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Abstract. We work out a non-trivial example of lifting a so-called weak eigenform to
a true, characteristic 0 eigenform. The weak eigenform is closely related to Ramanujan’s
tau function whereas the characteristic 0 eigenform is attached to an elliptic curve defined
over Q. We produce the lift by showing that the coefficients of the initial, weak eigenform
(almost all) occur as traces of Frobenii in the Galois representation on the 4-torsion of the
elliptic curve. The example is remarkable as the initial form is known not to be liftable
to any characteristic 0 eigenform of level 1. We use this example as illustrating certain
questions that have arisen lately in the theory of modular forms modulo prime powers. We
give a brief survey of those questions.
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1 Introduction

In what follows, ` will always denote a prime number, and we will denote by GQ the absolute
Galois group of Q:

GQ := Gal
(
Q/Q

)
.

We will be considering the modular form

f := E6
4∆ + 2∆3

on SL2(Z) of weight 36. Here E4 is the classical Eisenstein series

E4 := 1 + 240

∞∑
n=1

(∑
d|n

d3
)
qn

(q := e2πiz), and ∆ the unique normalized eigenform on SL2(Z) of weight 12

∆ =
∞∑
n=1

τ(n)qn
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with τ the Ramanujan tau function. Thus, the q-expansion of f begins like this

f = q + 1416q2 + 842654q3 + 271386544q4 + 50558981478q5

+ 5356057726176q6 + 290719505955308q7 + · · · .

For any modular form h (of some weight on some Γ1(N)) we will denote by an(h) the coeffi-
cient of qn in the q-expansion of h. Thus, an(∆) = τ(n) for instance.

The result of this paper is a non-trivial observation concerning the reduction of the form f
modulo 4. Let us first explain the result, and then return in the next section to a discussion of
background, general motivations, why the form f is particularly interesting, as well as some of
the questions that form the motivating background for studying the particular form f . It is the
study of those questions that is our main purpose.

Before formulating our result, let us first explain what we mean by “reduction of” and “con-
gruences between” modular forms. Assuming for the moment that the forms in question have
integral q-expansions, the reduction modulo m of a form is by definition the formal power series
in (Z/mZ)[[q]] that is the result of reducing the q-expansion of the form term-wise modulo m.
Accordingly, that two forms are congruent modulo m means that their q-expansions agree term-
wise modulo m.

The form f modulo 4 is an eigenform for all Hecke operators meaning that we have

Tnf ≡ an(f)f (mod 4)

for all n ∈ N where Tn is the nth Hecke operator at level 1. For the short proof of this, see
Proposition 1 in the next section. The form (f (mod 4)) is an example of what we will call
a weak eigenform (in this case modulo 4), cf. Definition 1 below.

The form mod 4 does not lift to an eigenform of characteristic 0 on SL2(Z): by results of
Hatada, any eigenform on SL2(Z) is congruent modulo 4 to ∆ (this follows from Theorems 3
and 4 of [10] together with the fact that the coefficients τ(`) of ∆ satisfy τ(`) ≡ 1 + ` (mod 4)
for odd primes `, and that τ(2) ≡ 0 (mod 4) (see, e.g., [25])).

Nevertheless, the result of this paper shows that f does in fact lift to a classical newform,
albeit at level 128:

Theorem 1. With f := E6
4∆ + 2∆3 and E the elliptic curve

E : y2 = x3 + x2 + x+ 1,

we have that the 2-adic Galois representation ρ2 attached to E is unramified outside 2 and that

Tr ρ2(Frob`) ≡ a`(f) (mod 4)

for odd primes `.

In fact,

f ≡ g (mod 4)

with g the cusp form of weight 2 and level 128 attached to E.

Of course, a possible, quick and brutal proof of Theorem 1 would be to just verify that
an(f) ≡ an(g) (mod 4) for sufficiently many n, cf. the “generalized Sturm bounds” of [7]. But
such a proof would not reveal how the curve E, and consequently the form g, was found. The
proof that we give below in Section 3 gives more information concerning that point, as well as
information such as a formula for a`(f) (mod 4) and the structure of ρ2 (mod 4).
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2 Background, motivations, questions

The background for our study of the form f is the theory of modular forms modulo prime powers
that has attracted some attention in recent years, cf. for instance the papers [6, 7, 8, 18, 23, 24,
26, 27, 28]. Before reviewing some of the questions that have arisen recently, let us set up some
notation.

