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We develop algebraic approach to the problem of classification of potential symme-
tries of nonlinear evolution equations. It is essentially based on the recently discov-
ered fact [R. Zhdanov, J. Math. Phys. 50, 053522 (2009)], that any such symmetry is
mapped into a contact symmetry. The approach enables using the classical results on
classification of contact symmetries of nonlinear evolution equations by Sokolov and
Magadeev to classify evolution equations admitting potential symmetries. We con-
struct several examples of new nonlinear fourth-order evolution equations admitting
potential symmetries. Since the symmetries obtained depend on nonlocal variables,
they cannot be derived by the infinitesimal Lie approach. C© 2011 American Institute
of Physics. [doi:10.1063/1.3554692]

I. INTRODUCTION

The concept of group of transformations of the space of dependent and independent variables
is in the core of the Lie group approach to the analysis of partial differential equations (PDEs). In
the case when transformations do not involve integrals of dependent variables, the corresponding
transformation group is called local. If transformation laws for dependent or independent variables
do contain integrals of dependent variables, then the corresponding group is called nonlocal.

Sophus Lie developed the regular method for calculating local symmetry group of a given PDE
long time ago (see, e.g., Refs. 1–4). However, there is still no systematic approach for construct-
ing nonlocal symmetries of nonlinear differential equations. Almost every specific nonlinear PDE
requires an individual approach for constructing its nonlocal symmetries.

One of the most well understood cases is the particular case of the nonlocal symmetry called
“quasi-local symmetry”.5, 6 The idea behind this concept is a variable transformation that involves
integrals of dependent variables. In some cases such transformation maps local symmetries of a
given PDE into nonlocal ones. In our recent paper7 we describe constraints on the forms of local
(Lie) symmetries enabling to identify those symmetries which lead to quasi-local ones.

Potential symmetries of PDEs constitute another class of nonlocal symmetries which got a lot
of attention recently. It was Bluman who introduced the concept of potential symmetry in the early
1990s.8–10 A potential symmetry is a special case of nonlocal symmetry realized as a Lie symmetry
of the associated system of partial differential equations.11, 12

A number of papers, devoted to studying potential symmetries of various linear and nonlinear
evolution equations, have been published.13–29 Recently, the notion of potential symmetry has been
extended to accommodate nonclassical symmetries of evolution equations.30–32 A natural connection
between potential symmetries and conservation laws of evolution-type equations has been explored
in the papers.33–39
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We have recently established that potential symmetries of evolution equations in one spatial
variable boil down to quasi-local symmetries.40 Namely, for any potential symmetry of a one-
dimensional evolution equation there is a change of variables which reduces equation in question to
another evolution PDE so that the potential symmetry becomes the contact symmetry of the latter.
This fact is a foundation of our group-theoretical approach to classification of nonlinear evolution
equations that admit potential symmetries.

In the present paper we apply the approach in question to fourth-order evolution equations of
the form

ut = F(x, u, u1, u2, u3, u4). (1)

Here u = u(t, x), ut = ∂u/∂t, ui = ∂ui/∂xi , i = 1, 2, 3, 4, and F is sufficiently smooth real-valued
function with Fu4 �= 0.

Evolution equations of the form (1) with specific F have been used to model a variety of
nonlinear phenomena in physical, chemical, and biological sciences.41–48

In Ref. 49, we perform preliminary group classification of the class of fourth-order evolution
equations of the form (1),

ut = −u4 + F(t, x, u, u1, u2, u3).

Group classification of local and quasi-local symmetries of the more general class of fourth-order
evolution equations (1),

ut = F(t, x, u, u1, u2, u3)u4 + G(t, x, u, u1, u2, u3),

is obtained in Ref. 50.
The paper is organized as follows. In Sec. II, we give the detailed description of our algebraic

approach to classification of potential symmetries of evolution equations in one spatial variable. We
apply this approach in Sec. III to construct fourth-order nonlinear evolution equations that admit
potential symmetry. Note that we restrict our considerations to contact symmetries preserving the
temporal variable t . Section IV contains discussion of the generalization of the approach in question
enabling to utilize the most general contact symmetries. In addition, we present the examples of
using contact symmetries preserving the temporal variable to solve initial-value problem for the
nonlinear evolution equation of the form (1).

II. THEORETICAL BACKGROUND

Suppose that evolution equation

ut = F(t, x, u, u1, . . . , un) (2)

can be written in a conserved form

∂

∂t
G(t, x, u) + ∂

∂x
H (t, x, u, . . . , un−1) = 0.

