) ) /Ty AHA—INA) - A € (F) .

The grand-canonical pressure: p[Hx](3, 1) := (V) ™! 1In Trze S(Ha=nNa)
corresponds to the temperature 8! and to the chemical potential y.
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Example 1. For the perfect Bose-gas T one must put g < 0, then the
expectation value of the particle number in mode k is

1
eBler—n) — 17 e z0.

<bzbk>TA =
The expectation value of the total density of bosons in A is

1 1

1 * 1 %
pa(B, ) = V<bobo>TA ty Z (bpbr)T) = Vo1t oA (B, 1)
keA*\{0}

Then the critical density (if finite) is define by the limit:

B = lim i ,
pe(B) lin lim, pA (B, 1) < 00

2.3 Conventional Bose-Einstein condensation

For a fixed density p, let pa (8, p) be solution of the equation

p=pa(B;n) = p=pa(B,palp)) (always exists!).

o low density : limy pa(p < pe(8)) = pa(p) < 0
e high density: lima ua(p > pe(8)) =0, and

1 -1
p0(B) = p— pe(B) = lim {e—ﬂuA(pZPC(ﬁ)) _ 1} =
1 1

TV B petmy) TV

pa(p = pe(B)) =
e Since ¢ = h? 2?21(27'(77,]'/‘/1/3)2/2771, the BEC is in k=0-mode:

lim l {eﬂ(6k¢o—uA(ﬂ)) _ 1}71 =0
AV ’

This type of condensation based on the concept of the one-level

macroscopic occupation is known as the conventional zero-mode (or type
I) BEC [9], [17].
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2.4 Generalised Bose-Einstein condensation

This type of condensation was predicted by Casimir [8] and elucidated by
Van den Berg-Lewis-Pulé in [22], [23], [24].

Let A=Ly X Lo x Ly =V xV*2 x Vs a; >ay > a3 >0, and
o t+ast+az3=1.

e The Casimir boz (1968): Let an = 1/2, i.e. ag 3 < 1/2.
Since ey, 0.0 = h2(27n1/V/?)2/2m ~ 1/V, then again the asymptotics of
solution:

p = pa(Bsua(p)) = palp > pe(B)) = —A/V +0(1/V), A>0

! 1 1 1
R etk D DR ey
ke{A*:n17#0,no=n3=0}

1 —1
=p— pC(ﬁ) >0 ) 11/1\11 V {eﬁ(sk;ﬂ)_p‘/\(p)) - 1} 7é 0,€k7éo = €£,1,0,0

1 -1
li[{n v {eﬁ(€k¢o—uA(P)) _ 1} =0, €0k 50= ﬁ2(27rn2,3/va2’3)2/2m

The generalized type II BEC [23]:

1 2 1/242 -1
_ — T — B(R* (211 /V/2)7/2m—pua(p)) _
p—pe(B) = Jim = > {e : 1}
ni1€Z
-1 ) 1
= Z h2(2mn,)2/2m + A = h}\n V<b0b0>TA(ILA(P)) < p = pe(B)-
ni1€Z 1

Here A > 0 is a unique root of the above equation. Note that BEC in the
zero mode is less than the total amount of the condensation density.

For a; = 1/2 the BEC is still mode by mode macroscopic, but
it is infinitely fragmented. This type of BEC is also known as quasi-
condensate and it was observed in the rotating condensate (2000) and
in the condensate with chaotic phases (2008), [18].

e The Van den Berg box (1982): oy > 1/2.

Proposition 1. There is no macroscopic occupation of any kinetic-energy

mode: .

1
: Bler—nalp)) _ } _
ll/{n {e 1 0.
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This is the generalized BEC of type III [Van den Berg-Lewis-Pulé
(1978)]. It occurs one-direction anisotropy a; > 1/2 i.e. aa + a3 < 1/2.
Since €k, 00 = (2701 /V)?/2 ~ 1/V?*1 2a; > 1, then the solution
ua(p) has a new asymptotics:

pa(p 2 pe(B)) = =B/V° +0(1/V°), B20, 6 =2(1-a) <1,

oo
0<p—pul) = (2n8) V2 [ g PP
0
Here parameter B = B (3, p) > 0 is a unique root of the equation:

1

V28°B(B.p)

The generalized BEC of type III yields for the one-mode particle
occupation

p—p(B) =

tn (N, (B 1a (p > pe(8))) = 0 for all k € {A°)

For the "renormalised” ki-modes occupation "density"one obtains:

1 2

h}xnﬁ (Ni), (Bypa (p > pe(B))) =28 (p—pe(B)”,

where k € {A*: (n1,0,0)} and 1 —e=6< 1.

