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1 Introduction

We work over an algebraically closed field k of characteristic 0.
In this paper we continue to study compatible pairs among the Poisson brackets on projective

spaces introduced by Feigin–Odesskii (see [1, 10]). Their construction associates with every
stable vector bundle V of degree n > 0 and rank k on an elliptic curve E, a Poisson bracket on
the projective space PH0(E,V)∗. We refer to such Poisson brackets as FO brackets of type qn,k.

Two Poisson brackets are called compatible if the corresponding bivectors satisfy [Π1,Π2] = 0
(equivalently, any linear combination of these brackets is again Poisson). In [9], Odesskii
and Wolf discovered 9-dimensional spaces of compatible FO brackets of type qn,1 on Pn−1 for
each n ≥ 3. Their construction was interpreted and extended in [3], where the authors showed
that one gets compatible FO brackets if the elliptic curves are anticanonical divisors on a sur-
face S and the stable bundles on them are restrictions of a single exceptional bundle on S that
forms an exceptional pair with OS (see [3, Theorem 4.4]). One can ask whether any two com-
patible FO brackets of type qn,k on Pn−1 appear in this way. In [7] we have shown that this
is the case for k = 1 (for some specific rational surfaces containing normal elliptic curves in
projective spaces). In the present work, we consider the case of FO brackets of type q5,2 on P4.
Note that the question of finding bi-Hamiltonian structures with brackets of type q5,2 was raised
by Rubtsov in [11].

Let V be a 5-dimensional vector space. Consider the Plücker embedding

G(2, V ) → P
(∧2

V
)
.

It is well known that for a generic 5-dimensional subspace W ⊂
∧2V the corresponding linear

section

EW := G(2, V ) ∩ PW
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is an elliptic curve. Furthermore, if U ⊂ V ⊗O is the universal subbundle on G(2, V ), then one
can check that the restriction VW := U∨|EW

is a stable bundle of rank 2 and degree 5 on EW

(see Lemma 2.2.1 below). Thus, we have the corresponding Feigin–Odesskii bracket of type q5,2
on PH0(EW , VW )∗.

Furthermore, one can check that the restriction map

V ∗ = H0(G(2, V ),U∨) → H0(EW , VW )

is an isomorphism (see Lemma 2.2.1). Thus, we get a Poisson bracket ΠW on PV (defined up
to a rescaling).

On the other hand, we have a natural GL(V )-invariant map

π5,2 :
∧5 (∧2

V
)
→ H0

(
PV,

∧2
T
)
⊗ det2(V )

constructed as follows.
Note that we have a natural isomorphism V ≃ H0(PV, T (−1)), hence we get a natural

map V ⊗O(1) → T , and hence, the composed map

ϕ : W ⊗O(2) →
∧2

V ⊗O(2) →
∧2

T

on PV . Taking the 5th exterior power of this map, we get a map∧5
(ϕ) : det(W )⊗O(10) →

∧5 (∧2
T
)
≃

(∧2
T
)∨

⊗ det3(T ),

where we used the identification det
(∧2T

)
≃ det3(T ). Note that we have a nondegenerate

pairing given by the exterior product,∧2
T ⊗

∧2
T → det(T ),

hence, we have an isomorphism
∧2T ≃

(∧2T
)∨ ⊗ det(T ), and we can rewrite the above map as

det(W ) →
∧2

T ⊗ det2(T )(−10) ≃
∧2

T ⊗ det2(V ).

Theorem A. For every 5-dimensional subspace W ⊂
∧2V , such that EW := G(2, V ) ∩ PW is

an elliptic curve, one has an equality

π5,2(λW ) = ΠW ⊗ δ,

for some trivializations λW ∈
∧5W and δ ∈ det2(V ).

Theorem A is deduced from the existence of a formula for ΠW , depending linearly on the
Plücker coordinates of W (which follows from the results of [3]), combined with a representation-
theoretic argument employing the fact that the construction of ΠW is GL(V )-equivariant.

Theorem B.

(i) For 5-dimensional subspaces W,W ′ ⊂
∧2V such that EW and EW ′ are elliptic curves, the

Poisson brackets ΠW and ΠW ′ are compatible if and only if dimW ∩W ′ ≥ 4.