Then it can be replaced by the equivalent system of two PDEs,

vt = −H (t, x, u, . . . , un−1), vx = G(t, x, u), (3)

where v = v(t, x) is the new dependent variable.
In addition, we assume that system (3) admits Lie transformation group

t ′ = T (t, x, u, v, θ ), x ′ = X (t, x, u, v, θ ),

u′ = U (t, x, u, v, θ ), v′ = V (t, x, u, v, θ ),
(4)

where θ is the group parameter.
If the right-hand sides, T, X, U in (4) satisfy the inequality |Tv| + |Xv| + |Uv| �= 0, then initial

equation (2) is invariant under the group of nonlocal transformations since the latter involves the
nonlocal variable v = ∂−1

x G(t, x, u). This kind of symmetry is referred to as the potential symmetry.8
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We see that the traditional approach to computation of potential symmetries implies the necessity
of group analysis of an auxiliary system of differential equations of the form (3).

Recently, we have established that there is a more direct way of computing potential symmetries
of evolution equations by using the old good method of transformation of variables. It is based on the
fact that any potential symmetry of an equation of the form (2) can be mapped into a contact symmetry
of another evolution equation from the same class (2). The mapping, M, is a superposition of point
transformations of the space of variables t, x, u and of the transformation t → t, x → x, u → u1

(further details can be found in Ref. 40).
Consequently, to get exhaustive classification of potential symmetries of evolution equations (2),

one needs to perform classification of contact symmetries of equations of the form (2) and select
those symmetries which lead to potential symmetries through sequences of transformations described
above.

Not every contact symmetry leads to a potential symmetry. That is why we need criteria enabling
to select contact symmetries that can be mapped by M into potential ones. For the case when contact
symmetry is a point symmetry (which means that the transformation laws for independent and
dependent variables do not include derivatives) this problem has been solved in Ref. 40. Here, we
generalize the approach of Ref. 40 in order to incorporate contact symmetries.

The most general form of the infinitesimal generator of a group of contact symmetries has the
form

Q = − ∂g

∂ut
∂t − ∂g

∂u1
∂x +

(
g − ut

∂g

∂ut
− u1

∂g

∂u1

)
∂u

+
(

∂g

∂t
+ ut

∂g

∂u

)
∂ut +

(
∂g

∂x
+ u1

∂g

∂u

)
∂u1 ,

(5)

where g is an arbitrary smooth real-valued function called generating function.2 Since the contact
symmetry is fully determined by its generating function, we adopt the notation Q = g(t, x, u, ut , u1).

Operators (5) span infinite-dimensional Lie algebra, A.
In what follows, we restrict our considerations to contact symmetries preserving the temporal

variable t . Requiring that the contact symmetry generated by the operator Q preserves the temporal
variable t yields the constraint on the form of the generating function, gut = 0. The Lie algebra
spanned by the operators

P = g(t, x, u, u1), (6)

is the ideal in the algebra A. We denote it as I.
The main idea of our approach is quite simple. Suppose that Eq. (2) admits N -dimensional Lie

algebra L ⊂ I of contact symmetries with N ≥ 2. Then provided the algebra L contains at least two
basis elements that do not commute, evolution equation (2) can be mapped into equation of the form
(2) that possesses potential symmetry. Let us consider this procedure in more detail.

Assume that Eq. (2) admits Lie algebra L of contact symmetries (5) such that L ⊂ I. Suppose
also that [L,L] �= 0. Hereafter, we denote by the symbol [L,L] the Lie algebra spanned by all
possible commutators of the algebra L.

Given the above conditions, there exist basis elements P ∈ L and Q ∈ L such that [P, Q] �= 0.
As the operator P is of the form (6) it can be reduced to operator (6) with g = 1 by a contact
transformation,

t̄ = t, x̄ = X̄ (t, x, u, u1),

ū = Ū (t, x, u, u1), ū x̄ = V̄ (t, x, u, u1).
(7)

In what follows, we denote operator (6) with g = 1 as 1. The operator 1 can be equivalently
represented in the form of the generator of the one-parameter displacement group by u, namely,
1 = ∂u . That is why, rewriting the initial equation (2) in the new variables and dropping the bars
yield,

ut = f (x, u1, . . . , un). (8)
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Now, we differentiate Eq. (8) with respect to x and make the nonlocal change of variables

t̄ = t, x̄ = x, ū = u1. (9)

After dropping the bars we get the evolution equation in the form of conservation law,

ut = ∂

∂x
f (x, u, u1, . . . , un−1). (10)

What we claim is that Eq. (10) either admits a potential symmetry or can be reduced to another
evolution equation of the form (10) that possesses potential symmetry.

