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Abstract. In this paper, we consider operator realizations of quadratic algebras generated
by second-order superintegrable systems in 2D. At least one such realization is given for each
set of Stäckel equivalent systems for both degenerate and nondegenerate systems. In almost
all cases, the models can be used to determine the quantization of energy and eigenvalues
for integrals associated with separation of variables in the original system.
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1 Introduction

In his 1968 book Lie theory and special functions, W. Miller Jr. used function space realizations
of Lie algebras to establish a fundamental relationship between Lie groups and certain special
functions including Bessel functions, hypergeometric functions and confluent hypergeometric
functions [1]. It was further shown how the algebra relations can be used to identify special
function identities.

In this paper, we will apply these methods to the study of the representation theory for
quadratic algebras generated by second-order superintegrable systems in 2D and their associated
special functions. We would like to consider irreducible function space representations and so we
restrict the Hamiltonian to a constant times the identity and construct difference or differential
operator realizations for the elements of the algebra. We call such operator realizations models.

A classical or quantum Hamiltonian on an m dimensional Riemannian manifold, with met-
ric gjk, given respectively by

H =
1

2
gjkpjpk + V (x1, x2), H =

−~2

2
√
g
∂xj
√
ggjk∂xk + V (x1, x2)

is called superintegrable if it admits 2m−1 integrals of motion. For classical systems, we require
that the integrals be functionally independent and, for quantum systems, we require that that
they be algebraically independent within a Jordan algebra generated by xj , ∂xj and the identity.
If both of the integrals are polynomial in the momenta in the classical case and as differential
operators in the quantum case, we call the system nth-order superintegrable, where n is the
maximal order of a minimal generating set of integrals.

The study of superintegrability was pioneered by Smorodinsky, Winternitz and collaborators
in the study of multiseparable systems on real Euclidean space [2, 3]. They identified all four
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mulitseparable potentials on real Euclidean space, since named the Smorodinsky–Winternitz po-
tentials. Later, W Miller Jr. with collaborators including E. Kalnins, J. Kress, and G. Pogosyan
published a series of papers which classified all second-order superintegrable systems in 2D (see
e.g. [4, 5, 6] and references therein). In these paper, the authors proved that classical and
quantum second-order superintegrable systems are in one to one correspondence and that the
potentials are invariant with respect to scaling so that it is possible to normalize the −~2/2 term
to be 1. Thus, for the remainder of the paper we will only consider quantum systems, except to
make slight observations where the classical systems differ, and chose this normalization.

It was further shown that any second-order superintegrable system in 2D can be related,
via the Stäckel transform, to a superintegrable system on a space of constant curvature and
a complete list was given of all second-order superintegrable systems on 2D Euclidean space,
E2,C, and on the two sphere, S2,C. Since we will not use the Stäckel transform explicitly in this
paper, we refer the reader to [7, 8] and references therein for a complete exposition. We only
note here that the Stäckel transform is a mapping between Hamiltonian systems, possibly on
different manifolds, which preserves superintegrability and the algebra structure of the integrals
up to a permutation of the parameters and the energy. Thus, we can classify superintegrable
systems based on the structure of their symmetry algebra. Such classifications have been worked
out directly in [9, 10] and via the Stäckel transform [11, 12].

Most importantly for this paper, it was proved that the algebra generated by the constants of
the motion for a second-order superintegrable system closes to form a quadratic algebra. That is,
suppose H is second-order superintegrable with second-order integrals of the motion L1 and L2.
The integrals L1 and L2 will not commute and we denote their commutator by R. The algebra
to be considered is then the associative algebra generated by

A = {L1, L2, H,R ≡ [L1, L2]} .

Such an algebra is called a quadratic algebra if the commutator of any two elements can be
written as at most a quadratic polynomial in the generators. Further, since the four generators
can not be independent in the Jordan algebra generated by the operators xj and ∂xj and the
identity, there will be a polynomial relation between them.

The structure relations for our algebra are hence given by

[L1, R] = P (L1, L2, H), [L2, R] = Q(L1, L2, H), R2 = S(L1, L2, H), (1.1)

where P and Q are at most quadratic polynomials and S is at most cubic. We note that in
the classical case, we will instead have a quadratic Poisson algebra and the highest order terms
of the structure relations will be the same as in to the quantum case. If the system admits
a first-order integral X, we call the system degenerate. In this case, the potential depends only
on a single parameter and R can be expressed in terms of the basis X, L1, L2 and H [13].

The study of the the algebras generated by superintegrable systems and in particular their
representation theory has been a subject of recent study (see e.g. [14, 15, 16, 17, 18]). The main
advantage of the method of function space realization is that it can be used to find the eigenvalues
of operators other than the Hamiltonian and to compute inter-basis expansion coefficients for
the wave functions of the Hamiltonian. Further, as in the case of Lie algebras, the representation
theory for quadratic algebras, and polynomial algebras more generally, seems to be intimately
connected with special functions and their identities.

This paper is divided up into four sections. In Section 2, we give a model which realizes
the quadratic algebra associated to the singular isotropic oscillator, E1 or Smorodinsky–Winter-
nitz i. A function space representation is given including the normalization and the weight
function as well as the eigenfunctions and eigenvalues for each of the operators associated with
separation of variables in the original system. We describe how the energy values for the system
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and eigenvalues of the operators associated to separation of variables are quantized in a finite
dimensional representation. In Sections 3 and 4, we give at least one model for the algebras
associated with a representative of each Stäckel equivalence class of nondegenerate and degen-
erate systems respectively. In these sections, the model is given and we identify possible finite
dimensional representations including those are associated with quantized values of the energy.
In Section 5 there is a brief conclusion with possible future developments.

2 Exposition of a model: the singular isotropic oscillator

In this section, we shall consider the quadratic algebra associated with the system E1/Smoro-
dinsky–Winternitz i and construct an irreducible function space representation for algebra. The
Hamiltonian for this system, the singular isotropic oscillator, is

H = ∂2x + ∂2y − ω2
(
x2 + y2

)
+

1
4 − a

2

x2
+

1
4 − b

2

y2
.

