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Abstract. The projective metrizability problem can be formulated as follows: under what
conditions the geodesics of a given spray coincide with the geodesics of some Finsler space,
as oriented curves. In Theorem 3.8 we reformulate the projective metrizability problem for
a spray in terms of a first-order partial differential operator P, and a set of algebraic con-
ditions on semi-basic 1-forms. We discuss the formal integrability of P using two sufficient
conditions provided by Cartan—Ké&hler theorem. We prove in Theorem 4.2 that the symbol
of P is involutive and hence one of the two conditions is always satisfied. While discussing
the second condition, in Theorem 4.3 we prove that there is only one obstruction to the
formal integrability of P;, and this obstruction is due to the curvature tensor of the in-
duced nonlinear connection. When the curvature obstruction is satisfied, the projective
metrizability problem reduces to the discussion of the algebraic conditions, which as we
show are always satisfied in the analytic case. Based on these results, we recover all classes
of sprays that are known to be projectively metrizable: flat sprays, isotropic sprays, and
arbitrary sprays on 1- and 2-dimensional manifolds. We provide examples of sprays that are
projectively metrizable without being Finsler metrizable.

Key words: sprays; projective metrizability; semi-basic forms; partial differential operators;
formal integrability
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1 Introduction

The projective metrizability problem for a homogeneous system of second-order ordinary diffe-
rential equations, which can be identified with a spray .S, seeks for a Finsler metric F' whose
geodesics coincide with the geodesics of the spray S, up to an orientation preserving reparame-
terization. For the case when S is a flat spray this problem was first studied by Hamel [16]
and it is known as the Finslerian version of Hilbert’s fourth problem [1, 11, 30]. In the general
case it was Rapcsdk [27] who obtained, in local coordinates, necessary and sufficient condi-
tions for the projective metrizability problem of a spray. Global formulations for the projec-
tive metrizability problem where obtained by Klein and Voutier [17], and by Szilasi and Vat-
tamdny [31]. It has been shown that this is an essential problem in various fields of biology and
physics [3].

The projective metrizability problem can be formulated as a particular case of the inverse
problem of the calculus of variations. We refer to [2, 8, 19, 25, 28] for various approaches of
the inverse problem of the calculus of variations. One of this approaches seeks for the exis-
tence of a multiplier matrix that satisfies four Helmholtz conditions [19, 28]. In [5], these four
Helmholtz conditions where reformulated in terms of a semi-basic 1-form. For the particular
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case of the projective metrizability problem, it has been shown in [5] that only two of the four
Helmholtz conditions are independent. In this work we discuss the formal integrability of these
two Helmholtz conditions using two sufficient conditions provided by Cartan—Kahler theorem.
The approach in this work follows the one developed in [26] for studying the Finsler metrizability
problem for a spray.

In Section 2 we recall first some basic aspects of the Frolicher—Nijenhuis theory on a mani-
fold M [13, 18]. Then, we use this theory on 7'M and apply it to the natural objects that live on
the tangent space: vertical distribution, Liouville vector field, and semi-basic forms [14, 15, 20].

In Section 3 we use the geometric setting developed in the previous section to reformulate
the projective metrizability problem. In Theorem 3.8 we obtain a set of necessary and sufficient
conditions, for the projective metrizability problem of a spray, which consists of a set of alge-
braic equations (3.7) and a set of differential equations (3.8) on semi-basic forms. The set of
differential equations determine a first-order partial differential operator Py, called the projec-
tive metrizability operator, which acts on semi-basic 1-forms.

In Section 4 we discuss the formal integrability of the projective metrizability operator Pi,
using two sufficient conditions provided by Cartan—Kahler theorem. Based on this theorem and
Theorems 4.2 and 4.3 we conclude that there is only one obstruction to the formal integrability
of P;. This obstruction is expressed in terms of the curvature tensor of the nonlinear connection
induced by the spray. In this work we pay attention to various cases when the obstruction
condition is automatically satisfied. Another possibility, which we leave for further work, is to
add this obstruction to the projective metrizability operator and discuss the formal integrability
of the new operator. Using different techniques, an alternative expression of the obstruction
condition was obtain in [31, Theorem 4.9].