Let m,N ∈ N and let p be a prime number not dividing N . We fix algebraic closures Q, Qp

of Q and Qp, respectively, as well as an embedding Q ↪→ Qp. In Qp we have the subring Zp, the

elements integral over Zp. Let vp be the normalized valuation on Qp.
The ring

Z/pmZ = Zp/
{
x ∈ Zp | vp(x) > m− 1

}
,

introduced in [26], utilized in [8], is the natural target for “reductions modulo pm” when the
things that are being reduced are in Zp, but not necessarily in Zp; cf. the discussions in the
papers just cited.

Thus, to say that two modular forms with q-expansions in Zp are “congruent modulo pm”

means that their q-expansions term-wise have the same reduction in Z/pmZ.
Considering modular forms h on Γ1(N) and with coefficients in Zp we will now consider

various ways in which the reduction (h (mod pm) of h modulo pm will be called an “eigenform”
for the full Hecke algebra. For this, it will be convenient for us, as well as sufficient for our
purposes, to restrict our attention to normalized cusp forms, i.e., cusp forms h with a1(h) = 1.

Definition 1. Let h be a normalized cusp form on Γ1(N), some weight, and coefficients in Zp.
We say that the reduction (h (mod pm) of h modulo pm is a weak eigenform if

(Tnh (mod pm)) = an(h) · (h (mod pm))

for all n with Tn the nth Hecke operator at level N and the weight in question.
We say that (h (mod pm) is a strong eigenform (relative to the fixed level N) if there exists

a classical, normalized eigenform h1 on Γ1(N) and some weight such that

(h (mod pm)) = (h1 (mod pm)).

There is a third, weaker sense of the notion of an eigenform mod pm, namely the notion of
a “dc-weak eigenform”; “dc” stands here for “divided congruence”, and it is a notion of being
an eigenform that involves the Hecke algebras simultaneously at various weights, but still at the
fixed level N . It is not necessary for the purposes of this paper to give the precise definition
which can be found in [8, Section 1]. At a fixed level N , we have

{strong eigenforms mod pm} ⊆ {weak eigenforms mod pm}
⊆ {dc-weak eigenforms mod pm},

and the inclusions can in fact be strict: the first examples of dc-weak eigenforms that are not
weak can be found in [24] (Theorem 5.4 and the consequences of it; the simplest example is the
form ∆ + 2d∆ modulo 4 where d := (E4 − 1)/16.)

As an example of a weak eigenform that is not strong, as noted in the introduction above,
one can consider the principal object of this paper, i.e., the modular form f := E6

4∆ + 2∆3

considered modulo 4 (and so we have N = 1, p = 2, m = 2): we already noted above that,
due to a classical result of Hatada, (f (mod 4)) can not be the reduction of any normalized
eigenform of any weight on SL2(Z), i.e., (f (mod 4)) is not a strong eigenform in the sense of
Definition 1. But we have the following.
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Proposition 1. The form (f (mod 4)) is a weak eigenform modulo 4.

Proof. The form f lives in the space S36(1,Z) of cusp forms on SL2(Z) of weight 36 and
coefficients in Z. From classical theory we know that this space is a free Z-module of rank 3,
generated by (E4)

6∆, (E4)
3∆2, ∆3. This means that any form h in this space is determined

by its first three Fourier coefficients, a1(h), a2(h), a3(h) and also that its reduction modulo 4
is determined by the reduction of these first three coefficients. I.e., two forms in the space are
congruent modulo 4 if and only if their first three coefficients are congruent modulo 4.

A further implication of the above is that the full Hecke algebra acting on this space is
generated by T1 (which is the identity) together with T2 and T3.