The remaining generators of the symmetry algebra are,

L1 = ∂2x +
1/4− a2

x2
− ω2x2, L2 = (x∂y − y∂x)2 +

(1/4− a2)y2

x2
+

(1/4− b2)x2

y2
.

The algebra relations are, recall R ≡ [L1, L2] ,

[R,L1] = 8L2
1 − 8HL1 + 16ω2L2 − 8ω2, (2.1)

[R,L2] = 8HL2 − 8{L1, L2}+
(
12− 16a2

)
H +

(
16a2 + 16b2 − 24

)
L1, (2.2)

R2 = 8H{L1, L2} −
8

3
{L1, L1, L2}+ 16ω2L2

2 + 16
(
a2 − 1

)
H2 +

(
16a2 + 16b2 − 200

3

)
L2
1

−
(

32a2 − 200

3

)
HL1 −

176ω2

3
L2 −

4ω2

3

(
48a2b2 − 48a2 − 48b2 + 29

)
. (2.3)

In order for the representation to be irreducible, the Hamiltonian will be restricted to a con-
stant and so, in the model, the action of the Hamiltonian is represented by a constant E,
i.e. H ≡ E. Now, suppose that L1 is diagonalized by monomials, that is, it is of the form
L1 = l1t∂t+ l0 where l1 and l0 are some constants to be determined later. Suppose also that the
action of L2 on the basis of monomials is in the form of a three-term recurrence relation. From
the algebra relations, it is straightforward to see that L2 cannot be modeled by a first-order
operator or else the relations would be a Lie algebra. Thus, we take the Ansatz of a second-order
differential operator with polynomial coefficients.

The algebra relations (2.1)–(2.3) are realized by the following operators, H = E and

L1 = −4ωt∂t + E − 2ω(1 + b),

L2 =
1

2
t(8t+ 1)2∂2t −

(
16(E − 2ωb− 6ω)t2 + 2(E − 4ωb− 8ω)

ω
− 1 + b

2

)
∂t

+
2t((E − 4ω − 2ωb)2 − 4ω2a2)

ω2
− 2E(1 + b)

ω
+ 4b2 + 8b+ 5.

As was proposed in the Ansatz, L1 is diagonalized by monomials in t and further the opera-
tors L1 and L2 act as automorphisms on polynomials in t. Thus, we take the set {tk | k = 0, . . .}
to be the basis for our representation. The three-term recurrence relation generated by the
action of L2 on monomials is

L2t
n = Cn+1,nt

n+1 + Cn,nt
n + Cn−1,nt

n−1, (2.4)
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where

Cn+1,n =
2(E − 4ω − 2aω − 2bω − 4nω)(E − 4ω + 2aω − 2bω − 4nω)

ω2
,

Cn,n =
−16n2ω + (4E − 16ω(1 + b))n− 2E(1 + b) + ω(4b2 + 8b+ 5)

2ω
,

Cn−1,n =
n(n+ b)

2
.

Note that for arbitrary parameters, C−1,0 vanishes whereas Cn+1,n in general does not vanish
for any value of n and so the so the representation is infinite dimensional, bounded below. If we
make the assumption that Cn+1,n is zero for some finite integer, then we obtain quantization
conditions for the parameters and a finite representation of dimension m. In particular, we
chose to solve Cm,m−1 = 0 for the energy value E to obtain

E = −2ω(2m+ a+ b), m ∈ N. (2.5)

The potential and hence the algebra relations are symmetric under the transformation b→ −b
and a→ −a and so we could have taken the opposite sign for either a or b for the construction
of the model and hence in the resulting quantization of the energy values.

The existence of a three-term recursion formula as in (2.4) indicates the existence of raising
and lowering operators. Indeed, they are given by the following relations

A ≡ L2 +
R

4ω
− L2

1

2ω2
+

E

2ω2
L1 −

1

2
= t∂2t + (1 + b)∂t,

A† ≡ L2 −
R

4ω
− L2

1

2ω2
+

E

2ω2
L1 −

1

2

= 64t3∂2t −
32(E − 2ωb− 6ω)

ω
t2∂t +

4((E − 2ωb− 4ω)2 − 4a2ω)

ω2
t.

Here we note that if L1 and L2 are self-adjoint, A and A† will only be mutual adjoints if ω
is real, which is reflective of the physical fact that the potential will be attracting in that case.
The commutation relations of the raising and lowering operators can either be determined from
the quadratic algebra (2.1)–(2.3) or directly from the model. They are

[L1, A] = 4ωA, [L1, A
†] = −4ωA†,

[A,A†] = − 4

ω3
L3
1 +

6E

ω3
L2
1 −

2

ω3

(
E2 − 4ω2

(
a2 + b2 + 2

))
L1 −

8E(a2 − 1)

ω
.

We return to finite dimensional model where the basis of eigenvectors for L1, is given by
{φn(t) = knt

n |n = 0, . . . ,m− 1}. Let us assume the existence of an inner product for which L1

and L2 are self-adjoint, or practically, we assume A and A† are mutual adjoints. As mentioned
above, this is equivalent to L1 and L2 being self-adjoint and the constants a, b, and ω being real.
With this inner product, we can find the normalization for our eigenvectors using the raising
and lowering operators. That is, we assume

〈Atn, tn−1〉 = 〈tn, A†tn−1〉

and 〈φn, φn〉 = 1 to obtain the recursion relation as

k2n =
64(m− n)(m− n+ a)

n(b+ n)
k2n−1,
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so that

kn = 16n

√
(−m)n(−m− a)n

n!(b)n

which is real so long as a, b > 0.

From these normalization coefficients, we can find a reproducing kernel for this Hilbert
space which lies in the Hilbert space. It has the characteristic 〈δ(ts), f(t)〉 = f(s) and is given
by
∑
φn(t)φn(s) =

∑
k2n(ts)n which is exactly the hypergeometric polynomial

δ(t, s) = 2F1

(
−m, −m− a
b

∣∣∣∣∣ ts
)
.

Finally, it is possible to construct an explicit function space representation for the inner
product which will make L1 and L2 self-adjoint. We assume the inner product is of the form
〈f(t), g(t)〉 =

∫
γ f(t)g(t)ρ(t, t)dtdt where γ is a path to be determined later. We can determine

the weight function using the following relation,

〈L1f, g〉 =

∫
γ

(L1f(t))g(t)ρ(t, t)dtdt =

∫
γ
f(t)(L1g(t))ρ(t, t)dtdt = 〈f, L1g〉.