Let us rewrite the image of the contact symmetry Q under the mapping (7) in the form of Lie
vector field,

− ∂g

∂u1
∂x +

(
g − u1

∂g

∂u1

)
∂u +

(
∂g

∂x
+ u1

∂g

∂u

)
∂u1 . (11)

We remind that the contact symmetry P has been mapped into 1. What is more, the operators P and
Q do not commute. Hence, we get that at least one of the expressions,

∂u gu1, ∂u(g − u1gu1 ), ∂u(gx + u1gu),

does not vanish identically.

Case 1 : (∂u gu1 )2 + (∂u(gx + u1gu))2 �= 0.

The finite transformation group generated by (11) reads

t ′ = t, x ′ = X (x, u, u1, θ ),

u′ = U (x, u, u1, θ ), u′
x ′ = V (x, u, u1, θ ).

(12)

Here X, U, V are solutions of the initial-value problems

d X

dθ
= − ∂g

∂u1
, X |θ=0 = x,

dU

dθ
=

(
g − u1

∂g

∂u1

)
, U |θ=0 = u,

dV

dθ
=

(∂g

∂x
+ u1

∂g

∂u

)
, V |θ=0 = ux ,

and θ is the group parameter.
Now if at least one of the expressions ∂ X/∂u = 0, ∂V /∂u = 0 does not vanish identically, then

group (12) is mapped by transformation (9) into potential symmetry,

t ′ = t, x ′ = X (x, ∂−1
x u, u, θ ), u′ = V (x, ∂−1

x u, u, θ ), (13)

of Eq. (10). Here ∂−1
x is the inverse of ∂x , i.e., ∂−1

x ∂x = ∂x∂
−1
x = 1.

If we expand the functions ∂ X/∂u = 0 and ∂V /∂u = 0 into the Taylor series with respect to
θ , then the coefficients by θ1 will be ∂u gu1 and ∂u(gx + u1gu), correspondingly. Hence we conclude
that (∂ X/∂u)2 + (∂V /∂u)2 �= 0, which means that (13) is the potential symmetry of Eq. (10).

Case 2 : ∂u gu1 = 0, ∂u(gx + u1gu) = 0, ∂u(g − u1gu1 ) �= 0.

Integrating the system of PDEs, ∂u gu1 = 0, ∂u(gx + u1gu) = 0 yields that

P = ∂u, Q = −u1hu1u1∂x + (wu + h − u1hu1 − u2
1hu1u1 )∂u + wu1∂u1 ,

where w = w(t) and h = h(t, u1) are arbitrary smooth functions. There exists contact transformation
(7) reducing the operator Q to the form wu∂u , while the operator P is not altered. Making the change
of variables

t̄ = t, x̄ = x, ū = w−1 ln u,
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reduces Q, P to the form Q = ∂u and P = w−1 exp(−wu)∂u + u exp(−wu)∂u1 . Since [Q, P] �= 0,
we have arrived at case 1 where one should replace Q with P and P with Q. Consequently, case 2
leads to evolution equations possessing potential symmetry as well.

We summarize the above reasonings in the assertion below.

Theorem 1: Let L ⊂ I be the algebra of contact symmetries of evolution equation (2) such
that

1. dim(L) ≥ 2,
2. [L, L] �= 0.

Then Eq. (2) can be mapped into another evolution equation of the form (2) possessing potential
symmetry.

Corollary 1: Any linear evolution equation can be reduced to a nonlinear PDE of the form (2)
admitting potential symmetry.

Indeed, an arbitrary linear partial differential equation ut = Lu + a(t, x) admits the two-
dimensional Lie algebra 〈v(t, x)∂u, (u + w(t, x))∂u〉 ⊂ I, where v(t, x) is an arbitrary solution of
the equation in question and w(t, x) is a solution of the homogeneous equation wt = Lw. Now the
validity of the assertion follows from the fact that the operators v(t, x)∂u, (u + w(t, x))∂u do not
commute.