In Section 5 we discuss some classes of sprays for which the curvature obstruction is automat-
ically satisfied: flat sprays, isotropic sprays, and arbitrary sprays on 2-dimensional manifolds.
For each of these classes of sprays, the projective metrizability problem reduces to the discussion
of the algebraic conditions (3.7), which as we show are always satisfied in the analytic case. Al-
though, for these classes, the projective metrizability problem has been discussed before by some
authors, our approach in this work is different. Using different methods, it was demonstrated
in [9] that flat sprays are projectively metrizable. In [10] it has been shown that isotropic sprays
are projectively equivalent with flat sprays, and hence are projectively metrizable. On a 2-
dimensional manifold it has been shown by Matsumoto that every spray is projectively related
to a Finsler space [22], by extending the original discussion of Darboux [12] about second-order
differential equations.

We use a spray on a 2-dimensional, considered by Anderson and Thompson in [2], and
a projectively flat spray of constant flag curvature, considered by Yang in [32], to provide
examples of projectively metrizable sprays that are not Finsler metrizable.

2 Preliminaries

In this section we present the differential geometric tools we need to formulate and study the
projective metrizability problem.

A systems of second-order ordinary differential equations on a manifold M can be iden-
tified with a second-order vector field that is called a semispray. To each semispray one
can associate a geometric apparatus very useful to obtain qualitative information regarding:
the variations of its geodesics, their stability, as well as the inverse problem of the calcu-
lus of variations, [4]. A global formulation for the geometric apparatus one can associate to
a semispray is due to Grifone [14] and can be obtained using the Frolicher—Nijenhuis theo-
ry [13].
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2.1 Frolicher—Nijenhuis theory

In this subsection we recall and extend some aspects of the Frolicher—Nijenhuis theory, which
will be applied in the next subsection to vector valued differential forms on tangent bundles. For
the classic and modern formulations of Frolicher—Nijenhuis theory we refer to [13, 14, 15, 18, 20].

In this work M is a real, n-dimensional, smooth manifold. We denote by C*°(M), the ring
of smooth functions on M, and by X(M), the C°°(M)-module of vector fields on M. Consider
A(M) = @cy A¥(M) the graded algebra of differential forms on M. We denote by S*(M) the
space of symmetric (0,k) tensors on M. We also write (M) = @,y V*(M) for the graded
algebra of vector-valued differential forms on M.

For L € W!(M), a vector valued I-form, we consider 7, : A'(M) @ A¥(M) — A*Y(M), or
7 WHM) @ UF(M) — WEH(M), the alternating operator defined as

1
(rLB) (X1, Xkt) = oy > @) BIL(Xow)s - s Xo)s Xos1) - > Xork))s (2:1)

’ O'ESk+l

where X71,..., Xp1; € X(M) and Sk, is the permutation group of {1,...,k +{}.

The restriction of 77, to A¥TY(M) c AY(M) @ A¥(M), or the restriction to WFT1(M), is
a derivation of degree (I — 1) and it coincides with the inner product ir, see [15, 18]. Inner
product iy, is trivial on A%(M) = C°°(M), or WO(M) = X(M), and hence it is a derivation
of type i, [15] or an algebraic derivation [18]. Since it satisfies the Leibniz rule, iz, is uniquely
determined by its action on A (M), or W!(M), when it is given by i, B = BoL. For the particular
case when | = 1 and L = Id we have that ilqB = kB for all B € A*(M), or B € U*(M).

For a linear connection V on M consider dv : W¥(M) — Wk+1(M) the covariant exterior
derivative, see [18, § 11.13], given by

k+1
dVB(X1,..., Xpp1) = D _(-D)'Vx,B(Xy,..., Xy, Xi41)
1=1
+ > (C)YB(X X)X, X X X)) (222)
1<i<j<k+1

The exterior derivative d : A¥(M) — AFT1(M) satisfies also formula (2.2) for B € A*(M).
Therefore, we will use the notation dV to refer to both, the covariant exterior derivative, or the
exterior derivative. For the latter case d = dV does not depend on the linear connection V.