Similarly, we require 〈Af, g〉 = 〈f,A†g〉. These two integral equations can be transformed by
integration by parts into differential equation for the weight function whose solutions are

ρ(tt) = c1 2F1

(
1 +m, m+ 1 + a
1− b

∣∣∣∣∣ tt
)

+ c2(tt)
b
2F1

(
1 +m+ b, m+ 1 + a+ b

1 + b

∣∣∣∣∣tt
)
.

Finally, we note that we can also diagonalize the operator L2 in the model. The solutions of
the eigenvalue equation for L2, (L2 − λ)ψλ = 0, are hypergeometric functions, 2F1’s [19]. If we
assume the model is finite dimension and restrict E to the values in (2.5), then L2 becomes

L2 =
t(8t− 1)2

2
∂2t −

(8t+ 1)((2m+ a− 3)8t− b− 1)

2
∂t

+ 32(m− 1)(m− 1 + a)t− 4m(b+ 1)− 2ba− 2a+ 2b+
5

2
.

For a finite dimensional irreducible representation, the hypergeometric series must terminate and
we obtain a quantization relation on the eigenvalues λ = −3/2−2b−2a−4k−2ba−4bk−4ak−4k2

and the basis functions become, for k = 1, . . . ,m− 1,

ψk(t) = lk(8t+ 1)m−1−k 2F1

(
−k, −a− k
1 + b

∣∣∣∣∣− 8t

)
= lk(8t+ 1)m−1P b,ak

(
1− 8t

1 + 8t

)
.

Here the lk’s are normalization constants and P b,ak is a Jacobi polynomial.

This model is an interesting example of the simplicity of differential models. We can di-
rectly compute the eigenvalues for all the operators and the normalizations of the basis vectors.
Also, the kernel function and integral representation of the inner product give useful tools to
find expansion formulas and possible generating functions for the original quantum mechanical
problem.

In the remainder of the paper, we exhibit a function space realization for a representative of
each of the Stäckel equivalence classes of second-order superintegrable systems in 2D.
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3 Models of quadratic algebras for non-degnerate second-order
superintegrable systems

We will make use of the following conventions. On Euclidean space, the generators of the Killing
vectors are,

px = ∂x, py = ∂y, M = x∂y − y∂x.

We also define the operator p± ≡ ∂x ± i∂y.
The Laplacian on E2,C in Cartesian coordinates is

∆ ≡ ∂2x + ∂2y .

In complex coordinates, z = x+ iy, z = x− iy, we have

∆ ≡ ∂z∂z.

Or, we can take a real form in lightlike coordinates, ν = x, ζ = iy, to obtain the wave operator,

∆ ≡ ∂2ν − ∂2ζ .

For systems on the two sphere, we use the coordinates of the standard embedding of the
sphere into 3 dimensional Euclidean space. We denote these s1, s2, s3 such that s21 +s22 +s23 = 1.
The basis for the Killing vectors is

Ji =
∑
i,j,k

εijksj∂sk .

The Laplacian on S2,C is

∆S2 ≡
3∑
i=1

J2
i .

The quantum algebra structures often have symmetrized terms. We define these by {a, b} ≡
ab+ba and {a, b, c} ≡ abc+acb+bac+bca+cab+cba. Also used is the permutation sign function
εijk and εijkl, the completely skew-symmetric tensor on three or four variables respectively.

In the following sections, we exhibit irreducible representations of the quadratic algebras,
defined by relations (1.1), using both differential and difference operator realizations of the
operators acting on function spaces. Because the Hamiltonian operator commutes with all
of operators, it must be a constant for any irreducible representation and so we restrict the
Hamiltonian to a constant energy H ≡ E. We focus on models which will diagonalize operators
associated with separation of variables, since these are of immediate interest for explicit solution
of the physical system though additional models are given as well. Most of the models were
obtained by assuming a differential operator Ansatz except in the case of S9 which is realized
as a difference operator. In this case, the operators were derived from the abstract structural
relations though it is interesting to note that they also could have been obtained through the
quantization of a model for the Poisson algebra for the associated classical system [20, 21].
Unless otherwise noted, these models were first exhibited in [22].

We classify the nondegenerate systems in 2D by their Stäckel equivalence classes and identify
them by the leading order terms of the functional relation, as seen in the accompanying Table 1.
This classification comes from [11] and the nomenclature of the Ei’s comes from [4]. In this
section, we describe the symmetry operators, quadratic algebras and at least one model for each
of the equivalence classes.
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Table 1. Stäckel equivalence classes of non-degenerate systems in 2 dimensions.

Leading terms of Casimir relation System Operator models

L3
1 + f(αi, H)L2

2 E2, S1 Differential
L3
1 + f(αi, H)L1L2 E9, E10 Differential

L3
1 + 0 E15 Differential

L2
1L2 + f(αi, H)L2

2 E1, E16, S2, S4 Differential
L2
1L2 + 0 E7, E8, E17, E19 Differential

L1L2(L1 + L2) + f(αi, H)L1L2 S7, S8, S9 Difference
0 + f(αi, H)L1L2 E3, E11, E20 Differential

3.1 E2: Smorodinsky–Winternitz ii

The Hamiltonian is on real Euclidean space for real constants ω, b, c

H = ∆− ω2(4x2 + y2) + bx+
1
4 − c

2

y
.

A basis for the symmetry operators is given by H and

L1 = p2x − 4ω2x2 + bx, L2 =
1

2
{M,py} − y2

(
b

4
− xω2

)
+

(
1

4
− c2

)
x

y2
.