It follows from these facts, as well as the facts that we have a2(f) ≡ 0 (mod 4), a3(f) ≡ 2
(mod 4), that the reduction (f (mod 4)) mod 4 of the normalized form f is a weak eigenform
if and only

T2f ≡ a2f ≡ 0 (mod 4)

and

T3f ≡ a3f ≡ 2f (mod 4),

and again these congruences can be proved by just verifying them for the first three coefficients.
Now, from the q-expansion of f one computes

T2f = 1416q + 34631124912q2 + 5356057726176q3 +O
(
q4
)
≡ 0 +O

(
q4
)

(mod 4)

and

T3f − 2f = 842652q + 5356057723344q2 + 113674493459566148q3 +O
(
q4
)

≡ 0 +O
(
q4
)

(mod 4),

and thus the claim follows. �

Part of the reason for considering these different notions of “eigenform modulo pm” is that one
can attach Galois representations in the usual sense to such eigenforms, at least when the Galois
representation attached to the residual (mod p) form is absolutely irreducible; see [8, Theorem 2].
Another reason is that, even if one is only interested in classical, characteristic 0 eigenforms,
when level-lowering modulo pm is considered, the dc-weak eigenforms seem to enter as the natural
framework (cf. [8, Proposition 19].) Thirdly, it is possible under certain technical hypotheses to
prove that a continuous representation of GQ into GL2

(
Z/pmZ

)
is “dc-weak modular” in the

sense that it is attached to a dc-weak eigenform modulo pm; see [28, Theorem 3].
We shall now address the question of why one should be interested in the topic of modular

forms modulo prime powers in the first place. We offer three reasons below.
First, even if we are only interested in classical, characteristic 0 eigenforms, we find it a very

natural question to understand congruences between them. Some fundamental information, by
now classical, is available, notably papers by Katz [13] and Swinnerton–Dyer [25]. However,
these do not answer all natural questions, such as for instance the following.

Question 1. Fix a level N and m ∈ N. Consider the set of all eigenforms on Γ1(N) and all
weights. Is the set of reductions modulo pm of these a finite set?

Notice that the answer to this question is affirmative when m = 1, cf. the classical paper [12]
by Jochnowitz. An affirmative answer for all m was conjectured in [18, Conjecture 1] that also
gave some (weak) evidence in favor of it. Further evidence (for N = 1) has been obtained in [24].
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The results of the paper [18] suggested that a key to approach Question 1 is to understand
which weak eigenforms are the reductions of classical, characteristic 0 eigenforms. A simple
construction by Calegari and Emerton, see Section 3 of [3], shows that it may happen that one
has infinitely many weak eigenforms modulo p2 at some fixed level and weight; obviously, these
can not all lift to characteristic 0 eigenforms at the same fixed level and weight. It seems to be
not immediately clear whether we can lift if we are allowed to change the level and weight of
the lifting form.

The origin of the present paper was to investigate the situation through a concrete, non-trivial
example. Hence we picked the form f (mod 4) as a candidate for non-liftability since we knew
that it does not lift at level 1 and any weight. But then, after some lengthy analysis, we found
it to lift anyway, but at level 128 and weight 2, hence Theorem 1.

Our main purpose is thus to draw attention to Question 1 and in particular the following
questions.

Question 2. Does there exist a weak eigenform modulo pm (some level N , some weight) that is
not the reduction modulo pm of a characteristic 0 eigenform of some level M and some weight?

Because of the more complicated behavior of (p-adic Galois representations attached to)
eigenforms locally at the primes dividing Np where N is the level, one might want to weaken
the notion of liftability to characteristic 0 a bit and ask the following question. Thus, an
affirmative answer to the following question would be a stronger statement than an affirmative
answer to Question 2.

Question 3. Does there exist a weak eigenform h0 modulo pm (some level N , some weight) such
that for any characteristic 0 eigenform h (of some level M and some weight), we do not have

a`(h0) ≡ a`(h) (mod pm)

for almost all primes `?

Question 4. Same question as in Question 3, but restrict the “lifting level” M to numbers of
the form Npt for some t.

We honestly do not have conjectures about the answers to the last three questions above
either way, but find them interesting. The Calegari–Emerton construction mentioned above
certainly pulls in the direction of conjecturing affirmative answers. On the other hand, there are
results such as [4] that imply strong modularity of certain weak eigenforms under some technical
restrictions.

There are various other valid motivations for studying modular forms modular primes powers
apart from the above. For instance, P. Tsaknias and G. Wiese argue in the introduction to [28]
that a better understanding of this area might contribute to our algorithmic handling of the
p-adic Galois representations attached to classical, characteristic 0 eigenforms.

Also, quite independently of the connection to Galois representations, the study of congru-
ences between modular forms is natural if we consider the fact that coefficients of modular
forms can be carriers of number theoretic or combinatorial information (representation numbers
for positive definite, integral quadratic forms, partition problems, e.g., [15, 16, 17]). Studying
congruences between such numbers is a natural part of number theory.