(ii) For any collection (Wi) of 5-dimensional subspaces in
∧2V , the brackets (ΠWi) are pairwise

compatible if and only if either there exists a 6-dimensional subspace U ⊂
∧2V such that

each Wi is contained in U , or there exists a 4-dimensional subspace K ⊂
∧2V such that

each Wi contains K.
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The idea of proof is to analyze the vanishing [ΠW1 ,ΠW2 ] = 0 near a sufficiently generic
point where ΠW1 vanishes. An important ingredient of the proof is a 2-dimensional distribution
on G(2, V ) associated with W ⊂

∧2V : it corresponds to the rational map from G(2, V ) to P4

obtained as the composition of the Plucker embedding with the linear projection to P(
∧2V/W )

(see Section 3.3). The analysis of the vanishing of the Schouten bracket is used to prove that the
elliptic curve EW1 is everywhere tangent to the distribution associated with W2, which implies
the result.

Corollary C. The maximal dimension of a linear subspace of Poisson brackets on P(V ), where
dimV = 5, spanned by some FO brackets ΠW of type q5,2, is 6.

Theorems A and B suggest the following

Conjecture D. Let W ⊂
∧2V be a 5-dimensional subspace such that EW is an elliptic curve.

Consider the subspace

TW :=
(∧4

W
)
∧
(∧2

V
)
⊂

∧5 (∧2
V
)

(the quotient of the latter subspace by
∧5W is exactly the image of the tangent space to the

Grassmannian G
(
5,
∧2V

)
under Plücker embedding). Then the subspace of ξ ∈

∧5(∧2V
)
sat-

isfying [π5,2(ξ),ΠW ] = 0 coincides with TW + ker(π5,2).

Note that we know the inclusion one way: the subspace TW is spanned by
∧5(W ′) such that

dim(W ′∩W )≥4 and EW ′ is an elliptic curve, and by Theorems A and B,
[
π5,2

(∧5(W ′)
)
,ΠW

]
=0.

2 Generalities

2.1 Feigin–Odesskii Poisson brackets of type qn,k

Let E be an elliptic curve, with a fixed trivialization η : OE → ωE , V a stable bundle on E
of rank k and degree n > 0. We consider the corresponding Feigin–Odesskii Poisson bracket
Π = ΠE,V of type qn,k on the projective space PH1

(
E,V∨) defined as in [10].

We will need the following definition of Π in terms of triple Massey products. For nonzero
ϕ ∈ H1

(
E,V∨), we denote by ⟨ϕ⟩ the corresponding line, and we use the identification of the

cotangent space to ⟨ϕ⟩ with ⟨ϕ⟩⊥ ⊂ H0(E,V)
(
where we use the Serre duality H0(E,V) ≃

H1
(
E,V∨)∗).

Lemma 2.1.1 ([3, Lemma 2.1]). For s1, s2 ∈ ⟨ϕ⟩⊥ one has

Πϕ(s1 ∧ s2) = ⟨ϕ,MP (s1, ϕ, s2)⟩,

where MP denotes the triple Massey product for the arrows

O s2- V ϕ- O[1]
s1- V[1].

2.2 Formula for a family of complete intersections

Let X be a smooth projective variety of dimension n, C ⊂ X a connected curve given as the
zero locus of a regular section F of a vector bundle N of rank n− 1, such that det(N)−1 ≃ ωX .
Then the normal bundle to C is isomorphic to N |C , so by the adjunction formula, ωC is trivial.
Thus, if C is smooth, it is an elliptic curve. Assume that P is a vector bundle on X, such that
the following cohomology vanishing holds:

H i
(
X,

∧i
N∨ ⊗ P

)
= H i−1

(
X,

∧i
N∨ ⊗ P

)
= 0 for 1 ≤ i ≤ n− 1. (2.1)
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We have the following Koszul resolution for OC :

0 →
∧n−1

N∨ → · · · →
∧2

N∨ δ2(F )- N∨ δ1(F )- OX → OC → 0,

which induces a map eC : OC →
∧n−1N∨[n − 1] in the derived category of X. Here the differ-

ential δi(F ) is given by the contraction with F ∈ H0(X,N), so it depends linearly on F .

Lemma 2.2.1.