For a vector valued [-form L, consider the commutator of the inner product i; and the
(covariant) exterior derivative d (dV). This differential operator is denoted by dr, : AF(M) —
AR (dY - Ok (M) — WFH(M)), it is given by

dY =ipod” +(=1)'d¥ oip, (2.3)

it is a derivation of degree [, which is called the (covariant) exterior derivative with respect to L.
Derivation d, (dY) commutes with the exterior derivative d (dV) and hence it is a derivation
of type d. [15] or a Lie derivation [18]. Since it satisfies the Leibniz rule, df, (dY) is uniquely
determined by its action on AY(M) = C>°(M) (¥9(M) = X(M)). For the particular case when
[ =1 and L = Id we have that dlvd = dV. Therefore, we obtain d¥ Id = T, where T is the torsion
of the linear connection V.

For two vector valued forms L € W!(M) and K € W*(M), their Frolicher-Nijenhuis bracket
[L, K] is a vector valued (k + [)-form, defined by

dip k) = dp o dx — (=1)Mdg o dp. (2.4)
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For a vector valued [-form L and a linear connection V on M we obtain a derivation of
degree [ given by Dy, = 71 V. Hence, Dy, : A¥(M) — A*U(M) (Dr : UF(M) — UFH(M)), acts
on (vector-valued) k-forms as follows:

1
(DLB) (X1, X)) = T Z () (Vix,aymXow)B) (Ko@) Xo@ein) - (2:5)

0ESK11

For the particular case when [ = 1 and L = Id, we denote the corresponding derivation of
degree 1 by D = Dyq. Since any derivation of degree [ can be uniquely decomposed into a sum
of a Lie derivation and an algebraic derivation [18, § 8.3], we obtain for Dy, the following result.

Lemma 2.1. For a vector valued l-form L and a linear comnection V on M, derivation of
degree |, Dy, decomposes uniquely into a sum of a Lie derivation and an algebraic derivation as
follows:

Proof. When acting on forms, formula (2.6) reads Dy, = dr, — iqy 14- The vector valued (14 1)-
form that defines the inner product in formula (2.6) is, according to formula (2.3), given by
dY Id =i T + (—1)'dV L.

Since Lie derivations commute with the exterior derivative dV and satisfy the Leibnitz rule
it follows that they are uniquely determined by their action on A°(M) = C®(M) (¥°(M) =
X(M)). Using formulae (2.3) and (2.5) one can immediately check that Dpf = drf for any
scalar (vector valued) O-form f.

Since algebraic derivations are trivial on A°(M) = C®°(M) (¥°(M) = X(M)), and satisfy the
Leibnitz rule it follows that they are uniquely determined by their action on A'(M) (U1 (M)).
To prove formula (2.6) we have to show that

(D —dY )w = —wo (dy 1d),

for any (vector valued) 1-form w. Since formally, we have the same formulae to define the action
on scalar, or vector valued forms, we will work with scalar forms.

Let w € AY(M) and Xi,...,X;41 € X(M). For k = 1, from formula (2.5) we obtain the
action of the derivation Dy, on 1-forms as follows:

+1
(DLCL)) (X17 tee 7‘Xl+1) = Z(_l)l+1il (vL(Xl,...7Xi7...,Xl+1)w) (XZ)
=1
I+1 ' A
=3 L K X)) @) — @ (Vs i) - 27)
i=1

From formula (2.3) we obtain that the action of the exterior derivative dz, on a 1-form w is
given by drw = irdw + (—1)!d(w o L). Therefore, for X1,..., X;41 € X(M) we have

1+1
(dpw) (X1, Xpgn) = > (=D)L, Xy X)) (0(XG))
=1
I+1 )
+Z D (X, L(X L, X X)) (2.8)

+ Z (—1)FHG(L(X, X5), X1y Xy Xy, X))
1<i<j<i+1

Now, we evaluate dg Id =47+ (—=1)!'dVL on [ + 1 vectors Xi,..., X1 € X(M).
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For k = 1, if we restrict the action of 77, given by formula (2.1) to W?(M) we obtain that the
inner product iy, : W2(M) — WHL(M) is given by:

I+1

(iT) (Xl, e Xl+1) = Z(—l)liiT(Xi, L(Xl, e X, 7Xl+1))~ (29)
i=1

Using formula (2.2), the action of the exterior covariant derivative d¥ on the vector valued
[-form L is given by

I+1
dVL(Xy, .. X)) =Y ()M L(X, . X Xg)

=1
+ Y (CD)TL(X X)L X, XL X X)), (2.10)
1<i<j<l+1

Using formulae (2.7), (2.8), (2.9), and (2.10) it follows that
(Drw —dpw) (Xi,..., Xpy1) = — (w o (i,T + (-Dlde)) (X155 Xig),

for all Xi,..., X1 € X(M), which means that the decomposition (2.6) is true. |

For the particular case when [ = 1 and L = Id, we have that the vector valued 2-form dIVd Id
reduces to torsion T since igT = 27T, d¥ Id = T. Therefore, decomposition (2.6) becomes

D=d—ir.

Remark 2.2. Formula (2.6) shows that the difference of the two derivations di, — Dy, =i dy 1d

is an algebraic derivation. In other words, if w € Ak(M ) vanishes at some point p € M, w, = 0,
then (Drw), = (drw)p. For the particular case when [ = 1, this result has been shown in [15,
Proposition 2.5].

2.2 Vertical calculus on TM and semi-basic forms

Consider (T'M,m, M), the tangent bundle of the manifold M and (T'M \ {0}), 7w, M) the slashed
tangent bundle, which is the tangent bundle with the zero section removed. The tangent bundle
carries some canonical structures, such as the vertical distribution, the Liouville vector field, and
the vertical endomorphism. The differential calculus associated to these structures, using the
Frolicher—Nijenhuis theory developed in the previous subsection, plays an important role in the
geometry of a system of second-order ordinary differential equations, [4, 5, 14, 15, 17, 20, 24].

The vertical subbundle is defined as VI'M = {{ € TTM, (D)(§) = 0}. It induces a vertical
distribution V : u € TM — V,, = VI'M NT,TM. This distribution is n-dimensional and it is
integrable, being tangent to the leaves of the natural foliation induced by submersion 7. If ()
are local coordinates on the base manifold M, we denote by (x?,%%) the induced coordinates
on TM. It follows that y' are coordinates along the leaves of the natural foliation, while 2* are
transverse coordinates for the foliation. We denote by XV(T'M) the Lie subalgebra of vertical
vector fields on T'M. An important vertical vector field on T'M is the Liouville vector field,
which locally is given by C = y*3/0y".

The tangent structure (or vertical endomorphism) is the (1,1)-type tensor field J on TM,
which locally can be written as follows:

0 ® dz’.

J=—
oy’
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Tensor J satisfies J?> = 0 and KerJ = ImJ = VT M. Tangent structure J is an integrable
structure since the Frolicher-Nijenhuis bracket vanishes, [J, J] = 0. As a consequence and using
formula (2.4) we have that d% = 0.

For the natural foliation induced by submersion 7 and the corresponding vertical distribution
there are some important classes of forms: basic and semi-basic forms. As we will see in the next
sections, semi-basic forms, vector valued semi-basic forms, and vector valued almost semi-basic
forms are important ingredients to formulate and address the projective metrizability problem.

Definition 2.3. Consider w € A(T'M) and L € ¥(T'M).

i) w is called a basic form if both w and dw vanish whenever one of the arguments of w
(respectively dw) is a vertical vector field.

ii) w is called a semi-basic form if it vanishes whenever one of its arguments is a vertical
vector field.

iii) L is called a vector valued semi-basic form if it takes vertical values and vanishes whenever
one of its arguments is a vertical vector field.

iv) L is called a vector valued almost semi-basic form if it vanishes whenever one of its argu-
ments is a vertical vector field and for every vertical vector field X € XY(TM) we have
that Lx L is a vector valued semi-basic form.