Definition 1.[24] In kinetic-energy modes the amount of the generalized
BEC is defined as

1 -1
_ — T : Bex—pa(B,p)) _
p—pe(B): nlirgohlr\n E {e 1} .
{keA~ |[klI<n}

Remark 1. [22],[24] Saturation and p,,-problem: is it possible that there
is a new critical density p,, such that p. < p,, < oo and the type III (or II)
condensation transforms into conventional type I BEC when p > p,, 7 The
answer is positive. Recently the second critical density p,, was discovered
for a cigar-type harmonic anisotropy [1]. There it was also proved that the
type I and the type III condensations may coexist.
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2.5 The Bogoliubov theory and the zero-mode c-
number substitution

The first Bogoliubov ansatz. If one expects that the Bose-Einstein
condensation, which occurs in the mode k& = 0 for the perfect Bose-gas,
persists for a weak two-body interaction u(x), then one can to truncate
Hamiltonian: Hy — HZ, and to keep in HY only the most important
condensate terms, in which at least two zero-mode operators bj, by are
involved. This approximation gives the Bogoliubov Weakly Imperfect Bose-
Gas (WIBG) Hamiltonian HP [26].

The second Bogoliubov ansatz. Since for a large volume (thermodynamic
limit) the condensate operators b5/v/V, bo/VV almost commute:
[bo/VV, b5/ V] = 1/V, one may use substitutions:

bo/NVV = ¢ T, bV = ¢ -1, ceC,

in the truncated grand-canonical WIBG Hamiltonian HP (u) := HEP —
uNa — HB(c, i) to produce a diagonalizable bilinear operator form.

2.6 The zero-mode c-number approximation

For the periodic boundary conditions on 9A, let o := Fposon (Ho) be the
boson Fock space constructed on the one-dimensional Hilbert space Hg
spanned by ¢—o(z) = xa(x)/VV

Let 3 := Sboson (Ha) be the Fock space constructed on the orthogonal
complement Hg . Then Fposon(H) = Shoson (Ho ® Hg ) is isomorphic to the
tensor product:

Sboson (HO ¥ Hé_) ~ Sboson(HO) X Sboson(H(J)_) = SO & 367

For any complex number ¢ € C the coherent vector in Fy is
oale) 1= e V1YL (V7e) (55)" 2 = VI /209Vet)
oalc) = il 0 0= 0 s
k=0

where Qg is the vacuum of §. Notice that

b

\/‘7wOA(C):C'(/)OA(C)EC'HwOA(C)-
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Definition 2. The c-number Bogoliubov approximation of the grand-
canonical Hamiltonian (N := 7, 1. bibx := bgbo + N} )

Hy (,u) = Hp — ,UNA y dOII’l(HA (N)) C¥~ Sboson(HO) & %boson(H(J)_)

is a self-adjoint operator Hy (¢, p) defined in §( = Froson (’Hé‘), for any
fixed vector 1oa (c), by the closable sesquilinear form:

(W4, Ha(e, m)a) g = (Yoa (¢) @ ¥, Ha (1) doa () @ 13)5

for vectors (gp (¢) @ ¥y 5) € form-domain of the operator Hy ().
1,2

Remark 2. Since (bo/VV) thoa(c) = c-T vop(c), the c-number
approximation is equivalent to substitutions:

bo/VV = -1, by/VV = ¢ -1
in the Hamiltonian
Hp(p) — Hp(e,p) = Hy(2) — p(|2PT+ Ny, z:=cVV.
2.7 Exactness of the c-number approximation

Definition 3. The grand-canonical pressure for Hamiltonian Hy(x) and
for its c-number Bogoliubov approximation H} (z, i), are defined by:

pa(p) = ﬁiv In Trg exp[—BHx (1))
Ph () = %v In /C @ Trg, exp|—BHA (2, )]

Proposition 2.(Variational Principle) [10], [15].

ePVrali) > /CdzzTr;% exp[—BH)(z, n)] >

P Trg, exp[—BH) (¢, )] =: eVPames)

Proposition 3.
limpa (i) = lim py (1) = lim pa,maa (1)
with the rate of convergence:

0 < pa(n) = pAmaz (1) < O((InV)/V),
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see [15]. The rate of convergence proved by the Approzimating Hamiltonian
Method (AHM) is

0< pA(.u) - pA,maw(,u) < O(l/\/V) )

see [10], [26].

Remark 2. Although in [10] and in [15] the use of coherent states is
essential, the method of the last paper efficiently exploits the Peierls-
Bogoliubov and Berezin-Lieb inequalities instead of the AHM. To be more
flexible, this method covers also the case of infinitely many k-modes,
provided the card{k : k € Iy C A*}< ¢ V177, > 0, and it gives also more
accurate estimates. The Bogoliubov c-Number Approximation is ezact on
the thermodynamic level (AHM) [6], .

2.8 The c-number approximation for ideal Bose gas

The c-number substitution in the grand-canonical Hamiltonian Ty (p) :=
TA - uNA is

Ta(n) = Tale,p) = > (e — p)bibx — Vel
keA*\{0}

Then one gets for the pressures (note that pu < 0 and ex—g = 0):

1 1
Th(i)] = —— InTrx exp[— BTh ()] = —— S~ In(1 — e~ Bler—m)-1
pTA(R)] Gl 5 exp[—BTa(1)] 5 kEEA* n(l —e )
1
— —B(ex— —1 2
p[Ta(c, )] = BV E In(1 — e~ AER=m) =1 4 pyjc|
keA"\{0}

0 < p[Ta(w)] = p[Tale, p)] = Z%V In(1 = &™) ™" — plef =: An(c, p)

Variational Principle: {c : inf.limp Ap(e,p)} = {ex(pt)} =
c(pp < 0) =0V (pes (1)) |u=0= 0. Hence, the BEC density is not defined.