The symmetry algebra relations are, recall R ≡ [L1, L2],

[L1, R] = −2bH + 16ω2L2 + 2bL1, (3.1)

[L2, R] = 8L1H − 6L2
1 − 2H2 + 2bL2 − 8ω2

(
1− c2

)
, (3.2)

R2 = 4L3
1 + 4L1H

2 − 8L2
1H + 16ω2L2

2 − 4bL2H + 2b{L1, L2}
+ 16ω2

(
3− c2

)
L1 − 32ω2H − b2

(
1− c2

)
. (3.3)

The algebra relations (3.1)–(3.3) are realized by H = E and the following operators,

L1 = 4tω∂t + 2ω +
1

16

b2

ω2
,

L2 = 32ωt3∂2t +

((
16(E − 6ω) +

b2

ω2

)
t2 − b

2ω
t− 1

8

)
∂t

+
(16Eω2 − 64ω3 − b2)2 − (32ω3c)2

128ω5
t+

16Eω2 − 32ω3 − b2

128ω4
.

Here, the eigenfunctions of L1 are monomials and the action of L2 on this basis can be represented
as a three-term recurrence relation given by

L2t
n = Cn+1,nt

n+1 + Cn,nt
n + Cn−1,nt

n−1,

where

Cn+1,n =
(16Eω2 − 64ω3 − b2 − 64ω3n)2 − (32ω3c)2

16ω2
,

Cn−1,n =
n

8
, Cn,n =

b(16Eω2 − 32ω3 − b2 − 64ω2n)

128ω4
.

Notice, that C−1,0 vanishes and so our representation is bounded below. Further, if there
exists some n so that Cn+1,n also vanishes then the representation becomes finite dimensional.
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Conversely, we can assume that the representation is finite dimensional to obtain quantization
conditions on the energy. If we assume that representation space is m dimensional and spanned
by the monomials {tn |n = 0, . . . ,m−1}, then the restriction Cm,m−1 = 0 gives the quantization
of the energy values

E = 4ω(m+ 2εc) +
b2

16ω2
, m ∈ N.

Here, we can take either ε = ±1 in the energy which is consistent with the Hamiltonian depending
only c2.

Finally, we note that we can define raising and lowering operators in this model as,

A = L2 −
R

4ω
+
bL1

4ω2
− bE

4ω2
=

1

ω2
∂t,

A† = L2 +
R

4ω
+
bL1

4ω2
− bE

4ω2

= t

(
64ωt2∂3t −

128ω3(16Eω2 − 96ω3 − b2)
64ω5

t∂t +
(
16Eω2 − 64ω3 − b2

)2 − (32ω3c
)2)

.

The raising and lowering operators obey the following commutation relations

[L1, A] = −4ωA, [L1, A
†] = 4ωA†,

[A,A†] = − 3

ω
L2
1 +

32ω2 + b

8ω3
L1 −

1

8ω3

(
8E2ω2 + b2E + 32ω4

(
1− c2

))
.

3.2 E10

The Hamiltonian for this system is given by, with z = x+ iy, z = x− iy

H = ∆ + αz + β

(
z − 3

2
z2
)

+ γ

(
zz − 1

2
z3
)
.

A basis for its symmetry operators is given by H and

L1 = p2− + γz2 + 2βz,

L2 = 2i{M,p−}+ p2+ − 4βzz − γzz2 − 2βz3 − 3

4
γz4 + γz2 + αz2 + 2αz.

The algebra relations are given by

[R,L1] = −32γL1 − 32β2, [R,L2] = 96L2
1 − 128αL1 + 32γL2 + 64βH + 32α2,

R2 = 64L3
1 + 32γ{L1, L2} − 128αL2

1 − 64γH2 − 128βHL1 + 64β2L2 + 64α2L1

− 128βαH − 256γ2.

This algebra can be transformed into the Lie algebra sl2 by using the following invertible trans-
formation

K1 = L1 +
β2

γ
, K2 = L2 +

1

γ
L2
1 −

β2 + 2αγ

γ2
L1 +

2β

γ
H +

(αγ + β2)2

γ3
.

In this basis, the algebra relations reduce to a Lie algebra

[R,K1] = −32γK1, [R,K2] = 32γK2, [K1,K2] = R, (3.4)

R2 = 32γ{K1,K2} − 64γH2 − 128β(αγ + β2)

γ
H − 64(β6 + 4γ4 + α2β2γ2 + 2αβ4γ)

γ3
. (3.5)
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The algebra relations (3.4), (3.5) are realized by H = E and the following operators,

K1 = 16γ∂t, K2 = t2∂t +

(
1 +

√
−γ(γ2E + αβγ + β3)

2γ3

)
t,

R ≡ [L1, L2] = 16γ

(
2t∂t +

(
1 +

√
−γ(γ2E + αβγ + β3)

2γ3

))
.

The operator R is diagonalized by monomials tn and in this basis K1 and K2 act as lowering
and raising operators respectively. Note that K1 annihilates constants and so the representation
is bounded below. On the other hand, for a finite dimensional representation, we require that
there exist some integer m such that

K2t
m−1 =

(
m− 1 +

(
1 +

√
−γ(γ2E + αβγ + β3)

2γ3

))
tm = 0.

This leads to the quantization condition on the energy

E = 2i
√
γm− αβ

γ
− β3

γ
, m ∈ N. (3.6)

Notice that in order to obtain a real energy value we require that all the parameters be real and
that γ < 0.

It is also possible to diagonalize a linear combination of K1 and K2. For example, the solutions
of the eigenfunction equation

(K1 +K2 − λ)Ψ = 0

are

Ψ =
(
16γ + t2

)√−γ(γ2E+αβγ+β3)

4γ3 exp

(
λ

4
√
γ

arctan

(
t

4
√
γ

))
which, for finite dimensional representations where E is restricted to the value in (3.6), give
quantization conditions on the eigenvalues λ. That is, if we require that Ψ be a polynomial in t
of degree less that m we obtain a complete set of eigenfunctions given by

(K1 +K2)Ψn = λnΨn, n = 0, . . . ,m− 1,

Ψn =
(
4
√
−γ + t

)n(
4
√
−γ − t

)m−n−1
, λn = 4

√
−γ(m− 2n− 1).

Finally, we can return to the original basis of L1 and L2. In the model,

L1 = 16γ∂t −
β2

γ
,

L2 = 256γ∂2t +

(
t2 + 32α+

48β2

γ

)
∂t

+

(
1 +

√
γ(γ2E + αβγ + β3)

2γ3

)
t− 2βγ2E + α2γ2 + 4αβ2γ + 3β4

γ3
.