In local coordinates a basic k-form w on T'M can be written as

1 . .
w= Hwilmik (x)dz"™ A -+ Adx'®.

For basic forms, the coordinates functions wj, _;, (z) are basic functions, which means that they
are constant along the leaves of the natural foliation.
Locally, a semi-basic k-form w on T'M can be written as
1 i ix
w= ywilmik(azjy)dx A Ndx'®, (2.11)
We will denote by A¥(T'M) the set of semi-basic k-forms on TM. A 1-form w on T'M is semi-basic
if and only if i;w =wo J = 0.
In local coordinates, a vector valued semi-basic [-form L on T'M can be written as
L= 5L (w,y)a—yj ®dz™ A A da (2.12)
In this work all contravariant or covariant indices, of some tensorial coefficients, that refer to
vertical components will be underlined. We will denote by W!(TM) the set of vector valued
semi-basic I-forms on T'M. A vector valued 1-form L on T'M is semi-basic if and only if JoL =0
and iyL = Lo J = 0. The tangent structure J is a vector valued semi-basic 1-form.
Locally, a vector valued almost semi-basic I-form L on T'M can be expressed as

1 0 , N 0 , ,
L= l—!Lglmil (w)@ @dx"™ A+ Ada + l—!Lglmil (x, y)a—y] Qdx"™ A Adx. (2.13)
For a vector X on T'M and a vector valued [-form L on TM, the Frolicher—Nijenhuis bracket
[X, L], defined by formula (2.4), is a vector valued I-form on T'M given by:

l
X, L)Xy, X)) = (X, L(Xy, . X)) = DO L(X, X)X, Xy XD,

i=1
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for X1,...,X; vector fields on T'M. Using the above formula and the fact that the vertical
distribution is integrable it follows that vector valued semi-basic forms are also almost semi-
basic. This can be seen also from the local expressions (2.12) and (2.13).

Next two lemmas give a good motivation for considering the class of vector valued almost
semi-basic forms. We will also see in Section 4 that the partial differential operator we use to
discuss the projective metrizability problem is defined in terms of some vector valued almost
semi-basic forms.

Lemma 2.4. Let L be a vector valued almost semi-basic [-form on T M. Then, the differential
operator dy, preserves semi-basic forms, d : A¥(TM) — AM(TM).

Proof. Consider a vector valued almost semi-basic I-form L, locally given by formula (2.13),
and a semi-basic k-form w, locally given by formula (2.11). Since dy, is a derivation of degree [,
it follows that the (k + l)-form drw can be expressed locally as follows

1 ) .
drw = Hd,;(wil...ik) Adzt A A dx'

k
1 . ) ) )
+ 0 > (—1)U Vi, g da™ A Adpdat A A dat (2.14)
| &

Using the assumption that L is a vector valued almost semi-basic form, we show that all terms
in the right hand side of the above formula are semi-basic forms. Since L vanishes whenever
one of its arguments is a vertical vector field it follows that for a function f € C°°(TM),
drf =irdf = df o L is a semi-basic [-form. Hence dr,(w;,...;, ) are semi-basic [-forms.

We will prove now that dpdaz’ = (—1)'ddpz% are semi-basic (I 4 1)-forms. Using the local
expression (2.13) of L, we have

drx¥ =ipdz’ =dz" oL = ZTLZ” (x)dz"* A+ Ada",

which are basic I-forms. Therefore, dd;x% are basic and hence semi-basic (I + 1)-forms. One

can conclude now that all terms in the right hand side of formula (2.14) are semi-basic forms
and hence dyw is a semi-basic (k + [)-form. [ ]

Lemma 2.5. Consider V a linear connection on TM such that VJ = 0 and a vector valued
almost semi-basic I-form L on TM. Then, the differential operator Dy preserves semi-basic
forms, Dr, : AF(TM) — AMY(TM).

Proof. Using formula (2.6) and Lemma 2.4 we have that the differential operator Dy, preserves
semi-basic forms if and only if the algebraic derivation of degree [, idg 1q Preserves semi-basic
forms. Hence, we will complete the proof if we show that the vector valued (I + 1)-form dy Id =
irT + (—1)!dY takes vertical values whenever one of its arguments is a vertical vector field.
Here T' is the torsion of the linear connection V.