2.9 Gauge invariance and Bogoliubov quasi-averages

Since [Hp, Na] = 0 (total particle number conservation law),

Hp = eNaH e 9N U(p) := ePNa
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H, is invariant w.r.t. gauge transformations U(y).
Corollary 1. The grand-canonical expectation value:

(bo/VV) (B =0.
Let Hp (1) := Ha(p) — VV (v b 4+ v*bo), v € C. Then

<j(;7>HA,,, ) 70 <Z:I7§)>HA (B,m) =0

Remark 4. Whether the limit: lim, _,o limp <%>H (Bypu) =:co#£07?

If it is the case this yields a spontaneous breaking of the gauge symmetry.
Here ¢ is the Bogoliubov quasi-average [4], [5]. The idea of quasi-averages
allowed Bogoliubov to prove his famous 1/¢?-Theorem for interacting Bose-
gas as well as to advance later in elucidating the c-Number Approximation,
see [15], [16], [21], [26].

Example 2.(Ideal Bose-Gas) The gauge-breaking sources imply

A,v

T () = Ta(p) — VV (v b5+ v7bo) =
—(B5 + VY1) (b + Vv /) + TR (1) + VI /o

The c-number substitution gives:

T (1) = Tap(e ) = —pV (@ +7/p)(c+v/p) + T 7 (w) + Vv /u

One gets for the pressure (note that pu < 0 and ex—g = 0):

p[Ta ()] = p[Talp)] — |v* /1,
pITh (e, )] = pITSE ()] + pV (@ + 2 /) (e + v/p) — v/

0 < p[Tar(w)] = plTau(e, p)] =
1
Gy (=)™t = pletn/ul* = Anle,n)
The Variational Principle:{c : inf.limy Ap (¢, 1)} = {ee(p,v) = —v/u}
implies that the variational BEC density pgp. is defined by the limit

lv/u(v)] ~—, VPos Ot equivalently by
vV—r

) . ) b3 bo
Pos = lim ‘C*(/J,7I/)|2 = lim lim (—O YTa 0 (1) =) Ta 0 () -
v—0 v—0 V=00 4/ ’ \/ ?
u:u(_l>/)—>0 M:MU/)_)O - v v
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The relation of BEC versus the quasi-average BEC and the maximizer py.
takes the form:

1, 11
zero — mode BEC py = V<b0bo>TA‘u:O(H) = Vo1 <
w11 L. .

Lz Ve = V<b0b0>TA,,/(u) = quasi — average BEC .

Then by the Variational Principle for the ¢-Number Approximation one
obtains:

llgb ‘}gfloov<bobo>m,u(u): 312% VII_I;HOO<W>TA,U(H)<W>TAW(“)

p=p(v)—0 p=p(r)—0
= gauge — symmetry breaking BEC = lirr%) lex (i, V)| = pos -
#:Z(HV)HO
Remark 5. Is it possible that pg < po. ? The answer is positive: one can
prove this inequality for the ideal as well as for an interacting Bose-gas [7]
if they manifest generalised BEC of the type II or III.
Proposition 4 [15], [16]. The k¥ = 0 — mode BEC = quasi-average
BEC < spontaneous gauge-symmetry breaking BEC < non-zero c-number
approximation for the mode k = 0.
The proof is based on Griffith’s arguments and on the following two

Propositions:
Proposition 5 For a real v one gets equality between the limits:

li ; =1 ! ) = li mazx (K3 )
im pp (p;v) = limpy (3 v) = M pa maa (13 v)

which are convex in v.
Proposition 6 (Gauge-Symmetry Breaking and BEC)

. . bo >
lim lim( — B, 1) =
|v|—0, arg(v) A <\/V Ha., ( M)
lim li[{n |2A maz (V)] € alrg(”)/\/V =:cp .

|v|—0, arg(v)
Here by the Variational Principle: 25 max (V) = |2a,max (V)] €@ 283,
sup Trg, exp[—BH)(C, p;v)] = Trg; exp[—BH) (28,max(v), 5 1)]

= exP [BVDA 25 o (v) (15 V)] =2 €xD [BVDA maz (113 V)],
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and ZA,maw(O) = |ZA,ma:1:(0)‘ ei(ba PAzA max (V) (,u; V)|V:O = pA,maz(,u)-
Corollary 2. One obtains for the quasi-average condensate density and
for the condensate density equation:

) ) b5 b .
po(B,p) = lim lim (-2 (8, w)=1lim |co, A, maz|* (B, 1) -
4 Hp ., A

|[v|—=0, arg(v) A
where cg A mae i @ maximizer of the variational problem:

sup Trg/ exp[—BH) (coVV, )] = Trg, exp[—BHA(Con.mazVV, )]

3 Random homogeneous (ergodic) external
potentials.

3.1 Random and kinetic-energy eigenfunctions

For the almost surely (a.s.) self-adjoint random Schrédinger operator in
A C R? one has:

K07 = (ta +07), 7 = Ef ¢% , for almost all(a.a.) w € Q,

where {¢%};>1 are the random eigenfunctions. In the limit A 1 R? the
spectrum o(h*) of this operator is a.s. nonrandom [19].
Let NA(¢;’) be particle-number operator in the eigenstate ¢

Nai=Y Na(d§) =D b"(¢7)b(65)

i>1 i>1

is the total number operator in the boson Fock space §(L*(A)), b(¢Y) =
[y dax @(x) b(z), and {¢%};>1 is a.s. a (random) basis in H = L3(A).