3 Proof of Theorem 1

3.1 The coefficients of the form f mod 4

As in the introduction and everywhere in this paper, we put f := E6
4∆ + 2∆3.

For primes ` we have the following formula for a`(f) modulo 4.
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Proposition 2.

a`(f) ≡

{
2 (mod 4) if ` ≡ 1, 3, 5 (mod 8),

0 (mod 4) if ` ≡ 2, 7 (mod 8).

The proof of Proposition 2 will occupy the rest of this subsection.
As information about a`(∆) (mod 4) is available by Kolberg’s congruences (cf. [19], also [25]),

the key to Proposition 2 is information about the coefficients of ∆3 (mod 2).

Lemma 1. We have

∆ ≡
∞∑
m=0

q(2m+1)2 (mod 2).

As a consequence,

an
(
∆3
)
≡ q3(n) (mod 2)

for n ∈ N where q3(n) denotes the number of representations of n as a sum of 3 odd squares of
integers.

Proof. The second statement is of course an immediate consequence of the first. For the first
statement, consider Dedekind’s η-function. We have ∆ = η24. There is a classical identity,
attributed to Jacobi, between η3 and a certain theta-series

η3(q) =
∑
m∈Z

m≡1 (mod 4)

m · q
m2

8 ,

cf. for instance [22, p. 271] with the definition of the theta-series on p. 26. Of course this implies

η3(q) ≡
∑
n≥0

q
(2n+1)2

8 (mod 2)

and the first statement follows by raising to the 8th power. �

We then need information about the parity of q3(n). This can be obtained from the following
classical theorem, cf. [9, Section 9, Theorem 3] and [21, Section 3].

Theorem 2 (Eisenstein, Dirichlet). For n ∈ N, let r3(n) be the number of solutions in Z3 of
n = x2 + y2 + z2. Let

(
r
n

)
denote the Jacobi symbol and [x] the integer part of x. Then

r3(n) =


24
∑
d2|n

[n
4
]∑

r=1

(
r

n/d2

)
if n ≡ 1 (mod 4),

8
∑
d2|n

[n
2
]∑

r=1

(
r

n/d2

)
if n ≡ 3 (mod 4).

This has the following special case.

Corollary 1. Let ` ≡ 3 (mod 8) be a prime. Then

q3(`) = R−N,
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where R (respectively N) is the number of quadratic residues (respectively, quadratic nonresidues)
in the interval

[
1, . . . , `−12

]
.

Consequently,

q3(`) = 2R− `− 1

2

is odd.

Proof. If ` = x2 + y2 + z2 ≡ 3 (mod 8), then we must have x ≡ y ≡ z ≡ 1 (mod 2). Thus
q3(`) = 1

8r3(`) (here the 1
8 corrects for allowing signs in the count corresponding to r3).

The last statement follows by noting that

N =
`− 1

2
−R

for any odd prime `. �

Proof of Proposition 2. Notice first that E3
4 ≡ 1 (mod 4). Let ` denote a prime number.

Since

a`(∆) ≡ 1 + `11 (mod 4)

when ` is odd, cf. [19] (also [25]), and since τ(2) = −24 ≡ 0 (mod 4), we have

a`
(
E6

4∆
)
≡

{
2 (mod 4) if ` ≡ 1 (mod 4),

0 (mod 4) if ` ≡ 2, 3 (mod 4).

Since a`(f) ≡ a`
(
E6

4∆
)

+ 2q3(`) (mod 4) by Lemma 1, since clearly q3(`) = 0 unless ` ≡ 3
(mod 8), and since q3(`) is odd when ` ≡ 3 (mod 8) by Corollary 1, the desired formula for a`(f)
(mod 4) follows. �

3.2 A mod 4 Galois representation

We now construct a mod 4 Galois representation that is unramified outside 2 and ∞, and such
that the trace of Frob`, a Frobenius element at the unramified prime `, coincides with a`(f)
(mod 4) for all odd primes `. The representation will factor through a certain dihedral extension
of Q.

Here, and in what follows, let K denote the following field:

K := Q
(
i,
√

2,
√

1 + i
)
.