Using formulae (2.9) and (2.10) we have

(=D} 1) (X1, ., Xpp1) = (1) (LT + (=D)'d} ) (X, .., Xiga)

+1

=SV X+ X LXK K X))

=1

+ ) (C)ML(XL X)X X X X)), (2.15)
1<i<j<i+1

We will show now that whenever one of the (I + 1) arguments of dY Id is a vertical vector field,
then the right hand side of formula (2.15) is a vertical vector field. Using the fact that d} Id
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is a vector valued (I + 1)-form, we will discuss only the case when X is a vertical vector field.
Since L vanishes whenever one of its arguments is a vertical vector field, the nonzero vector field
that remains from the right hand side of formula (2.15), when X is a vertical vector field, is

V(X Xip1) X1 + [ X1, L)( X2, -0, X)), (2.16)

The condition VJ = 0 implies that the linear connection V preserves the vertical distribution
and since X7 is a vertical vector field it follows that V(x, . x,. )X1 is a vertical vector field
as well. Since L is a vector valued almost semi-basic [-form and X7 is a vertical vector field it
follows that [X7, L] is a vector valued semi-basic form, therefore it takes values into the vertical
distribution and hence [X1, L](Xa,..., X;4+1) is a vertical vector field. It follows that the vector
field in formula (2.16) is vertical and hence we have completed the proof. [

3 Projective metrizability problem of a spray

A system of homogeneous second-order ordinary differential equations on a manifold M, whose
coefficients do not depend explicitly on time, can be identified with a special vector field on T'M
that is called a spray. In this section we address the following question, known as the projective
metrizability problem: for a given spray S find necessary and sufficient conditions for the
existence of a Finsler function F such that the geodesics of S and the geodesics of F' coincide
up to an orientation preserving reparameterization. We obtain such necessary and sufficient
conditions in Theorem 3.8 and these conditions are expressed in terms of semi-basic 1-forms.

Particular aspects of the projective metrizability problem were studied more than a century
ago by Hamel [16]. The problem was formulated rigorously in 1960’s by Rapcsék [27] and Klein
and Voutier [17]. Yet, the projective metrizability problem is far from being solved, and in the
last decade it has been intensively studied [1, 5, 10, 11, 29, 30, 31, 32].

3.1 Spray, nonlinear connection, and curvature

In this subsection, we start with a spray S and use the Frolicher—Nijenhuis theory to derive
a differential calculus on TM \ {0} [14] and to obtain information about the given system of
SODE. For the remaining part of the paper, all geometric objects will be considered defined
on the slashed tangent bundle TM \ {0} and not on the whole TM. This is motivated by the
fact that we will want to connect them with geometric structures in Finsler geometry, where the
Finsler function is not differentiable on the zero section.

Definition 3.1. A vector field S € X(T'M \ {0}) is called a spray if
i) JS =C,
i) [C,S]=S.
First condition in Definition 3.1 expresses that a spray S can be locally given as

9
S:yzaxi

- 0
7
for some functions G defined on domains of induced coordinates on TM \ {0}.

Second condition in Definition 3.1 expresses that the vector field S is 2-homogeneous. It is
equivalent with the fact that functions G* are 2-homogeneous in the fibre coordinates. In this
work we will consider positive homogeneity only and hence G*(x, A\y) = \2G*(z,y) for all A\ > 0.
By Euler’s theorem this homogeneity condition is equivalent to C(G?) = 2G*.
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A curve ¢ : I — M is called reqular if its tangent lift takes values in the slashed tangent
bundle, ¢ : I — TM \ {0}. A regular curve is called a geodesic of spray S if Soc = ¢”. Locally,
c(t) = (x'(t)) is a geodesic of spray S if

2 i ,
dx +2G’<x d:”):o.

dt? T dt

Definition 3.2. A nonlinear connection (or a horizontal distribution, or Ehresmann connection)
is defined by an n-dimensional distribution H : v € TM \ {0} — H, C T,(TM \ {0}) that is
supplementary to the vertical distribution.