Our algebraic approach to classification of nonlinear evolution equations admitting potential
symmetries is based on Theorem 1. As a prerequisite, we need the list of evolution equations
possessing nontrivial contact symmetries together with the corresponding symmetry algebras. With
this list in hand, we select those algebras L which have nontrivial ideals M ∈ I with [M,M] �= 0.

As a result, we get the list of Lie algebras of contact symmetries, L1, L2, L3, . . ., such that
the corresponding invariant equations can be transformed into evolution equations (2) admitting
potential symmetries.

By construction, the algebra Li contains two basis elements P ∈ I and Q ∈ I such that,
R = [P, Q] �= 0. Now if R �= r (t, x, u)P we reduce the basis operator P to the canonical form
1 and rewrite Q in the new variables to become operator (11), while the initial Eq. (2) takes the
form (8). Differentiating (8) with respect to x and performing variable transformation (9) map the
symmetry Q into the potential symmetry of the obtained evolution equation.

Provided R = r (t, x, u)P , we reduce the second operator Q to the canonical form 1. Differ-
entiating (8) with respect to x and making the change of variables (9) reduces operator P to the
potential symmetry of the transformed equation (10).

In Sec. III, we apply the above approach to construct fourth-order nonlinear evolution equations
possessing potential symmetries.

III. POTENTIAL SYMMETRIES

In the sequel, we consider contact symmetries from I that are independent of the temporal
variable t ,

P = g(x, u, u1). (14)

We denote the class of contact symmetries of the form as S.
Since ∂g/∂ut = 0 the transformation group generated by symmetries from S preserves the

temporal variable t .
The class S of contact symmetries (14) has been extensively studied. Sokolov51 obtained

exhaustive classification of evolution equations

ut = F(x, u, u1, u2, . . . , un), n � 2, (15)

admitting symmetries from S (see, also, Refs. 52 and 53).
We summarize below the relevant results of Ref. 51.
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Theorem 2: S is finite-dimensional, and dimS � n + 3 for any Eq. (15). If dim S = n + 3,
then the right-hand side of (15) has the form

F = (a1un + a0)
1−n
1+n , a1 �= 0.

Theorem 3: Any finite-dimensional subalgebra over C of S is equivalent to a subalgebra of
one of the algebras Hm, A2, C2, GW , FU given below,

Hm = 〈1, x, . . . , xm, u, xu1, u1, xu − 1

m
x2u1〉,

A2 = 〈1, u, u2 − u2
1, u1, (ex u1)

1
2 , (e−x u1)

1
2 , (u − u1)(ex u1)

1
2 ,

(u + u1)(e−x u1)
1
2 〉,

C2 = 〈1, u, u2, u1, xu1, x2u1, u
1
2
1 , xu

1
2
1 , xuu

1
2
1 , uu

1
2
1 〉,

GW = 〈u, f1(x), f2(x), . . . , fm(x)〉,
FU = 〈u, u1, . . . , g1(x), . . . , gm(x)〉.

Here { f1(x), . . . , fm(x)} is a basis of an arbitrary finite-dimensional space W of functions of x; the
functions, gi (x), form a basis of the space U of functions in x, invariant under ∂x , i.e., U = K er P,
where P is a differential operator of the form

∑
ci∂

i
x , ci ∈ C.

Note that only algebras A2 and C2 contain contact symmetries which are not generators of point
transformation groups. It is a common knowledge that the Lie algebra A2 over R is isomorphic to
the Lie algebra sl(3,R). Classification of inequivalent subalgebras of the algebra sl(3,R) has been
performed by Winternitz.54 Classification of inequivalent subalgebras of the algebra C2

∼= o(2, 3)
has been obtained in the paper.55 We intent to utilize these classification results to describe nonlinear
evolution equations of the form (1) that admit potential symmetries in one of our future publications.
Here, we present several examples of application of our classification approach.