(i) The natural restriction map H0(X,P ) → H0(C,P |C) and the map

Ext1(P,OC)
eC- Extn

(
P,

∧n−1
N∨

)
≃ Extn(P, ωX)

are isomorphisms. These maps are dual via the Serre duality isomorphisms

Ext1(P |C ,OC) ≃ H0(C,P |C)∗, Extn(P, ωX) ≃ H0(X,P )∗.

(ii) Assume in addition that End(P ) = k and we have the following vanishing:

Exti
(
P,

∧i
N∨ ⊗ P

)
= Exti−1

(
P,

∧i
N∨ ⊗ P

)
= 0 for 1 ≤ i ≤ n− 1. (2.2)

Then the bundle P |C is stable.

Proof. (i) This is obtained from the Koszul resolution of OC . For example, the space H0(P ⊗
OC) is computed by tensoring this resolution with P and using the spectral sequence

H i
(∧j

N∨
)
⇒ H i−j(P ⊗OC)

and the assumption (2.1).

(ii) Computing Hom(P |C , P |C) = Hom(P, P |C) using the Koszul resolution of P |C = P⊗OC ,
we get that it is 1-dimensional. Hence, P |C is stable. ■

Now we can rewrite the formula of Lemma 2.1.1 for the FO-bracket ΠC,P |C on

PH1
(
C,P∨|C

)
≃ PExtn(P, ωX)

in terms of higher products on X (obtained by the homological perturbation from a dg-enhance-
ment of Db(Coh(X))).

Proposition 2.2.2. For nonzero ϕ ∈ Extn(P, ωX) ≃ Ext1C(P |C ,OC), and s1, s2 ∈ ⟨ϕ⟩⊥ ⊂
H0(X,P ), one has

ΠC,P |C ,ϕ(s1 ∧ s2) = ±

〈
ϕ,

n∑
i=1

(−1)imn+2(δ1(F ), . . . , δi−1(F ), s1, δi(F ), . . . , δn−1(F ), ϕ, s2)

〉
.

Proof. The computation is completely analogous to that of [8, Proposition 3.1], so we will only
sketch it. First, one shows that our Massey product can be computed as the triple product m3

for the arrows

OX → P
[1]- OC → P |C
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given by s2, ϕ and s1. Then we use resolutions
∧•N∨ → OC and

∧•N∨ ⊗ P → P |C . Thus, we
have to calculate the following triple product in the category of twisted complexes:

OX

P

s2

?

∧n−1
N∨[n− 1]

ϕ

?
δn−1(F )

- · · ·
δ2(F )

- N∨[1]
δ1(F )

- OX

∧n−1
N∨ ⊗ P [n− 1]

s1

?
δn−1(F )

- · · ·
δ2(F )

- N∨ ⊗ P [1]

s1

? δ1(F )
- P,

s1

?

where we view ϕ as a morphism of degree 1 from P to the twisted complex
⊕∧iN∨[i]. Now,

the result follows from the formula for m3 on twisted complexes (see [5, Section 7.6]). ■

2.3 Conormal Lie algebra

Let V be a stable bundle of positive degree on an elliptic curve E, with a fixed trivialization
of ωE , and consider the corresponding FO bracket Π on the projective space X = PH0(V)∗ =
PExt1(V,O). Recall that for every point x of a smooth Poisson variety (X,Π) there is a natural
Lie algebra structure on

gx := (imΠx)
⊥ ⊂ T ∗

xX,

where we consider Πx as a map T ∗
xX → TxX. We call gx the conormal Lie algebra. In the case

when Π vanishes on x, we have gx = T ∗
x .

Let us consider a nontrivial extension

0 → O i- Ṽ p- V → 0

with the class ϕ ∈ Ext1(V,O). By Serre duality, we have the corresponding hyperplane
⟨ϕ⟩⊥ ⊂ H0(V), and we have an identification ⟨ϕ⟩⊥ ≃ T ∗

ϕPH0(V)∗.
Consider a natural map

End
(
Ṽ
)
/⟨id⟩ → ⟨ϕ⟩⊥ ≃ T ∗

ϕPH0(V)∗ : A 7→ p ◦A ◦ i. (2.3)

The following result was proved in [2].