Proposition 3. For the field K = Q
(
i,
√

2,
√

1 + i
)

we have that K is a Galois extension of Q
with Galois group isomorphic to the dihedral group D4 of order 8:

Gal(K/Q) ∼= D4 =
〈
r, s | r4 = s2 = 1, srs = r−1

〉
with the generators r, s acting as follows

si = i, s
√

2 = −
√

2, s
√

1 + i =
√

1 + i,

ri = −i, r
√

2 = −
√

2, r
√

1 + i =
1− i√

2
·
√

1 + i.

The elementary proof is left to the reader. (For more general information about the structure
of Galois extensions with Galois group isomorphic to D4, confer [14] or [11, Chapter 2].)
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Proposition 4. We have an embedding

D4 ↪→ GL2(Z/4Z)

given by

r 7→= ( 1 2
1 1 ) , s 7→

(−1 2
2 −1

)
.

Proof. One checks that the matrices

X := ( 1 2
1 1 ) , Y :=

(−1 2
2 −1

)
in GL2(Z/4Z) have orders 4 and 2, respectively, and that Y XY = X−1. �

Definition 2. Denote now and in what follows by ρ the following representation of GQ into
GL2(Z/4Z):

ρ : GQ � Gal(K/Q) ∼= D4 ↪→ GL2(Z/4Z),

where the surjection GQ � Gal(K/Q) is the natural surjection, the isomorphism Gal(K/Q) ∼=
D4 is as given above, and the embedding D4 ↪→ GL2(Z/4Z) is the one given by Proposition 4.

Proposition 5. The representation ρ is unramified outside 2 · ∞, and we have

Tr ρ(Frob`) = (a`(f) (mod 4))

for odd primes `.

Proof. Since K/Q is unramified outside 2 · ∞, so is ρ.
Consider the subgroup lattice for Gal(K/Q) ∼= D4:

〈1〉

〈sr2〉 〈s〉 〈r2〉 〈sr3〉 〈sr〉

〈s〉 × 〈r2〉 〈r〉 〈sr〉 × 〈r2〉

Gal(K/Q).

The three lowest-level subgroups 〈s〉 × 〈r2〉, 〈r〉, and 〈sr〉 × 〈r2〉 are those of index 2 and
correspond to the quadratic subfields Q(i), Q

(
i
√

2
)
, and Q

(√
2
)
, respectively. Thus we find

that:

1. Frob` ∈
{

1, r2
}
⇔ ` splits in Q(i), Q

(
i
√

2
)
, and Q

(√
2
)
,

2. Frob` ∈
{
r, r3

}
⇔ ` splits in Q

(
i
√

2
)
, but not in Q(i) or Q

(√
2
)
,

3. Frob` ∈
{
s, sr2

}
⇔ ` splits in Q(i), but not in Q

(
i
√

2
)

or Q
(√

2
)
,

4. Frob` ∈
{
sr, sr3

}
⇔ ` splits in Q

(√
2
)
, but not in Q(i) or Q

(
i
√

2
)
.

By the laws governing the splitting of primes in quadratic extensions of Q, the cases (1)
through (4) correspond to:
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1.
(−1
`

)
=
(
2
`

)
= 1⇔ ` ≡ 1 (mod 8),

2.
(−1
`

)
=
(
2
`

)
= −1⇔ ` ≡ 3 (mod 8),

3.
(−1
`

)
= 1 and

(
2
`

)
= −1⇔ ` ≡ 5 (mod 8),

4.
(−1
`

)
= −1 and

(
2
`

)
= 1⇔ ` ≡ 7 (mod 8).

The proof is then finished by Proposition 2 when we check that, under the embedding D4 ↪→
GL2(Z/4Z) given by Proposition 4, the elements 1, r, r2, r3, s, sr2 are sent to matrices of trace 2
whereas the elements sr, sr3 are sent to matrices of trace 0. �

3.3 An elliptic curve and its 4-torsion

We now prepare the proof of Theorem 1 by studying the Galois action on the 4-torsion of the
elliptic curve that it involves.

Proposition 6. For the elliptic curve

E : y2 = x3 + x2 + x+ 1

we have

ρE,4 ∼= ρ,

where ρE,4 is the representation of GQ on E[4] and ρ is the representation of the previous section.

Proof. The points of order 2 on E are found to be

Q1 := (−i, 0), Q2 := (−1, 0), Q3 := (i, 0).