3.3 E15

Here

H = ∆ + h(z),
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where the potential is an arbitrary function of z. A basis for the symmetry operators is

L1 = p2−, L2 = 2i{M,p−}+ i

∫
z
dh

dz
dz.

The only nonzero algebra relation is [L1, L2] = iL1. This system is unique among all 2 dimen-
sional superintegrable systems in that the symmetry operators are not functionally linearly in-
dependent and do not correspond to multiseparability. The only separable system is determined
by diagonalizing L1, essentially z, z, and this coordinate system is not orthogonal. A model is

L1 =
d

dt
+ a, L2 = it

d

dt
+ iat,

but the irreducible representations of the algebra yield no spectral information about H. Again,
since this algebra is a Lie algebra, the above model is derivative of one found in [1].

3.4 E1, Smorodinsky–Winternitz i

This is the system considered in Section 2 and for completeness we recall the results here. The
Hamiltonian for the system is

H = ∆− ω2
(
x2 + y2

)
+

1
4 − a

2

x2
+

1
4 − b

2

y2
.

The remaining generators of the symmetry algebra are

L1 = ∂2x +
1/4− a2

x2
− ω2x2, L2 = M2 +

(1/4− a2)y2

x2
+

(1/4− b2)x2

y2
.

The algebra relations are

[R,L1] = 8L2
1 − 8HL1 + 16ω2L2 − 8ω2, (3.7)

[R,L2] = 8HL2 − 8{L1, L2}+
(
12− 16a2

)
H +

(
16a2 + 16b2 − 24

)
L1, (3.8)

R2 = 8H{L1, L2} −
8

3
{L1, L1, L2}+ 16ω2L2

2 + 16
(
a2 − 1

)
H2 +

(
16a2 + 16b2 − 200

3

)
L2
1

−
(

32a2 − 200

3

)
HL1 −

176ω2

3
L2 −

4ω2

3

(
48a2b2 − 48a2 − 48b2 + 29

)
. (3.9)

The algebra relations (3.7)–(3.9) are realized by H = E, and the following operators

L1 = −4ωt∂t + E − 2ω(1 + b),

L2 =
1

2
t(8t+ 1)2∂2t −

(
16(E − 2ωb− 6ω)t2 + 2(E − 4ωb− 8ω)

ω
− 1 + b

3

)
∂t

+
2t((E − 4ω − 2ωb)2 − 4ω2a2)

ω2
− 2E(1 + b)

ω
+ 4b2 + 8b+ 5.

As described in the previous section, the eigenvalues for L1 are monomial and the eigen-
functions for L2 are hypergeometric functions which reduce to Jacobi polynomials for finite
representations. The representation become finite dimensional under the quantization of energy
E = −2ω(2m+ a+ b), (2.5).
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3.5 E8

The Hamiltonian is

H = ∆ +
αz

z3
+
β

z2
+ γzz.

A basis for the symmetry operators is given by H and

L1 = p2− +
z4 − α
z2

, L2 = M2 + β
z

z
+ α

z2 − z2

z2
.

The algebra relations are

[R,L1] = 8L1
2 + 32αγ, [R,L2] = −8{L1, L2}+ 8bH − 16(α+ 1)L1, (3.10)

R2 = −8

3
{L1, L1, L2} −

(
16α+

176

3

)
L2
1 + 16αH2 − 64αγL2 + 16βL1H

− 64γα2 − 16γβ2 +
64

3
αγ. (3.11)

The algebra relations (3.10), (3.11) are realized by H = E and the following operators

L1 = 2
√
−αγt, L2 = −4

(
t2 − 1

)
∂2t +

((
2β√
α
− 8

)
t+

2E√
−γ

)
∂t −

(
1 +

β

2
√
α

)2

− α.

Here, the eigenfunctions of L2 are hypergeometric functions which restrict to Jacobi polynomials
under quantization of eigenvalues

L2Ψn = λnΨn, λn = −4n2 +
(8β
√
α− 16α)

4α
n− 4α2 + 4α+ 4β

√
α− β2

4α
.

The eigenfunctions are given by

Ψn = lnP
a,b
n (−t), a =

E

4
√
−γ
− β

4
√
α
, b = − E

4
√
−γ
− β

4
√
α
,

where ln is a normalization constant. The action of L1 in this model is via multiplication by
the variable t and gives a three-term recurrence formula. Note that for some quantization of the
energy the eigenfunctions become singular for all n ≥ m. This occurs under the quantization
condition m ∈ N with energy eigenvalues

E = 2
√
−γ
(

2m+ 2± β

2
√
α

)
, m ∈ N.

3.6 S9: the generic system in 2D

The Hamiltonian is

H = ∆S2 +
1
4 − a

2

s21
+

1
4 − b

2

s22
+

1
4 − c

2

s23
.

A basis for the symmetry operators is

L1 = J2
3 +

(
1

4
− a2

)
s21
s22

+

(
1

4
− c2

)
s22
s21
, L2 = J2

1 +

(
1

4
− a2

)
s23
s22

+

(
1

4
− b2

)
s22
s23
,

H = L1 + L2 + L3 +
3

4
− a2 − b2 − c2.
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The structure equations can be put in the symmetric form using the following identifications

a1 =
1

4
− c2, a2 =

1

4
− a2, a3 =

1

4
− b2,

[Li, R] = εijk (4{Li, Lk} − 4{Li, Lj} − (8 + 16aj)Lj + (8 + 16ak)Lk + 8(aj − ak)) , (3.12)

R2 =
8

3
{L1, L2, L3} − (16a1 + 12)L2

1 − (16a2 + 12)L2
2 − (16a3 + 12)L2

3

+
52

3
({L1, L2}+ {L2, L3}+ {L3, L1}) +

1

3
(16 + 176a1)L1 +

1

3
(16 + 176a2)L2

+
1

3
(16 + 176a3)L3 +

32

3
(a1 + a2 + a3) + 48(a1a2 + a2a3 + a3a1) + 64a1a2a3. (3.13)

We can obtain L1 in the model by using the following difference operator, based upon the
Wilson polynomial algebra. This model is unique in that the energy values E and eigenvalues
of the operators were used in determining the model. We define the coefficients α, β, γ and δ
as

α = −a+ c+ 1

2
− µ, β =

a+ c+ 1

2
, γ =

a− c+ 1

2
, δ =

a+ c− 1

2
+ b+ µ+ 2,

and use difference operators

TAF (t) = F (t+A), τ =
1

2t
(T 1/2 − T−1/2),

τ∗ =
1

2t

[
(α+ t)(β + t)(γ + t)(δ + t)T 1/2 − (α− t)(β − t)(γ − t)(δ − t)T−1/2

]
.