Let tpayYr = epvr be the kinetic-energy operator eigenfunctions
{1 }rea~ with eigenvalues e, = h*k%/2m. Recall that one of the
key hypothesis of the conventional Bogoliubov Theory is the existence
of translation-invariant ground-state (i.e. the zero-mode wp—y) Bose
condensation.

Random Hamiltonian HY of interacting Bosons in §(H):

HY =Ty + Uy = random Schrodinger operator + interaction ,
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where the kinetic-energy operator has two forms:

dU(hg) :=T8 = > EY b (¢)b(¢5) = D (vky, (ta + 1)k )2bk, brs -

j>1 k1,ko€A*

Note that there are also two faces for the second-quantised two-body
interaction u(z — y) in F(H):

1 W w W (%) * W * W (3 W
Un = 5 D (05 @65, u 65, @ 6 Juam b (95067 (95,) b(65,)b(65,)
J1,J2
J3,J4
1 * *
= o Z v (q) b, 4 Oy gbks Oy
k1,k2,qeA*

Remark 6. Our aim is to elucidate the status and in particularly
exactness of the Bogoliubov c-Number Approximation for the random

interacting boson gas. For example to answer the questions concerning
the (generalised) BEC:

Zj:E;<5<NA(¢;‘U)>H7{/V —c?or Zk:sk<7<NA(¢k)>H,‘t/V —c?

3.2 Random versus kinetic-energy condensation

Proposition 7 [11] Let HY := T% + Up be many-body Hamiltonian
of interacting bosons in random external potential V. If the particle
interaction Ux commutes with any of number operators N (¢%) (local
gauge invariance), then

. 1 w
a.s. — %Jl})llljx\n | V<(NA(¢j Naw >0 &
j:E}f’gé
1
s~ limliminf > = :
S a.s A}%hmj\lnf V<NA('¢I@)>HA >0,

kier <y

and: limy olima >, o (Na(¢r))uy/V = 0. Here (—)py is quantum
Gibbs expectation with random Hamiltonian HY.
Remark 7 If a many-body interaction satisfies the local gauge invariance:

[Un, Na(¢5)] =0,

then Uy is a function of the occupation number operators {Nx(¢j)}j>1-
For this reason it is called a “diagonal interaction".
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Corollary 3 A random localized generalised (of a yet unknown type)
boson condensation occurs if and only if there is a generalised (type
IT/IIT) condensation in the extended (kinetic-energy) eigenstates. This is a
possible way to save the Bogoliubov theory in a the case of non-translation
invariant, but homogeneous random external potential.

3.3 Amounts of random and of kinetic-energy
condensates

Let for any A C R, the particle occupation measures m, and my are
defined for the perfect Bose-gas by:
1 . 1
ma(4) = 3 > (NA()) e 5 ma(A) = v > (Na(@hn))re

J:E;€A kiepr€A

Proposition 8 [11] For the perfect Bose-gas amounts of random and
kinetic-energy condensates coincide:

— (ﬁ - pc)(SO(dE) + (eﬁE - 1)_1N(dE) lfﬁ 2 Pe
m(dE) = { (ePE=r) — 1)=T N(dE) if p < pe ,

[ (= pbolde) + F(e)de 5> pe,
m(de) = { F(e)de if o < pe.

with explicitly defined density F(¢). For models with diagonal interactions:

ma(A) < mp(A).

3.4 BEC in one-dimensional random potential.
Poisson point-impurities

For d = 1 and for repulsive Poisson point-impurities with density 7 and
a > 0, the homogeneous ergodic random external potential has the form:

v (x): = /,uT(dya(SJ;— Zadx—%

AS —T w
Plw: j(A) = s} flgf‘M,wmm»:ﬂM,Acw.
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Proposition 9 [14] Let ¢ = +o00. Then o(h*) is a.s. nonrandom, dense
pure-point spectrum such that the closure o, (h*) = [0, 4+00), with the
Integrated Density of States

—WT/\/E
N(E) == T:lew ~ Te_TrT/\/E, FE l, 0, (LlfShltZ tall)
— 6—7\'7—

One gets for the spectrum:

(a.5.) — o(h*) = | J{=*s*/2(L5)*} 2,

J

where intervals Ly = y; — y;_, are independent identically distributed
random variables :

k
dPijh---,jk (Lj17 ce 7ij) = Tk H eiTLjS dLjs

s=1

The eigenfunctions: for a.a. w € Q the one-particle localized quantum
states {@%}j>1, give a basis in L*(A).