Theorem 2.3.1. The above map induces an isomorphism of Lie algebras from End
(
Ṽ
)
/⟨id⟩ to

the conormal Lie algebra of Π at the point ϕ.

Note that in particular, the subspace (imΠx)
⊥ ⊂ ⟨ϕ⟩⊥ is equal to the image of the map (2.3).
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3 FO brackets associated with elliptic curves in G(2, 5)

3.1 Proof of Theorem A

Lemma 3.1.1. The subset Z ⊂ G
(
5,
∧2V

)
of 5-dimensional subspaces W ⊂

∧2V such that
dim(PW ∩G(2, V )) ≥ 2 has codimension > 1.

Proof. Let us denote by F the variety of flags L ⊂ W ⊂
∧2V , where dim(L) = 3, dim(W ) = 5,

such that PL ∩ G(2, V ) ̸= ∅. We claim that F is irreducible of dimension ≤ 30. Note that we
have a proper closed subset Z̃ ⊂ F consisting of (L,W ) such that dim(PW ∩ G(2, V )) ≥ 2 (as
an example of a point in F \ Z̃, we can take W such that EW = PW ∩ G(2, V ) is an elliptic
curve and pick PL ⊂ PW intersecting EW ). Since Z̃ fibers over Z with fibers G(3, 5), our claim
would imply that dim

(
Z̃
)
= dimZ + 6 < 30, i.e., dimZ < 24, as required.

To estimate the dimension of F , we observe that we have a fibration F→ Y with fibersG(2, 7),
where Y ⊂ G

(
3,
∧2V

)
is the subvariety of 3-dimensional subspaces L such that PL∩G(2, V ) ̸= ∅.

Thus, it is enough to prove that Y is irreducible of dimension ≤ 20. Now we use a surjective
map Ỹ → Y , where Ỹ is the variety of flags ℓ ⊂ L ⊂

∧2V , where dim(ℓ) = 1, dim(L) = 3, such
that ℓ ∈ G(2, V ). We have a fibration Ỹ → G(2, V ) with fibers G(2, 9), hence Ỹ is irreducible
of dimension 6 + 14 = 20. Hence, Y is irreducible of dimension ≤ 20. ■

Proof of Theorem A. First, we can apply Proposition 2.2.2 to an elliptic curve EW ⊂ X =
G(2, V ). Namely, as a bundle P on X we take U∨, the dual of the universal subbundle. We can
view the embedding

R := W⊥ →
∧2

V ∗ = H0(X,O(1)),

where O(1) = det(U∨), as a regular section F ∈ H0(X,N), where N = R∗ ⊗O(1). It is easy to
see that we have a GL(V )-invariant identification

ωX ≃ det(V )−2 ⊗O(−5).

Thus, by adjunction we get an isomorphism

ωEW
≃ det(N)⊗ ωX |EW

≃ det(R∗)⊗ det(V )−2 ⊗OEW
.

Since det(R∗) ≃ det
(∧2V

)
⊗ det(W ∗) ≃ det(V )4 ⊗ det(W ∗), we can rewrite this as

ωEW
≃ det(W ∗)⊗ det(V )2 ⊗OEW

. (3.1)

The vanishings (2.1) and (2.2) in this case follow from the well known vanishings

H∗(X,U∨(−i)
)
= 0 for 1 ≤ i ≤ 5,

Ext∗
(
U∨,U∨(−i)

)
= 0 for 1 ≤ i ≤ 3,

Ext<6
(
U∨,U∨(−4)

)
= Ext<6

(
U∨,U∨(−5)

)
= 0

(see [4]). Thus, Proposition 2.2.2 gives a formula for ΠW .
This shows that the association W 7→ ΠW gives a regular morphism

f : G
(
5,
∧2

V
)
→ PH0

(
PV,

∧2
T
)
.

Furthermore, we claim that

f∗O(1) ≃ OG(5,
∧2V )(1)⊗ det(V )2.
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Indeed, we have a family of Gorenstein curves π : C → B = G
(
5,
∧2V

)
\ Z (with CW = EW ),

where Z was defined in Lemma 3.1.1, such that

ωC/B ≃ π∗(O(1)⊗ det(V )2
)
.