The algebra relations (3.12), (3.13) are realized by the following operators

L3 = −4t2 + a2 + c2, L1 = −4τ∗τ − 2(a+ 1)(b+ 1) +
1

2
,

H = E, E ≡ −1

4
(4µ+ 2a+ 2b+ 2c+ 5)(4µ+ 2a+ 2b+ 2c+ 3) +

3

2
− a2 − b2 − c2.

The model realizes the algebra relations for arbitrary complex µ and restricts to a finite
dimensional irreducible representation when µ = m ∈ N. In this model, we obtain spectral
resolution of L3 with delta functions as eigenfunctions. The eigenfunctions of L1 are Racah
polynomials in the finite dimensional case and Wilson polynomials for the infinite dimensional,
bounded below case. This model was first published in [23] where the model was worked out in
full generality including the normalizations and the weight functions. It has also been recently
been extended to the 3D analog in [16].

3.7 E20: Smorodinksy–Winternitz iii

The Hamiltonian is

H = ∆ +
4√

x2 + y2

α+ β

√√
x2 + y2 + x√
x2 + y2

+ γ

√√
x2 + y2 − x√
x2 + y2

 .

In parabolic coordinates (x′, y′), with x′ =
√
x2 + y2 + x, y′ =

√
x2 + y2 − x, the Hamiltonian

can be written as

H =
1

x′2 + y′2
(
∂2x′ + ∂2y′

)
+

4(α− βx′ − γy′)
x′2 + y′2

,
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The integrals are

L1 =
1

x′2 + y′2
(
y′2∂2x′ − x′2∂2y′ − 2α

(
x′2 − y′2

)
− 4βx′y′2 + 4γx′2y′

)
,

L2 =
1

x′2 + y′2
(
−x′y′

(
∂2x′ + ∂2y′

)
+
(
x′2 + y′2

)
∂x′∂y′ − 4αx′y′ + 2

(
x′2 − y′2

)
(y′β − x′γ)

)
.

The algebra relations are given by,

[R,L1] = −4L2H + 16βγ, [R,L2] = 4L1H − 8
(
β2 − γ2

)
, (3.14)

R2 = 4L2
1H + 4L2

2H + 4H2 − 16α2H + 16
(
γ2 − β2

)
L1 − 32βγL2 − 32α2

(
β2 + γ2

)
. (3.15)

Notice, these restrict to a Lie algebra on a constant energy surface, H = E, and so the model
described below is not new but, for example, can be derived from those given in [1].

The algebra relations (3.14), (3.15) are realized by H = E and the following operators,

L1 = −2
√
Et∂t −

√
E + 2α+ 4

β2

E
,

L2 = −1

2
Et2∂t + 2∂t −

1

2
tE +

√
Eat+

(
β2√
E

+
γ2√
E

)
t− 4

βγ√
E
.

Here L1 is diagonalized by monomials tn and the action of L2 on monomials is given by the
following three-term recursion formula

L2t
n = Cn+1,nt

n+1 + Cn,nt
n + Cn−1,nt

n−1

with

Cn+1,n = −(n+ 1)E +
α√
E

+
β2 + γ2√

E
, Cn,n =

4βγ

E
, Cn−1,n = 2n.

Notice, that C−1,0 vanishes for arbitrary parameters and so our representation is bounded
below. On the other hand, if we require that the representation be finite dimensional, say of
dimension m, we obtain the restriction

−mE + 2
√
Ea+

β2√
E

+
γ2√
E

= 0, m ∈ N, (3.16)

which gives the quantized restrictions on the energy.

The eigenfunctions for L2 are given by

Ψ =
(
Et2 − 4

)E− 3
2 (Eα+β2+γ)− 1

2 exp

(
λE − 4βγ

E
3
2

arctanh

(√
Et

2

))
,

where L2Ψ = λΨ. If we assume that the model is finite dimensional, i.e. that the energy value E
satisfies (3.16), then the eigenvalues are quantized as

λ = λn ≡
4βγ

E
+ (m− 1− 2n)

√
E

and there exists a complete set of eigenfunctions Ψn satisfying

L2Ψn = λnΨn, Ψn =
(√
Et− 2

)m−n−1(√
Et− 2

)n
.
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This model admits raising and lowering operators,

A = L2 +
R

2
√
E
− βγ

E
= 4∂t,

A† = L2 −
R

2
√
E
− βγ

E
= −Et2∂t +

2αE − E
3
2 + 2β2 + 2γ2√
E

t,

which satisfy the commutation relations

[A,L1] = −2
√
EA, [A†, L1] = 2

√
EA†,

[A,A†] = −2L2
1 +

β2 − γ2

E
L1 − 2E + 8α2 +

16α(β2 + γ2)

E
+

32β2γ2

E2
.

4 2D degenerate systems

Next, we consider degenerate systems whose symmetry algebra includes a first-order integral, X.
As described above, this requires that the potential depend on only one parameter, not including
the trivial additive constant. In these systems, the symmetry algebra is defined by the operators
H, L1, L2 and X. It is always possible to rewrite the commutator R = [L1, L2] as a polynomial
in the other operators of maximal degree 3 in X and 1 in L1, XL1, L2, XL2, H and XH. In
these systems, the commutation relations are in terms of X instead of R. That is, the defining
relations are

[L1, X] = P1

(
L1, L1, X

2, X,H
)
, [L1, X] = P2

(
L1, L1, X

2, X,H
)
,

[L1, L2] = Q
(
X3, XL1, XL2, XH,L1, L2, H,X

)
.

Here, the Pi’s and Q are linear in the arguments. Furthermore, the functional relation is no
longer in terms of R2 but instead a fourth-order identity.