Using standard formulas for halving points, one finds points Pj , j = 1, 2, 3, with 2 · Pj = Qj :

x(P1) = −i− i
√

2
√

1 + i, y(P1) = −2i−
√

2
√

1 + i− i
√

2
√

1 + i,

x(P2) = −1 +
√

2, y(P2) =
√

1 + i+ i
√

1 + i− i
√

2
√

1 + i,

x(P3) = i−
√

1 + i− i
√

1 + i, y(P3) = 2i− 2i
√

1 + i.

We see that Q(E[4]) is the D4-extension K/Q above. We have that P1, P2 is a basis for E[4],
and one verifies that

P1 + P2 = P3.

Identifying Gal(K/Q) ∼= D4 = 〈r, s〉 as in Definition 3, one computes

rP1 = P3 = P1 + P2,

rP2 = 2 · P1 + P2,

sP1 = P1 + 2 · P3 = −P1 + 2 · P2,

sP2 = P2 + 2 · P3 = 2 · P1 − P2,

whence the claim follows by the definition of ρ, Definition 2. (Notice that we have chosen to
write the Galois action from the left. This means that the representing matrices should be
considered as acting on column vectors of coordinates w.r.t. (P1, P2).) �

Proof of Theorem 1. That Tr ρ2(Frob`) ≡ a`(f) (mod 4) for odd primes ` follows by com-
bining Propositions 5 and 6. Thus, a`(f) ≡ a`(g) (mod 4) for odd primes ` where g is the cusp
form of weight 2 and level 128 attached to E. Since g is an eigenform, since f is an eigenform
modulo 4, since a2(f) ≡ 0 (mod 4) (cf. Proposition 2), and since a2(g) = 0, cf. [20, Elliptic
Curve 128.a2], we deduce that

f ≡ g (mod 4). �

http://www.lmfdb.org/EllipticCurve/Q/128/a/2
http://www.lmfdb.org/EllipticCurve/Q/128/a/2
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4 Further remarks

1. There are 4 newforms of weight 2 on Γ0(128), all with coefficients in Z, i.e., corresponding
to elliptic curves over Q of conductor 128. The forms are all congruent to each other modulo 4
so we could have used anyone of them (and the corresponding elliptic curve) in Theorem 1.

2. Our initial purpose of studying the form f above was, as described in Section 2, to choose
a form that really appeared hard to lift to a true, characteristic 0 eigenform and then test
Question 2 against it. Our main result then says that this form, that seemed hard to lift, in fact
does not provide us with an affirmative answer to that question.

Of course, once we have that result, we also know that f can be lifted in infinitely many ways
in the sense of Question 3 since we can twist f (and the lifting form) with a quadratic character
without changing the Fourier coefficients modulo 4 (as these are just 0 and 2 modulo 4, cf.
Proposition 2.)

3. One might wonder, if we just wanted to show that our form f (mod 4) lifts to some
eigenform in characteristic 0, could we not work with the weight 1 eigenform that is attached
to a complex representation of Gal(K/Q) with K the dihedral field of Section 3.2? The answer
is no: if h is such a form of weight 1 one checks that we do not have

a`(f) ≡ a`(h) (mod 4)

for almost all primes `.
4. S. Deo drew our attention to the fact that one can construct another Galois representation

with the properties of Proposition 5 by working with the field L = Q
(
i, 4
√

2
)

instead of the field K
of Section 3.2: L/Q is again a Galois extension with Galois group isomorphic to the dihedral
group D4 of order 8:

Gal(L/Q) ∼= D4 =
〈
r, s | r4 = s2 = 1, srs = r−1

〉
with the generators r, s acting as follows

si = −i, s
4
√

2 =
4
√

2, ri = i, r
4
√

2 = i
4
√

2.

If one considers the embedding D4 ↪→ GL2(Z/4Z) given by

r 7→ ( 1 2
1 1 ) , s 7→

(
1 0
1 −1

)
rather than the one of Proposition 4, then for the resulting Galois representation

ρ′ : GQ � Gal(L/Q) ∼= D4 ↪→ GL2(Z/4Z)

one finds by analysis similar to the proof of Proposition 5 that

Tr ρ′(Frob`) = (a`(f) (mod 4))

for odd primes `.
We do not know whether this representation is strongly modular in the sense of being the

mod 4 reduction of the 2-adic Galois representation attached to some newform. But we can say
that it is not isomorphic to the Galois representation of the 4-torsion of an elliptic curve defined
over Q (that is, if it is strongly modular, the reason is different than the one we found for the
representation ρ of Section 3.2): Suppose that we had an elliptic curve C defined over Q such
that the representation of GQ on C[4] were isomorphic to ρ′ above. In particular, Q(C[4]) = L =
Q
(
i, 4
√