Example 1 : Consider the Lie algebra of contact symmetriesL =〈1, u, u2 − u2
1, u1〉. To construct

Eq. (1) invariant under the algebra L we need to apply the infinitesimal Lie method.2, 3 After
some involved calculations, we establish that Eq. (1) is invariant under the contact symmetry
Q = g(x, u, u1) if the generating function g satisfies the determining equation

gu F + gu1 Fx + (gu1 u1 − g)Fu − (gx + guu1)Fu1 − [guuu2
1 + 2guu1 u1u2

+ gu1u1 u2
2 + 2gxuu1 + (gu + 2gxu1 )u2 + gxx ]Fu2 − [guuuu3

1 + 3guuu1 u2
1u2

+ 3guu1u1 u1u2
2 + gu1u1u1 u3

2 + 3gxuuu2
1 + 3(guu + 2gxuu1 )u1u2

+ 3(guu1 + gxu1u1 )u2
2 + 3guu1 u1u3 + 3gu1u1 u2u3 + 3gxxuu1

+ 3(gxxu1 + gxu)u2 + (3gxu1 + gu)u3 + gxxx ]Fu3 − [guuuuu4
1

+ 4guuuu1 u3
1u2 + 6guuu1u1 u2

1u2
2 + 4guu1u1u1 u1u3

2 + gu1u1u1u1 u4
2

+ 4gxuuuu3
1 + 6(guuu + 2gxuuu1 )u2

1u2 + 12(gxuu1u1 + guuu1 )u1u2
2

+ 2(2gxu1u1u1 + 3guu1u1 )u3
2 + 6guuu1 u2

1u3 + 12guu1u1 u1u2u3

+ 6gu1u1u1 u2
2u3 + 6gxxuuu2

1 + 12(gxuu + gxxuu1 )u1u2

+ 3(guu + 4gxuu1 + 2gxxu1u1 )u2
2 + 4(3gxuu1 + guu)u1u3
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+ 3gu1u1 u2
3 + 4guu1 u1u4 + 2(5guu1 + 6gxu1u1 )u2u3

+ 4gu1u1 u2u4 + 4gxxxuu1 + 2(2gxxxu1 + 3gxxu)u2

+ 2(3gxxu1 + 2gxu)u3 + (gu + 4gxu1 )u4 + gxxxx ]Fu4 = 0. (16)

Integrating (16) for each of the basis elements of L yields the following class of fourth-order
evolution equations:

ut = u1 F(ω1, ω2), (17)

where

ω1 = (u3 − u1)u2
1

(u2
2 − u2

1)
3
2

,

ω2 = u2
1

(u2
2 − u2

1)3
[u4u3

1 − 4u3u2u2
1 + u2(3u2

3 − u4u2 + 3u2
2)u1 − 2u3u3

2].

The invariance algebra of the above equation contains contact symmetries, Q = 1 and P = u2 − u2
1,

which do not commute. Consequently, conditions of Theorem 1 are met.
Integrating the Lie equations we obtain the final transformation group generated by the contact

symmetry u2 − u2
1,

t ′ = t, x ′ = ln

∣∣∣∣θ (u − u1) − 1

θ (u + u1) − 1

∣∣∣∣ + x,

u′ = θ (u2
1 − u2) + u

θ2(u2 − u2
1) − 2θu + 1

, u′
x ′ = u1

θ2(u2 − u2
1) − 2θu + 1

.

(18)

Differentiating equation (17) with respect to x , making the nonlocal change of variables (9), and
dropping the bars yield the evolution equation

ut = u1 F + u2σ1

(u2
1 − u2)

5
2

Fω1 + u2σ2

(u2
1 − u2)4

Fω2, (19)

where F = F(ω1, ω2) with

ω1 = u2

(u2
1 − u2)

3
2

(u2 − u),

ω2 = u2

(u2
1 − u2)3

[u3u3 − 4u2u1u2 + (3u1u2
2 − u3u2

1 + 3u3
1)u − 2u3

1u2],

σ1 = −u3u3 + 4u2u1u2 + (−3u1u2
2 + u3u2

1 − 3u3
1)u + 2u3

1u2,

σ2 = −u4u6 + (5u1u3 + 4u2
2)u5 + (−17u2u2

1 − 3u3
2 + 2u4u2

1 − 10u3u2u1)u4

+ (35u2
2u2

1 + 9u4
1)u3 + (10u3u2u3

1 − 15u2
1u3

2 − u4u4
1 − 33u4

1u2)u2

+ (15u2
2u4

1 + 9u6
1 − 5u5

1u3)u − 4u6
1u2.

The group of contact symmetries (18) turns into the group of nonlocal transformations

t ′ = t, x ′ = ln

∣∣∣∣θ (v − u) − 1

θ (v + u) − 1

∣∣∣∣ + x, u′ = u

θ2(v2 − u2) − 2θv + 1
,

where v = ∂−1
x u.
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Example 2: Consider the Lie algebra of contact symmetries

L = 〈1, uu
1
2
1 , u

1
2
1 , u1, u, xu1〉.