Every spray induces a nonlinear connection through the corresponding horizontal and vertical
projectors, [14]

1
h=350d—Ls)), wv=g(Id+Ls]).

N

Locally, the two projectors h and v can be expressed as follows

0 , .
h=— ®dx’, v = ® oy,

ox’ oy’

where

oG"

J 0 i i i j i
oy’ = dy' + Nj(z,y)dz’,  Nj(z,y) Z@(x,y)-

- _NJ =
Szt Ozt N; <x7y)8yj’

Horizontal projector h is a vector valued almost semi-basic 1-form.
For a spray S consider the vector valued semi-basic 1-form

b®=—voLlgv=voLgh=voLgoh,

which will be called the Jacobi endomorphism. It is also known as the Douglas tensor [15,
Definition 3.17] or as the Riemann curvature [29, Definition 8.1.2]. Locally, the Jacobi endo-
morphism can be expressed as follows

. ) . I Te.
® = Ri(z,y) 5 ®da!, R, =2

) i a7k
oy i =255 — S(Nj) + NpNj'.

Another important geometric structure induced by a spray S is the curvature tensor R. It
is the vector valued semi-basic 2-form

1 1., 0 :
R=[hh] = §R;‘kayi ® dz’ A dz”. (3.1)

Locally, the components of the curvature tensor, R;k, are given by

_ NN

Z‘ —_——

kT Spk o Sad

Curvature tensor R expresses the obstruction to the integrability of the nonlinear connection.
Using formulae (2.4) and (3.1) we have that d? = dp.

All the geometric objects induced by a spray S inherit the homogeneity condition. There-
fore [C, h] = 0, which means that the nonlinear connection is 1-homogeneous. Also [C, R] = 0,
[C,®] = ® and hence the the curvature tensor R is 1-homogeneous, while the Jacobi endomor-
phism @ is 2-homogeneous.
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Using the Jacobi identity, [15, Proposition 2.7] , for the vector valued O-form S and the
vector valued 1-form J we have [J,[S,J]] — [J,[J, S]] — [S,[J,J]] = 0. Therefore, we obtain
[J.h] = =2[J, ]S, J]] = 0.

The two semi-basic vector vector valued 1 and 2-forms ® and R are related as follows:
b =igR, [J,®] = 3R. (3.2)

First formula in (3.2) is a consequence of the homogeneity, while the second one is true in a more
general context. Locally, the above two formulae can be expressed as follows:

‘ . ) 1 [ OR! OR:
) i,k 7 k J
By = Hiy jk_?)(ayj_ayk)‘

An important class of sprays, which we will use in the last section to provide examples of
projectively metrizable sprays, is that of isotropic sprays, [15, Definition 3.29].

Definition 3.3. A spray S is called isotropic if its Jacobi endomorphism has the form
d=\]+n®C, (3.3)
where A € C°(TM \ {0}) and 7 is a semi-basic 1-form on 7'M \ {0}.

Due to first formula in (3.2) we have that ig® = 0 and hence A = —ign. Also formulae (3.2)
allows us to express the isotropy condition (3.3) for a spray in terms of the curvature tensor R.

Proposition 3.4. A spray S is isotropic if and only if its curvature tensor R has the form
R=an]+B®C, (3.4)
where o is a semi-basic 1-form and B is a semi-basic 2-form on TM \ {0}.

Proof. We will prove that formulae (3.3) and (3.4) are equivalent.

Suppose that spray S is isotropic. Therefore, the Jacobi endomorphism & satisfies formu-
la (3.3). Using second formula (3.2), the formulae for the Frolicher-Nijenhuis bracket of two
vector valued forms [15, Appendix Al], and [J,C] = J, we have

3R=[J,® = [\ +n@C] = (dsA—n)AJ+dmeC.

Hence, the curvature tensor R has the form (3.4).

We assume now that the curvature tensor R has the form (3.4). Using first formula (3.2)
and the fact that the inner product ig is a derivation of degree —1, we have that the Jacobi
endomorphism has the form

P =igR=1tigaJ + (255 *Oé) ® C.