2
)
. Consider a prime ` that is ≡ 3 (mod 8) and sufficiently large so as not to divide the

conductor of C. Now, in the field L such a prime has inertial degree 2, i.e., the residue field will
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be F`2 . Since C has good reduction at `, we find that C[4] embeds into C(F`2) and so we must
have #C(F`2) ≡ 0 (mod 16). Put a := `+ 1−#C(F`) and let α, β be the roots of x2 − ax+ `.
Then

(`+ 1)2 − a2 = `2 + 1− (α+ β)2 + 2αβ = `2 + 1− α2 − β2 = #C(F`2) ≡ 0 (mod 16),

whence a ≡ 0 (mod 4) since ` ≡ 3 (mod 8). But a = a`(h) if h is the newform attached to C.
Thus,

a`(f) ≡ 2 6≡ 0 ≡ a`(h) (mod 4)

for all sufficiently large primes ` ≡ 3 (mod 8).
5. Theorem 2 of [8] attaches a Galois representation to a dc-weak eigenform mod pm provided

that the Galois representation attached to the form mod p is absolutely irreducible. “Attached”
means here that the traces of Frobenii are almost all given by the corresponding Hecke eigen-
values. The same can be proven under an assumption of “residually multiplicity-freeness”, as
well as the Vandiver conjecture, by combining results of [2] and [1, Proposition 1.6.1]. This,
however, would still not apply to our example of (f (mod 4)) (here, the semi-simplification of
the attached residual representation is just the sum of two trivial characters.) Hence one can
remark that in the case of (f (mod 4)), we still have an attached Galois representation, cf.
Proposition 5. Moreover, and as could be anticipated from [5, Théorème 1] (which is the real
background for [8, Theorem 2]), this Galois representation is not uniquely determined by being
“attached” to (f (mod 4)) in the above sense, as the previous remark shows.

However, we must emphasize that the Galois representations are not our primary focus
in the present paper: they are merely tools that allow us to identity newforms congruent to
(f (mod 4)). Those congruences mod 4 between f and true characteristic 0 eigenforms are the
main focus of the paper, as noted in the motivating Section 2.

6. We would like to note that Theorem 1 can be seen “the other way around”, that is, as
producing f (mod 4) given the form g of level 128. I.e., as an example of level-lowering modulo 4.
As already noted in Section 2 above, it is known, at least when p ≥ 5, that one can “strip powers
of p away from the level” of a strong eigenform modulo pm (cf. [8, Proposition 19] which is based
on work of Hida.) However, the result of this kind of level-lowering seems naturally to be a dc-
weak eigenform at the lowered level (though, it seems, this can be strengthened by utilizing [24,
Theorem 4.3].)

The thesis [27] contains results on level-lowering modulo higher prime powers (none of the
results apply to the situation of Theorem 1), and the shape of these statements is that, after
lowering the level, one ends up with a weak eigenform even if one started with a strong eigenform
modulo pm. Theorem 1 provides an example where the level-lowered eigenform is weak, but
provably not strong at that level (which in this case is 1.) It is probably the first example of
this kind.

7. The second author has determined all weak eigenforms on SL2(Z) with coefficients in Z/4Z.
There are 8 in all, and, furthermore, they all lift to characteristic 0 eigenforms of some 2-power
level and some weight (here, “lift” means that coefficients prime to some fixed M are reductions
mod 4 of the corresponding coefficients of the higher-level form.) One can determine these weak
eigenforms by using the weight bounds that come from Nicolas–Serre theory, cf. [18, Section 3.2].
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[2] Belläıche J., Khare C., Level 1 Hecke algebras of modular forms modulo p, Compos. Math. 151 (2015),
397–415.

[3] Calegari F., Emerton M., The Hecke algebra Tk has large index, Math. Res. Lett. 11 (2004), 125–137,
math.NT/0311367.

[4] Camporino M., Pacetti A., Congruences between modular forms modulo prime powers, Rev. Mat. Iberoame-
ricana, to appear, arXiv:1312.4925.

[5] Carayol H., Formes modulaires et représentations galoisiennes à valeurs dans un anneau local complet, in
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