We begin with the table of the equivalence classes of degenerate systems; there are exactly 6
degenerate systems in 2 dimensions.

Table 2. Stäckel equivalence classes of degenerate systems which admit a Killing vector X, in 2D.

Leading order terms System Operator models

0 + L1L2 +AX2 E3, E18 Differential
X4 + L1L2 S3, S6 Differential and Difference
X4 +X2L1 + L2

2 + 0 E12, E14 Differential
0 +X2L1 + L2

2 +AL1 E6, S5 Differential
X4 + L2

1 E5 Differential
0 +X2L1 + L2 E4, E13 Differential

4.1 E18: the Coulomb system in 2D

This system is defined by the Hamiltonian

H = ∆ +
α√

x2 + y2
.

A basis for the symmetry operators is formed by H, X = M and

L1 =
1

2
{M,px} −

αy

2
√
x2 + y2

, L2 =
1

2
{M,py} −

αx

2
√
x2 + y2

.
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The symmetry algebra is defined by the following relations

[L1, X] = L2, [L2, X] = −L1, [L1, L2] = HX, (4.1)

L2
1 + L2

2 −HX2 +
H − α2

4
= 0. (4.2)

We can change basis so that the algebra is in the standard form of the Lie algebra sl2. With
the substitutions A = L1 + iL2, A

† = L1 − iL2 the algebra relations (4.1), (4.2) become,

[A,X] = −iA, [A†, X] = iA†, [A,A†] = 2iHX, (4.3)

{A,A†} − 2HX2 +
H

2
− α2

2
= 0. (4.4)

The Lie algebra defined by (4.3), (4.4) is realized by H = E and the following operators

X = −i
(
t∂t +

1

2
+

α

2
√
E

)
, A =

E

4
∂t, A† = −4t

(
t∂t + 1 +

α√
E

)
.

The operator X is diagonalized by monomials tn and for arbitrary E and α the representa-
tion is infinite and bounded below. Finite dimensional representation occur if A† annihilates
a monomial. That is

A†tm−1 = −4(Em− α
√
E)

E
tm = 0

when the energy value E takes the values

E =
α2

m2
, m ∈ N.

Again, since this algebra is a Lie algebra the model employed is not new.

4.2 S3

This system is defined by the Hamiltonian

H = ∆S2 +
1
4 − a

2

s23
.

A basis for the symmetry operators is formed by H, X = J3 and

L1 = J2
1 +

(14 − a
2)s22

s23
, L2 =

1

2
(J1J2 + J2J1)−

(14 − a
2)s1s2

s23
.

The algebra relations are given by

[L1, X] = 2L2, [L2, X] = −X2 − 2L1 +H + a2 − 1

4
, (4.5)

[L1, L2] = −{L1, X}+
(
2a2 − 1

)
X, (4.6)

1

6
{L1, X,X} −HL1 + L2

2 + L2
1 −

(
a2 − 7

6

)
X2 −

(
a2 +

5

12

)
L1

+
H

6
− 5

24

(
4a2 − 1

)
= 0. (4.7)

The algebra relations (4.5)–(4.7) are realized by H = E and the following operators

X = 2it∂t + ic0,
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L1 = t(t+ 1)2∂2t + (t+ 1)(c1t+ c1 + 2c0 − 1)∂t

+

(
c21 +

3c20
2
− 2c0c1 + 3c0 − 3c1 −

a2

2
+
E

2
+

19

18

)
t+

a2 + c20 + E

2
− 1

8
,

L2 = −i(t3 − t)∂2t − i
(
c1t

2 + 2 + 2c0 − c1
)
∂t

− i
(
c21 +

3c20
2
− 2c0c1 + 3c0 − 3c1 −

a2

2
+
E

2
+

19

18

)
t,

where, for compactness of the equations, we have chosen constants c0, c1 as

c0 = a− 1 +

√
4E − 1

2
,

c1 =
3

4

(
2a+

√
4E − 1

)
+

1

4

√
4a2 + 16a− 12E − 13− 4(a− 2)

√
4E − 1.

In the model, X is diagonalized with monomials and both L1 and L2 have a three-term recurrence
relation in this basis given by

L1t
n = Cn+1,nt

n+1 + Cn,nt
n + Cn−1,nt

n−1, (4.8)

L2t
n = iCn+1,nt

n+1 − iCn−1,ntn−1, (4.9)

with

Cn+1,n = n2 + (c1 − 1)n+ c21 +
3c20
2
− 2c0c1 − 3c1 + 3c0 −

a2 + E

2
+

19

8
,

Cn,n = 2n2 + 2nc0 +
c20 + E + a2

2
− 1

8
, Cn−1,n = n(n− c1 + 2c0 + 1).

Note that, for arbitrary parameters, C−1,0 vanishes and so the model is bounded below. On the
other hand, if we require that the representation space be finite dimensional, i.e. Cm,m−1 = 0,
we obtain the quantization condition

E = −(m− a)2 +
1

4
, m ∈ N. (4.10)

As can be seen directly form the three-term recurrence formulas (4.8) and (4.9), there exist
raising and lowering operators given by

A† = L1 + iL2 +
1

2

(
X2 − E +

1

4
− a2

)
, A = L1 − iL2 +

1

2

(
X2 − E +

1

4
− a2

)
.

The symmetry algebra of the raising and lowering operators is given by

[A,X] = 2iA, [A†, X] = −2iA†,

{A,A†} − 1

2
X4 +X2

(
E − a2 +

11

4

)
+

1

32

(
4E + 4a2 + 8a+ 3

)(
E + 4a2 − 8a+ 3

)
= 0.

There is also a difference operator model associated with the spectral resolution of L1. The
operators are formed from the operators T k defined as T kf(t) = f(t + k). When restricted to
finite dimensional representations, i.e. the energy E takes the values as in (4.10), the algebra
relations (4.5)–(4.7) are realized by

L1 = −t2 + a2 − 1

4
,

−iX =
(1/2− a− t)(m+ a− 1/2− t)

2t
T 1 − (1/2− a+ t)(m+ a− 1/2 + t))

2t
T−1,
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L2 =
(1− 2t)(1/2− a− t)(m+ a− 1/2− t)

4t
T 1

+
(1 + 2t)(1/2− a+ t)(m+ a− 1/2 + t))

4t
T−1.