4 Generalized c-numbers approximation

4.1 Existence of the approximating pressure

Since randomness implies fragmented (or generalized type II/III)
condensation, following the Bogoliubov approximation philosophy, we want
to replace all creation/annihilation operators in the momentum states
with kinetic energy less than some § > 0 by c-numbers. Let I5 C A* be
the set of all replaceable modes

Is .= {k € A" : B’k*/2m < 6},

and we denote ngs := card{k : k € Is}.

Remark 8 The number of quantum states ngs is of the order V; since by
definition of the Integrated Density of States: ng = V N (d). To use the
Lieb-Seiringer-Yngvason method we consider ng, = O(V1=7), 0 < v < 1.
Why it is possible ? See Corollary 4, and [25] for details.
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4.2 Generalised BEC of type III: one-mode particle
occupations

Definition 4 [12] We call eigenfunctions: {¢%'};>1 weakly localised if

1
lim — [ dz [¢¥(2)| =0 fora.a.wef.
= [ do j07(a)

Proposition 10 [12],[13] Let all {¢%};>1 be localised. Then for models
HY with diagonal interactions

1 x
11/I\n v <NA(1/’k)>H;g =0 forall k € {A*}

This implies that any possible generalised kinetic-energy BEC in these
models is of type III.

Corollary 4 The number of condensed kinetic-modes is at most O(V1~7),
0 <7 < 1, and in this case one can use the LSY method for the modes:

. 1
hlr\n v <NA(¢1€)>HX #0, forkels,, y=1—¢

Let H? be the subspace of # spanned by the set of v, with k € I5, and
Ps be orthogonal projector onto this subspace. Hence, we have a natural
decomposition of the total space H and the corresponding representation
for the associated symmetrised Fock space:

H=HoH KA  F~F7F.

Then we proceed with the Bogoliubov substitution by — ¢ and b — ¢, for
all k € Is, which provides an approzimating (for the initial) Hamiltonian,
that we denote by HY™ (i, {ck}).

The partition function and the corresponding pressure for this
approzimating Hamiltonian have the form:

=0 (1, {er}) = Trg e Unten))

1 -
PR (1, {er}) = v =R, {cr}) -

Proposition 10 [13], [25] The c-numbers substitution for all operators in
the energy-band Is,, card{k : k € Is5,} = O(V'™7), does not affect the
original pressure in the following sense:

a.5.— li/r\n[p/\(ﬁ,u) - {I{Ig?}( pﬁxong (1, {ex D)} =0
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Remark 9 Besides the type III condensation the last statement covers the
one-mode case. For the case of eventual type I condensation the arguments
are similar, but with a volume-dependent cut-off of the converging sum over
modes [25].
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IIpo pmeski HepiBHOCTI B Teopii
HellepeTuHHUX obJacTeit

In the paper we consider the extremal problems in geometric theory
of functions of complex variables that are associated with estimates
of functionals defined on the systems of non-overlapping domains. In
particular, we generalize some known results of this topic.

PoGora mprcBsteHa JOCTIIKEHHIO eKCTPEMAJIBHUX 3337 TeOMEeTPUIHOL
Teopil yHKIiN KOMIIEKCHOI 3MIiHHOI, IOB’fI3aHMX 3 OIIHKAMU (DYHKIIIO-
HaJIiB, 33[aHUX HA CHUCTeMaX HelepPeTHMHHUX obsacreil. 30KpeMa, OCHOBHA
yBara HIpUILIAETHCA MOCUIEHHIO OHOTO BIIOMOTO Pe3yJsIbTATy y JaHiil Te-
MaTHIIL.

3amadi mpo eKcTpeMasibHe po3OUTTs 3aiiMaloTh BAXKJINBE MICIIe B T€0-
MeTpUdHi#l Teopil dbyHKIIH KOMIIEKCHOI 3MiHHOI 1 MAalOThH HGaraTy icTopiro
(muB., Hanpukias, [1-19]). Buepiie ekcrpemMaiibHi pO3OHTTS PO3TIIAIAINCH
Ip¥ OTPUMAHHI OIHOK J0OYTKY CTeleHiB KOH(OPMHUX PAJiyCiB Hemepe-
runHuX obnacreii. Ila remaruka 6epe nouarok 3i crarri M. O. JTapent’eBa
1934 poxky [1] i mani po3BuBazIach B OCIIIKEHHSIX 6AraThox aBTOpiB (InB.,
Hanpukaas, [2-19]). Caix 3ayBaxkuTwH, M0 BAYKJIMBUM €JIEMEHTOM JIOCIII/I-
JKEHHS TAKUX EKCTPEMAJIbHUX 33/a4 € TJINOOKI pe3y/ibraTy Teopii KBagpa-
THIHAX OUQEPeHIiaiB, gKi OMUCYIOTh JIOKAJbHY 1 TJI00ANIbHY CTPYKTYPY
ix Tpaekropiit [3].