Indeed, this is implied by the argument leading to (3.1), which works for any curve (not neces-
sarily smooth) cut out by PW in G(2, V ). This family of curves is equipped with a family of
vector bundles V (the pull-back of U∨ on G(2, V )), so that PH0(CW ,VW )∨ = PV . As explained
in [3, Section 4.2], we can view the corresponding constant family of projective spaces PV ×B as
the coarse moduli space of a substack in the relative moduli of complexes on C. Now [3, Propo-
sition 4.1] implies that the relation f∗O(1) = O(1) ⊗ det(V )2 holds over B = G

(
5,
∧2V

)
\ Z.

Since Z has codimension ≥ 1, it holds over the entire G
(
5,
∧2V

)
.

Next, since H0
(
G
(
5,
∧2V

)
,O(1)

)
≃

∧5(∧2V
)∗
, the map f is given by a GL(V )-invariant

linear map∧5 (∧2
V
)
→ H0

(
PV,

∧2
T
)
⊗ det(V )2.

To show that this map coincides with π5,2, up to a constant factor, it remains to show that the
space HomGL(V )

(∧
5
(∧2V

)
, H0

(
PV,

∧2T
)
⊗ det(V )2

)
is 1-dimensional.

The representation of GL(V ) on H0
(
PV,

∧2T
)
is easy to identify due to the exact sequence

0 → k → V ⊗ V ∗ ⊗
∧2

V ⊗ S2V ∗ → H0
(
PV,

∧2
T
)
→ 0.

Using the Littlewood–Richardson rule, we deduce

H0
(
PV,

∧2
T
)
⊗ det(V ∗) ≃ Σ3,1,1(V ∗),

where Σλ denotes the Schur functor associated with a partition λ. It follows that

H0
(
PV,

∧2
T
)
⊗ det(V )2 ≃ Σ3,3,2,2(V ).

On the other hand, the decomposition of the plethysm e5 ◦ e2 (see [6, Section I.8, Exam-
ple 6, p. 138]) shows that Σ3,3,2,2(V ) appears with multiplicity 1 in the GL(V )-representation∧5 (∧2V

)
. This implies the claimed assertion about GL(V )-maps. ■

3.2 Rank stratification for a bracket of type q5,2

Let E be an elliptic curve, V be a stable vector bundle of rank 2 and degree 5. We consider the
FO bracket Π on the projective space PExt1(V,O) ≃ PH0(V)∗. We want to describe the corre-
sponding rank stratification of PH0(V)∗ = P4. More precisely, Π is generically nondegenerate,
and we are going to determine the degeneration locus DE ⊂ P4 (where rkΠ ≤ 2) and the zero
locus SE of Π.

For every point p ∈ E, we consider the subspace Λp := V|∗p ⊂ H0(V)∗ and the corresponding
projective line PΛp ⊂ PH0(V)∗. Recall that the rank of Π at a point corresponding to an

extension Ṽ is equal to 5− dimEnd
(
Ṽ
)
(see [3, Proposition 2.3]).

Lemma 3.2.1.

(i) The bracket Π vanishes at the point of PExt1(V,O) corresponding to an extension

0 → O → Ṽ → V → 0

if and only if this extension splits under O → O(p) for some point p ∈ E, which happens
if and only if Ṽ ≃ O(p)⊕V ′, where V ′ is semistable of rank 2 and degree 4. Furthermore,
in this case dimEnd(V ′) = 2, so V ′ is either indecomposable, or V ′ ≃ L1 ⊕ L2, where L1

and L2 are nonisomorphic line bundles of degree 2.
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(ii) The bracket Π has rank ≤ 2 if and only the corresponding extension Ṽ is unstable, or
equivalently, there exists a line bundle L2 of degree 2 such that the extension splits over
the unique embedding L2 ↪→ V. In other words, the extension class comes from a subspace
of the form

WL2 := H0(L2)
⊥ ⊂ H0(V)∗ = V, (3.2)

where we use the unique embedding L2 → V and consider the induced embedding H0(L2) ↪→
H0(V).

(iii) Each plane PWL2 ⊂ PV is a Poisson subvariety, and there is an embedding of the curve E
into PWL2 by a degree 3 linear system, so that PWL2 \ E is a symplectic leaf.