The eigenfunctions of L1 are delta functions and the eigenfunctions of L2 are dual Hahn polyno-
mials. This model was first published in [20] where the model was worked out in full generality
including the normalizations and the weight functions.

4.3 E14

The Hamiltonian is, with z = x+ iy, z = x− iy,

H = ∆ +
α

z2
.

A basis for the symmetry operators is formed by H, X = p− and

L1 =
1

2
{M,p−}+

α

iz
, L2 = M2 +

αz

z
,

The symmetry algebra is

[X,L1] = iX2, [X,L2] = 2iL2, [L1, L2] = i{X,L2}+
i

2
X, (4.11)

L2
1 −

1

2
{L2, X

2}+ αH − 5

4
X2 = 0. (4.12)

The algebra relations (4.11), (4.12) are realized by H = E and the following operators

X =
1

t
, L1 = i∂t, L2 = −t2∂2t − 2t∂t + αEt2 − 1

4
.

Eigenfunctions for L2 are Bessel functions while eigenfunctions of L1 are exponentials both with
continuous spectrum. This model has no obvious finite dimensional restrictions.

4.4 E6

The Hamiltonian is

H = ∆ +
1
4 − a

2

x2
.

A basis for the symmetry operators is formed by H, X = py and

L1 =
1

2
{M,px} −

(14 − a
2)y

x2
, L2 = M2 +

(14 − a
2)y2

x2
,

The algebra relations are given by

[L1, X] = H −X2, [L2, X] = 2L1, [L1, L2] = {X,L2}+ (1− 2a)X, (4.13)

L2
1 −HL2 − 2{L1, X}+

H

2
+

(
1

2
− a2

)
X2 = 0. (4.14)

The algebra relations (4.13), (4.14) are realized by H = E and the following operators

X =
√
E
(
t2∂t + (a+ 1)t+ 1

)
,

L1 = −
√
E
(
t3∂2t + ((2a+ 3)t+ 2)t∂t + (a+ 1)2t+ a+ 1

)
,
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L2 = −t2∂2t − 2((a+ 1)t+ 1)∂t − a−
1

2
.

Note that the operators X, L1 and L2 act on monomials tn via three-term recurrence relations

Xtn =
√
E(n+ a+ 1)tn+1 +

√
Etn,

L1t
n = −

√
E(n+ a+ 1)2tn+1 −

√
E(2n+ a+ 1)tn,

L2t
n = −

(
n2 + (n+ 2a) + a+

1

2

)
tn − 2ntn−1.

Thus, the model can be realized as a bounded below representation using the set of mono-
mial {tn |n ∈ N}. The representation will become finite dimensional, with dimension m if the
parameter a is restricted to quantized values a = −m. Notice, a constant is quantized instead
of the energy which does not make sense in the physical system, since the constants should be
given by the system. However, under a Stäckel transform the constant and the energy will be
interchanged so our model is giving quantization levels of the energy of a Stäckel equivalent
system; in this case, S5. The eigenfunctions of L1 are gauge equivalent to Laguerre polynomials
with eigenvalues

√
E(2n−m+ 1). The eigenfunctions of L2 are gauge equivalent to generalized

Laguerre polynomials with eigenvalues m2 − k2 + k − 1
2 .

4.5 E5

The Hamiltonian is

H = ∆ + αx.

A basis for the symmetry operators is formed by H, X = py and

L1 = pxpy +
1

2
αy, L2 =

1

2
{M,py} −

1

4
αy2,

The algebra relations are given by

[L1, X] = −α
2
, [L2, X] = L1, [L1, L2] = 2X3 −HX, (4.15)

X4 −HX2 + L2
1 + αL2 = 0. (4.16)

The algebra relations (4.15), (4.16) are realized by H = E and the following operators,

X = t, L1 = −α
2
∂t, L2 = −1

4
α∂2t +

1

α
t2
(
E − t2

)
.

Here the only nontrivial eigenfunction is that of L2 which gives solutions of the triconfluent
Heun equation. This model gives no obvious finite dimensional restrictions.

4.6 E4

The Hamiltonian is

H = ∆ + α(x+ iy).

A basis for the symmetry operators is formed by H, X = p+ and

L1 = p2x + αx, L2 =
1

2
{M,p+}+

iα

4
(x+ iy)2,
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The algebra relations are given by

[L1, X] = −α, [L2, X] = iX2, [L1, L2] = −iX3 − iHX + i {L1, X} , (4.17)

X4 − 2

3
{L1, X,X}+ 2HX2 +H2 + 4αiL2 = 0. (4.18)

The algebra relations (4.17), (4.18) are realized by H = E and the following operators

X = iαt, L1 = i∂t +
E

2
, L2 = −αt2∂t +

iα4t4 − 4α2t+ iE2

4α
.

This model gives no obvious finite dimensional restrictions and the basis for the representation
can be chosen as exponential functions.

5 Conclusion

In this paper, we have demonstrated at least one function space realization for each class of
Stäckel equivalence superintegrable systems. We have shown that these quadratic algebras are
related to various families of special functions and orthogonal polynomials.

There are several possible directions that this analysis can be extended and the model de-
scribed above can be further applied and analyzed. One possible direction, is to use the fact
that there exist appropriately chosen limit processes which takes superintegrable system S9 on
the sphere to all other superintegrable systems in 2D (see e.g. [24, 25]). It would be interesting
to see how these limits are manifested at the level of the algebras and particularly the models.
Also of interest would be to consider the restrictions from nondegenerate to degenerate systems
and to study the effect of such a limit on the models.

These methods can also be applied to the construction and analysis of quadratic algebras
generated by superintegrable systems in higher dimensions. In particular, the quadratic algebras
for all real nondegenerate 3D superintegrable systems were shown to contain various copies of
quadratic algebras from two dimensional systems [26]. As was the case in [16, 27], the models for
the 2D system can be used as a basis for the models of the 3D system. It would be interesting
to see how the algebra decomposed with respect to the subalgebras and whether that has any
effect on the models obtained and possible special function relations.
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