Integrating determining equation (16) for each of the basis elements of the algebra L we get the
corresponding invariant equation

ut = u3
2u2

1(2u3u1 − 3u2
2)4

[4(u2u4 − 3u2
3)u2

1 + 20u3u2
2u1 − 15u4

2]3
. (20)

The algebra L contains two basis operators Q = 1 and P = uu
1
2
1 that do not commute. Hence

the conditions of Theorem 1 are satisfied and we can transform Eq. (20) into evolution equation
possessing potential symmetry.

First we derive the form of the final transformation group generated by the contact symmetry P ,

t ′ = t, x ′ = x − θ
u

2u
1
2
1

, u′ = 2u

2 − θu
1
2
1

, u′
x ′ = 4u1

(2 − θu
1
2
1 )2

. (21)

Differentiating equation (20) with respect to x , making the nonlocal change of variables (9) and
dropping the bars we arrive at PDE,

ut = u2
1(3u2

1 − 2u2u)3u

(−12u2
2u2 + 4u2u3u1 + 20u2

1u2u − 15u4
1)4

(
(72u4

2 − 48u2
2u3u1

+ 24u2
1u4u2 − 32u2

3u2
1)u4 + (−276u3

2u2
1 + 272u2u3

1u3 − 36u4
1u4)u3

+ (54u2
2u4

1 − 108u5
1u3)u2 + 165u2uu6

1 − 90u8
1

)
.

Transforming group (21) accordingly yields the corresponding potential symmetry

t ′ = t, x ′ = x − θ
v

2u
1
2

, u′ = 4u

(2 − θu
1
2 )2

,

with v = ∂−1
x .

One of the possible uses for potential symmetries is solving nonlinear PDEs by the reduction
approach. Consider, as an example, the contact symmetry, Q = u2

x − u2 − bu − c, {b, c} ⊂ R,
admitted by Eq. (17).

Solving the invariance condition u2
x − u2 − bu − c = 0 yields the ansatz for the function u,

u(t, x) = 1

4
exp(−x − ϕ(t))

(
b2 − 4c − 2b exp(x + ϕ(t)) + exp(2x + 2ϕ(t))

)
, (22)

where ϕ(t) is an arbitrary smooth function.
Inserting (22) into (17) we get the ordinary differential equation for the unknown function ϕ(t),

ϕ′ = F(0, 0). (23)

Note that both ω1 and ω2 from Eq. (17) vanish when u has the form (22).
Solving (23) and inserting ϕ(t) = C0 + F(0, 0)t into (22) yields the solution of nonlinear PDE

(17),

u(t, x) = 1

4
exp(−x − C0 − F(0, 0)t)

(
b2 − 4c − 2b exp(x + C0 − F(0, 0)t)

+ exp(2x + 2C0 + 2F(0, 0)t)
)
,

where C0 ∈ R.
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By force of Theorem 1 symmetry Q = u2
x − u2 − bu − c is mapped into potential symmetry

of the nonlinear evolution equation (19). The corresponding ansatz has the form

u(t, x) = 1

4
exp(−x − ϕ(t))

(
−b2 + 4c + exp(2x + 2ϕ(t))

)
.

The above ansatz is invariant under the potential symmetry of Eq. (17) and reduces the latter to
ordinary differential equation (23).

IV. DISCUSSION

In the present paper, we explore the connection between contact and potential symmetries to
develop Lie algebraic approach for classification of potential symmetries of nonlinear evolution
equations in one spatial variable. Note that a different symmetry approach has been suggested in
Ref. 13, where the potential symmetry of the linear Fokker–Planck equation has been interpreted
in terms of second-order nonclassical symmetry (see, formulas (5.8)–(5.10) from Ref. 13). The
problem with this approach, however, is that computation of nonclassical symmetries requires
solving nonlinear determining equations.56 Within the framework of our approach we always deal
with linear determining equations, since only classical symmetries are involved.

Note that we restrict our considerations to the subclass of contact symmetries I preserving the
temporal variable t . This is an important constraint, since Theorem 1 is not valid for the general
contact symmetry g(t, x, u, ut , ux ). Consider, for example, the fourth-order PDE,

ut = F

(
u2

u1
,

u3

u1
,

u4

u1

)
. (24)

It admits the two-dimensional Lie algebra of contact symmetries 〈∂u, t∂t + u∂u〉. Evidently, the
basis operators P = ∂u and Q = t∂t + u∂u do not commute. However, transformation (9) maps the
symmetry operator Q into the local (Lie) symmetry.