© Institute of Mathematics, 2014
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1. OcHoBHi moHgTTs. Hexait N, R — MHOXKWHM HATypaIbHUX 1 mific-
rux wmcesn Bianosimzao, C — xommiekcna mionmaa, C = C|J{oo} — ii
onHoTOYKOBa KoMnakTudikamisa, RT = (0, 00). Hexaii r(B,a) — BHyTpil-
Hiit pagiyc obmacri B C C siamocno Touku a € B (auB., Hanpukmiaz, [5,
c. 14]; [7, c. 71]; [8, c. 30]).

Hexait n € N, n > 2. Cucremy 1040k A, := {ak eC: k= 1,7} TaKy,
mo |ag] € RY mpu k = 1,n ta 0 = arga; < argas < ... < arga, < 2,
OyzemMo HazuBaTy n-npomMenesoro. Iloznaunmo

P, = Py(Ay) :={w:argay < argw < argap4+1},

— - — — 1
O = argay, ani1 = a1, Opy1 = 27 Bemmunnm oy = = [y — Okl
Qn+1 = a1, k = 1,n, OyneMo HAa3WBATH KyTOBUMH TMapaMeTpamu n-
n

pOMeHeBoi cucreMu To4oK A,. OgeBunHo, mo Y oy = 2. Jdana pobora
k=1
6a3yeThCA HA 3aCTOCYBAHHI KyCKOBO-PO3LIAI0YMOTO TIePeTBOPEHHS, PO3BH-

HyToro B poborax [4, c. 48-50]; [5, c. 27-30]; [8, c. 120].
Meroro mganoi poboTr € OTpUMAHHS TOYHUX OIIHOK 3BEPXY /g (DYyHK-
[IIOHAJIA HACTYITHOTO BUTJISLY:

Jn() = [r (Bo, 0) 7 (Bso, 00)] H (Br, ax) , (1)

ne vy € RT, A, = {ax}}_; — n-mpomeHeBa cucremMa TOUOK, sIKA PO3TAIIO-
BAHA HA OAUHUIHOMY Koui, By, Beo, { Bk }}_, — CYKYIHICTb HEIEeDETUHHUX
obmnacreit, ap, € B, k=1,n, 0 € By, co € By

Ilpu v = % in > 2 ouinka dyukujonamny (1) mis cucremu Heneperut-
HUX obsacredi Gyma orpumana B.M. Hdy6Giniauwm [4, c. 59]. T.B. Kysbmina
[6, c. 267], nocununa pesyabrar poboru [4] i nokasana, o maHa OIiHKA

CTIpaBeJITNBa PN 7y € (O, %2}, n > 2. 3a3HaynMo, IO TPU 1. = 2 OIIHKA,
dyuxrionany (1) poboru [6] B Tounocti cuiBnagae 3 orinkoo poboru [4].
B poborax O.K. Baxrina ta I.B. Henern [19], [17], [18] Oysi0 orpumano
ouinky dynkmionany (1) ana v € (0,2] (mpun = 2), v € (0, 2] (npn
n=23)ta~ye€(0,2,1] (mpun=4).

B naniii pobori orpuMano nocuseny ominky ¢ynkuionany (1) s 3ua-
qeHb N =2, n =3, n = 4.

2. OcHOBHIi pe3yJabTaTH.

Teopema 1. Hezati 0 < v < 72, 72 = 0,65. Todi das dosiavHoi 2-
npomenesoi cucmemu mowok Ay = {ay}i_, makoi, wo lag| =1, k =1,2,
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i 006iAbH020 Habopy esaemno nenepemunnux obaracmet By, Bi, B2, B
(0e ByCcC,00€ By CC,a; € B CC, as € By C C), cnpasedausa
HEPIBHICTND

[r (Bo,0) 7 (Bos,00)]” r (B1,a1) 1 (B, a2) <
g [T’ (Ao,O)’I‘(AOO,OO)]’Y’I"(Ah)\l)T'(AQ,AQ)7 (2)

de obaacmi N, Ao, A1, Ao — Kpy206i obaacmi, a mouru 0, 0o, A1, Ay —
NOACY K8aGIPAMU¥HO20 dupepeniyiary

yul+(@d=29w+y o
w?(w? —1)2

Q(uw)du? = -

(3)

Teopema 2. Hexati 0 < v < 73, 73 = 1,22. Todi das dosiavhoi 3-
npomenesoi cucmemu mowox Az = {ay}3_, maxoi, wo |ax| =1, k =1,3,
i 006iAbHO20 HAOOPY 63AEMHO HenepemunHur obaacmeti By, By, Bs, Bs,

OO(OGB()C(C o0 € By C(C a1€B1C(C GQGBQC(C as € By C
C), cnpasedausa nepienicmo

3
[r (Bo,0) 7 (Bos, 00)] H (Br, ar) <

3
< [ (Ao, 0) 7 (Moo, 00)] H (A, Ak) s (4)

de obaacmi Ny, Ao, A1, Ao, A3 — Kpyeosi obaacmi, a mouku 0, 0o, Ai,
A2, A3 — moatocu Keadpamuunozo dudepenyianry

w4 (O -29wity o
w?(w3 — 1)2

Q(w)dw? = —

(5)