Hence, the spray S is isotropic. |

We will use Proposition 3.4 and formula (3.4) in Subsection 5.1 to show that isotropic sprays
are projectively metrizable sprays.
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3.2 Projectively related sprays

Two sprays are projectively equivalent if their geodesics coincide as oriented curves. Therefore,
a spray is called projectively metrizable if its geodesics coincide, as oriented curves, with the
geodesics of a Finsler space.

In [5] it has been shown that the Helmholtz conditions for an arbitrary semispray to be a Lag-
rangian vector field can be reformulated in terms of semi-basic 1-forms. It has been shown also
that out of the four classic Helmholtz conditions only two of them are necessary and sufficient in
the case of the projective metrizability problem for a spray. In this subsection we obtain directly
the two Helmholtz conditions, for projective metrizability, in terms of semi-basic 1-forms

Definition 3.5. By a Finsler function we mean a continuous function F': TM — R satisfying
the following conditions:

i) F' is smooth on T'M \ {0};
ii) F is positive on TM \ {0} and F(x,0) = 0;
iii) F' is positively homogeneous of order 1, which means that F(z,\y) = AF(z,y), for all
A >0 and (x,y) € TM;
iv) the metric tensor with components
1 0°F?
9ij(z,y) = 2 OyioyT
has rank n.

According to Lovas [21], conditions ii) and iv) of Definition 3.5 imply that the metric tensor g;;
of a Finsler function is positive definite.

The regularity condition iv) of Definition 3.5 implies that the Euler-Poincaré 2-form of F2,
wp2 = ddjF?, is non-degenerate and hence it is a symplectic structure [20, 25]. Therefore, the
equation

igdd; F? = —dF? (3.5)

uniquely determine a vector field S on 7'M \ {0} that is called the geodesic spray of the Finsler
function. Equation (3.5) is equivalent to

LgdsF? = dF?. (3.6)
Locally, the Euler-Poincaré 2-form of F?, wp2 = ddjF?, can be expressed as follows

wpe = 2g¢j5yi Adad .
Definition 3.6. A spray S is called Finsler metrizable if there exists a Finsler function F' that
satisfies one of the two equivalent conditions (3.5) or (3.6).

One can reformulate condition iv) of Definition 3.5 in terms of the Hessian of the Finsler
function F' as follows. Consider
O*F
Oyt oyl
the angular metric of the Finsler function. The metric tensor g;; and the angular tensor h;; are
related by

OF OF
B =t Gy oy
Metric tensor g;; has rank n if and only if angular tensor h;; has rank (n—1), see [23]. Therefore,

the regularity of the Finsler function F' is equivalent with the fact that the Euler—Poincaré 2-form
wp = ddjF has rank 2n — 2.
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Definition 3.7.

i) Two sprays S; and Sy are projectively equivalent if their geodesics coincide up to an
orientation preserving reparameterization.

ii) A spray S is projectively metrizable if it is projectively equivalent to the geodesic spray of
a Finsler function.

Two sprays Sp and Sy are projectively equivalent if and only if there exists a 1-homogeneous
function P € C*°(T'M \ {0}) such that Sy = S; — 2PC, [3, 29].

Next theorem gives a characterization of projectively metrizable sprays in terms of semi-basic
1-forms on TM \ {0}.

Theorem 3.8. A spray S is projectively metrizable if and only if there exists a semi-basic 1-form
0 € AL(TM \ {0}) such that

rank (df) = 2n — 2, ish >0, (3.7)
Lcb =0, dj0 =0, dpd = 0. (3.8)

Proof. We prove first that conditions (3.7) and (3.8) are necessary for the projective metri-
zability problem of the spray S. We assume that S is projectively metrizable. Therefore,
there exists a Finsler function F' with geodesic spray Sr and a 1-homogeneous function P on
TM\ {0} such that S = Sp—2PC. Consider § = d;F, the Euler-Poincaré 1-form of the Finsler
function F'. Due to the 1-homogeneity c