Still there is a strong evidence that the noncommutativity condition is a necessary one for the
equation under study to be reducible to an evolution equation with potential symmetry. However,
for the general contact symmetry this condition is no longer sufficient. We intend to devote one of
the future publications to generalization of the approach of Sec. I to accommodate the most general
form of the contact symmetry.

A peculiar feature of contact symmetries from the class I is that they leave the initial surface
t = t0, t0 ∈ R invariant. That is why they can be used to perform symmetry reduction of the initial-
value problem

ut = F(x, u, u1, u2, . . . , un), f (x, u, u1)
∣∣∣
t=t0

= 0,

in the fashion it has been done in Refs. 57, 58 and 59.
Consider as an example Eq. (20). It admits the symmetry Q = xu1 − ku. The most general

first-order PDE invariant under the one-parameter transformation group

t ′ = t, x ′ = xeθ , u′ = uekθ , (25)

generated by the operator Q has the form f (t, x−ku, x1−ku1) = 0. Hence it follows that the initial-
value problem

ut = u3
2u2

1(2u3u1 − 3u2
2)4

[4(u2u4 − 3u2
3)u2

1 + 20u3u2
2u1 − 15u4

2]3
,

f (t0, x−ku(t0, x), x1−ku1(t0, x)) = 0

(26)

is not altered by transformations (25). Consequently, we can apply the symmetry reduction method
to solve problem (26). The solution invariant with respect to transformation group (25) is of the form

u(t, x) = xkϕ(t), (27)
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where ϕ(t) is an arbitrary smooth real-valued function.
Inserting u(t, x) = xkϕ(t) into (26) yields the initial-value problem for the ordinary differential

equation

(3k − 1)3ϕ′ + k(k2 − 1)ϕ = 0, f (t0, ϕ(t0), kϕ(t0)) = 0.

Integrating equation for ϕ and inserting its solution, ϕ(t) = exp((3k − 1)−3 k(1 − k2)t)C , C ∈ R,
into (27) yields the exact solution of the initial-value problem for the nonlinear evolution equation
(20),

u(t, x) = exp((3k − 1)−3k(1 − k2)t)xkC,

where C is a solution of the equation

f
(

t0, C exp((3k − 1)−3k(1 − k2)t0), kC exp((3k − 1)−3k(1 − k2)t0)
)

= 0.

Any contact symmetry from the class I can be used in this fashion to solve the corresponding
invariant initial-value problems for nonlinear evolution equations.

As we noted in Ref. 59 higher-order symmetries can be utilized to perform reduction of
initial value problems. Consider, as an example, the contact symmetry, Q = uu1/2

1 , which is not
point symmetry. The most general first-order PDE invariant under the contact transformation group
generated by Q has the form f (t, u2

1u−1, 2u1 − xu2
1u−1) = 0.

Consequently, the initial-value problem

ut = u3
2u2

1(2u3u1 − 3u2
2)4

[4(u2u4 − 3u2
3)u2

1 + 20u3u2
2u1 − 15u4

2]3
,

f
(

t0, (u1(t0, x))2(u(t0, x))−1, 2u1(t0, x) − x(u1(t0, x))2(u(t0, x))−1
)

= 0, (28)

admits symmetry Q. Consider the following ansatz, u(t, x) = (ϕ1(t)x + ϕ2(t))2, where ϕ1(t) and
ϕ2(t) are arbitrary smooth functions. Inserting the ansatz for u into (28) reduces it to the initial-value
problem for the system of ordinary differential equations

125ϕ′
1 + 3ϕ1 = 0, 125ϕ′

2 + 3ϕ2 = 0,

f
(

t0, 4(ϕ1(t0))2, 2ϕ1(t0)ϕ2(t0)
)
= 0.

Integrating equations for ϕ1 and ϕ2 and inserting the obtained expressions into the ansatz for u(t, x)
we obtain the exact solution of initial-value problem (28),

u(t, x) = exp(−6t/125)(C1x + C2)2,

where C1, C2 are solutions of the equation

f
(

t0, 4C2
1 exp(−6t0/125), 2C1C2 exp(−6t0/125)

)
= 0.

We intend to devote one of the future publications to reduction of initial-value problems for
nonlinear evolution equations with the help of contact and potential symmetries.
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