Proof. (i) Suppose a nontrivial extension

0 → O → Ṽ → V → 0

splits under O → O(p). Then Ṽ is an extension of O(p) by V ′ where V ′ ⊂ V is the kernel of the
corresponding surjective map V → Op. Hence, V ′ is semistable of slope 2, which implies that

Ṽ ≃ O(p)⊕ V ′.

It follows that dimEnd(V ′) ≥ 2, and so

dimEnd
(
Ṽ
)
= 3 + dimEnd(V ′) ≥ 5.

Hence, ΠE vanishes on the points of the line PΛp ⊂ PV , and we have dimEnd(V ′) = 2, which
means that either V ′ is indecomposable or V ′ ≃ L1 ⊕ L2, for two nonisomorphic line bundles
L1, L2 of degree 2.

Conversely, assume Π vanishes at the point corresponding to Ṽ, so dimEnd
(
Ṽ
)
= 5. Then

HN-components of Ṽ cannot be three line bundles (since they would have to have different
positive degrees that add up to 5), so Ṽ = L⊕ V ′ where L is a line bundle and V ′ is semistable
of rank 2, deg(L) > 0, 0 < deg(V ′), deg(L) + deg(V ′) = 5.

The case deg(L) = 1 leads to the locus discussed above. If deg(L) = 2 and deg(V ′) = 3
then dimHom(V ′, L) = 1, so we get dimEnd(V ′) = 3 which is impossible. If deg(L) ≥ 3,
then deg(V ′) ≤ 2 and dimHom(V ′, L) ≥ 4, so dimEnd(V) > 5, a contradiction.

(ii) The rank of Π is ≤ 2 at Ṽ if and only if dimEnd
(
Ṽ
)
≥ 3. Clearly, such Ṽ has to be

unstable. Conversely, any unstable Ṽ would have form L ⊕ V ′ with either Hom(L,V ′) ̸= 0
or Hom(V ′, L) ̸= 0, hence dimEnd

(
Ṽ
)
≥ 3.

Note that µ
(
Ṽ
)
= 5/3. Hence, if the extension splits over some L2 ⊂ V, then Ṽ is unstable.

Conversely, if Ṽ is unstable then either it has a line subbundle of degree 2, or a semistable
subbundle V ′ of rank 2 and degree ≥ 4. But any such V ′ has a line subbundle of degree ≥ 2.

(iii) We can identify H0(L2)
⊥ with H0(L3)

∗ ⊂ H0(V)∗, where L3 := V/L2. It is easy to see
that the intersection of PWL2 with the zero locus of Π is exactly the image of E under the map
given by |L3|.

Given an extension Ṽ → V, split over L2 ⊂ V, the splitting L2 → Ṽ is unique, and the
quotient Ṽ/L2 is an extension of L3 = V/L2 by O. It is well known that for points of PWL2 \E
the latter extension is stable, so VL3 = Ṽ/L2 is a stable bundle of rank 2 with determinant L3.
Since Ext1(VL3 , L2) = 0, we deduce that Ṽ = VL3 ⊕ L2. Now we can calculate the image of the
map (2.3). The space End

(
Ṽ
)
/⟨id⟩ has a basis ⟨idL2 , e⟩, where e is a generator of Hom(VL3 , L2).

Their images under (2.3) both factor through L2 → E, hence the image of (2.3) (which is 2-
dimensional) is H0(L2) ⊂ H0(V). But this is exactly the conormal subspace to the projective
plane PWL2 . This shows that PWL2 \ E (and hence PWL2) is a Poisson subvariety. Since the
rank of Π on PWL2 \ E is equal to 2 and Π|E = 0, we deduce that PWL2 \ E is a symplectic
leaf. ■
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By Lemma 3.2.1 (i), the vanishing locus of Π corresponds to extensions V by O, which split
over O(p). This is the union SE of the lines PΛp, where Λp = V|∗p ⊂ PH0(V)∗, over p ∈ E. The
surface SE is the image of the natural map P

(
V∨) → P(V ), associated with the embedding of

bundles V∨ → V ⊗ OE . We will prove (see Lemma 3.2.3 below) that in fact this map induces
an isomorphism of the projective bundle P

(
V∨) with SE .