Teopema 3. Hexati 0 < v < 74, v4 = 2,15. Todi das dosiavHoi 4-
npomenecoi cucmemu mowor Ay = {ay}i_, maxoi, wo |ay| =1, k = 1,4,
i 006iAbH020 HAOOPY 63aEMHO Henepemunnuz obaacmeti By, By, Boo (0 €
By CC,o00€ By CC,a, € B, CC, k=1,4), cnpasedauea Hepzemcmb

4
[ (Bo, 0) 7 (Boc, 00)]" [ (B, ax) <
k=1
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4

< [r (80, 0) 7 (Moo, 00)]" TT 7 (Aks M) (6)
k=1

de obaacmi Ny, Moo, A1, Ao, A3 i Ay — xpyeosi obaacmi, a mouxu 0, oo,
A1, A2, A3 1 Ay — noarocu keadpamuunozo dupeperuiany

8 B 4
Q(w)dw? = =1 2(21(24 f”l);j Y g, (7)

3. doBenennsa Teopemu 1. Ilpu nosenenni reopem 1 — 3 6y1e 3pydno
CKOPHCTATHUCS PE3YIHTATOM HACTYIHOI JIEMHU.

Hexaii ®(7) = T2 [1— 7'|7(1’T)2 (14 'r)*(lJrT)Q, T2 0.

Jlema. Hexait n € N, n > 2, v € RT. Toxi nya Gyab-aKoi n-IpoMeHeBol
cucremn touok A, = {ay}7_; Takoi, mo |ay| = 1, k = 1,n, i goBiabHOrO
Habopy B3aeMHO HemeperuHHuX obnacreit By, By, Bso (a9 = 0 € By C C,
00 € By, CC, ay € By C C, k =1,n), cipaBeamBa HepiBHiCThH

n

[ (Bo, 0) r (Bog, 00)]” T (Bro an) <

k=1
n n 1/2
<2 (H ak> (H <I>(Tk)> : (8)
k=1 k=1
ae T = ogy/7, k = 1,n. 3max piBrocti B HepiBHOCTI (8) mocaAraeTbCs

toai, Koy obstacti By, Beo, Bi 1 Touku 0, oo, ar, k = 1,n, €, Bianosiano,
KPYTOBUMH OOJIACTSMHE Ta, MOJIOCAME KBAIPATUIHOTO audepeHIriaia

w4 (0 2wty g

Q(w)dw2 = w?(w” — 1)2

Jlosedenna aemu. [lpn noBeseHHl JaHHOI JIeMHU HAIM JOCIIIIXKEHHS IPO-
BOJSATHCH 13 3aCTOCYBAHHIAM PO3JLIAI0YOr0 [EePeTBOPeHHs (JIUB., HAIIPH-
knaz, [4, c. 48]; [5, c. 27-30]; [8, c. 120-124]; [7, c. 87-92]). Anasoriu-
HO MipKyBaHH:#M, 1poBejeHuM B pobori [7, ¢. 261], po3risinemo cucremy
byuxuiit ¢ = mp,(w) = —i (e w) i, k =1, n. Hexait Q,(Cl), k=1,n, no-
3uauae obmacts maonmnu C¢, oTpuMany B pe3ynbTaTi 06’ e JHaHHA 3B’ A3HOL
KOMIIOHEHTH MHOXKWHH 7 (By (| Pk), 1O MIiCTHTB TOUKY 7 (a), 31 CBOIM
CHMETPUYHHUM Bifl0OparkKeHHsIM BiIHOCHO ysBHOI Bici. B cBoro uepry, uepes
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Q,(f), k = 1,n, moznaunmo obnacts mnonman C¢, OTpuMany B pe3ymibrari
06’¢fHaHHSA 3B’A3HOI KOMIOHEHTH MHOXKHUHU T (Bjit1 () Pk), MO MicTHTH
TOYKY Tk (ak+1), 31 CBOIM CUMETPUYHUM BinoOpazKeHHSM BIIHOCHO YSIBHOL
Bici, By+1 := B1, mp(an+1) := mp(a1). Kpim roro, Q,&O) ro3Hadae 00J1acThb
wiomunu C¢, orpumany B pesysbrari o6’ejuannd 3B A3HOI KOMIIOHEHTH
muoKuHN 7k (Bo () Pk), mo Mictuth Touky ¢ = 0, 31 CBOIM CHMETPUYIHIM
BimoOpaskeHHsAM BigHOCHO ystBHOI Bici. Habip obmacreii {Qg’o)}ﬁ:l € pe-
3y/IBTATOM PO3/IIISI0YOr0 TEPETBOPEHHS TOBLIBHOI 0bsacTi By, BigHOCHO
uabopy {Pe}i_; i {mx}}_, B Touni ¢ = oo. Ilo3mauumo mx(ax) = w,(gl),

mh(as) = wi, k€ {1,n}, m(ang) =wi.

I3 BusHavenus QyHKIiil T} BUILIUBAE, IO
1 1 _
mw) =~ T w —al, w o a, we

2 1 1 _q o
|Wk(w)_w£)\N;k|ak+1|“k w—apg1|, w—=app1, we Py,
1 N
Tk (w)] ~ |w|*r, w—=0, we P

Toui, BukopucTOBYIOYM BianoBiaui pesynbraru pobir [4, c. 54]; [5, c. 29],
Ma€EMO HepiBHOCTI

_ r (Qg),w,(cl)) T (le,wgl) :
1
ap_1

k=1,n, Q((JQ) =0 w((,z) = w®

n n

; (9)

1 _
ok—1

|a

n 2

r(Bo,0) < | ] r (QEP,O) : (10)
k=1

7 (Boo, ) < ﬁ o (ng;)’oo> . (11)
k=1

YmoBu peanizanil 3uaky piBrocti B HepiBrocTsax (9) — (11) nosaicrio onu-
cani B Teopemi 1.9 [5, c. 29]. Ha ocuosi uux cuiBsignouenb orpumyemMo
HEpIBHICTH

2
n Yo

T <] (r (Q;O)ﬂ) r (Qf:o), oo))T X

k=1
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T (Q,&l),w,gl)) T (922)7w£2))

1)? =-1
(2) Clanlaw i)

Hauii, BpaxoBytouu meroxu pobir [7, c¢. 262]; [9, c. 300]; [11, c. 871], i3
OCTAaHHBOI'O MA€ Micie

X

Jn(y) <27 <H ak> X
k=1

)r 0 0)r (0 e
(r(270) r (24000))

(Q](:)’wl(:)) o (Qz(f)»wz(f)
N2
LYk)

1 L 2 o 1 2 % an

WiV = lanl7®, | = larga|®, ol — 0P| = lar|™* + |agsa|*.

Bupa3s, mo cToith y pirypHEX ayKKaX OTPUMAHOI HEPIBHOCTI, € 3HAYEHHIM
dyukmionasy

n |r
<11
k=1

1
(ol +laenn

2 ) T(Bl,al)T(BQ,CLQ)
a1 — asf?

K, = [r(Bg,0)r (Bso,)]” (12)
Ha cucreMi HellepeTMHHUX objacreit {Q,(CO), Q,(cl), Q,(f), Q,(COO)}, i Bimmosinmiit

CHCTEMI TOYOK {O,wél),w,(f), oo} (k€ {1,2}).

Ouinka dbynkmionany (12), y Bunaaky (dbikcoBaHUX MOJIOCIB, Oysia 3Hal-
neua srepre B.M. HyGininuwm [4], [14], mizmime — I'B. Kyssuminomo [12],
€.I'. €menbsarosuM [13], A.JI. Taprouncbkum [15].

Ha ocuosi teopemu 4.1.1 [7, c. 167]| ra imBapianTHOCTI byHKUiOHATY
(12) orpumy€eMO OLIHKY

K‘I’ g q)(T)a T 2 0’
me ®(7) =727 1 — 7|~ (14 1)~ Toni

0 < (2" (Tews) [T o)

k=1 k=1

1/2

W=

2 n n -
() I o )|
Y

k=1
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ae Ty = /7 ok, k= 1,n. Peanizamia 3uaKy piBHOCTI mepeBipgeThes 6e3-
mocepeanno. Jlema dosedena.

[TosepTaemoch 70 JoBeneHHs TeopeMu 1. BpaxoByroun pe3ybTar JIeMU
i ymoBy reopemu 1, mo n = 2, i3 mepisnocri (13) maemo

() < (%) (H am) Lr_[ 2(7)

k=1

1/2
< (14)

[N

2
4 72 _(1— _
<= ll I (T;f R A A C S (1”’“)2)] :

LA sy
aeTk:ﬂ-ak, k:].,Q.
. . 2 2
Posrismemo geranpmime dynkmio W(z) = 2 +2 . |1 — z|~(0-2)" .

(1+ x)_(l'”)z. U(z) — morapudmivHo BUMyKIa Ha MpoMikky [0, xo], me
xo & 0,88441, ¥(xg) = 0,07002. Ha npomixky [0,z1] (x; = 0,58142 —
rouka Makcumymy yukiil ¥(z), ¥(z1) ~ 0,08674) dyukuia 3pocrae Bij
suaqennsa ¥(0) = 0 zo ¥(z1), i cuanae na npomixky (z1,00]. Jani, 3acro-
cosyioun 1o dyukmii ¥(z) igei pobir [16],[19], a Takoxk Aeski qomaTKOBI
MipKyBaHHS, OTPUMYEMO TBEPIKEHHS TEOpeMu 1.

4. ToBeneHus Teopemu 2. Jlopenennst Teopemu 2, B OCHOBHOMY, aHa-
JIOT19HE JIOBEJIEHHIO TeopeMu 1, ajie BIAMITUMO Pi3HUINIO MiXK JIOBEIEHHAMU
UX TEOpeM.

Bpaxosytouwu, 1m0 n = 3, 3 mepiHocTi (13) OTpUMAaEMO CHiBBIIHOIIEHHS

3/ 3 3 1/2
Ts(y) < (fﬁ) (H am> (H <1><m>> -
k=1 k=1

3

8 7k ~(1-m)? ~(14m)?

= ST (7 el 0 @y 060)
W L—1

ae T = /7 ag, k=1,3.
Posrnaremo ¢gyHKItio

W(x) = 22 21— g 7070 (1 4 )~ ()

Hexait v