Lemma 3.2.2. Let E be a vector bundle over a smooth curve C and let W → H0(C, E) be a linear
map from a vector space W , such that for any x ∈ C the composition px : W → H0(C, E) → E|x
is surjective, so that we have a morphism f : P

(
E∨) → P(W ∗). Assume that we have a closed

subset Z ⊂ P
(
E∨) with the following properties.

� For every x, y ∈ C, x ̸= y, consider px(ker(py)) ⊂ E|x. Then any ℓ ∈ P
(
E∨|x

)
, which is

orthogonal to px(ker(py)), is contained in Z.

� For every x ∈ C, consider the map W → H0(E|2x) and the induced map

Kx := ker(W → E|x) → T ∗
xC ⊗ E|x

(where we use the identification T ∗
xC⊗E|x= ker

(
H0(E|2x

)
→ E|x)). Then any ℓ ∈ P

(
E∨|x

)
,

which is orthogonal to the image of Kx ⊗ TxC, is contained in Z.

Then the map P
(
E∨) \ Z → P(W ∗) is a locally closed embedding.

Proof. Assume that for x ̸= y, we have two nonzero functionals ϕx : E|x → k, ϕy : E|y → k
such that ϕx ◦ px = ϕy ◦ py. Then (ϕx ◦ px)|ker(ϕy) = 0. Hence, ϕx vanishes on px(ker(py)).

By assumption, this can happen only when ϕx is in Z. Thus, the map from P
(
E∨) \ Z is

set-theoretically one-to-one.
Next, we need to check that our map is injective on tangent spaces. The tangent space

to P
(
E∨) at a point corresponding to ℓ ⊂ E∨|x can be described as follows. Consider the

canonical extension

0 → T ∗
xC ⊗ E|x → H0(E|2x) → E|x → 0.

Passing to the dual extension of TxC⊗E∨|x by E∨|x, and restricting it to TxC⊗ ℓ ⊂ TxC⊗E∨|x,
we get an extension

0 → E∨|x → Hℓ → TxC ⊗ ℓ → 0.

Now the quotient
(
ℓ−1 ⊗Hℓ

)
/k, where we use the natural embedding

k = ℓ−1 ⊗ ℓ → ℓ−1 ⊗ E∨|x → ℓ−1 ⊗Hℓ,

is identified with the tangent space TℓP
(
E∨).

The restriction of the map H0(E|2x)∨ → W ∗, dual to the natural map W → H0(E|2x), to Hℓ,
induces a map(

ℓ−1 ⊗Hℓ

)
/k → W ∗/ℓ,

which is exactly the tangent map to f . It is injective if and only if the map Hℓ → W ∗ is injective.
Equivalently, the dual map W → H∗

ℓ should be surjective. The latter map is compatible with
(surjective) projections to E|x, so this is equivalent to surjectivity of the map

Kx = ker(W → E|x) → ker(H∗
ℓ → E|x) = T ∗

xC ⊗ ℓ−1.

The latter map factors as a composition

Kx → T ∗
xC ⊗ E|x → T ∗

xC ⊗ ℓ−1,

so it is surjective (equivalently, nonzero) if and only if ℓ is not orthogonal to the image of
Kx → T ∗

xC ⊗ E|x. By assumption, this never happens for points of P
(
E∨) \ Z. ■
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Lemma 3.2.3. The map P
(
V∨) → SE is an isomorphism.

Proof. We will check the conditions of Lemma 3.2.2. It suffices to check surjectivity of the
maps H0(V) → V|x ⊕ V|y for x ̸= y and of H0(V) → H0(V|2x). But this follows from the exact
sequence

0 → V(−D) → V → V|D → 0

for any effective divisorD of degree 2 and from the vanishing ofH1(V(−D)) by stability of V. ■

By Lemma 3.2.1 (ii), the degeneracy locus DE of our Poisson bracket (which is a quintic
hypersurface) is the union of planes PWL2 ⊂ PV over L2 ∈ Pic2(E) (see (3.2)). Let us consider
the vector bundle W over Ẽ := Pic2(E), such that the fiber of W over L2 is WL2 . Note that
we have a natural identification Ẽ ≃ Pic3(E) : L2 7→ L3 := det(V) ⊗ L−1

2 . In terms of L3

we have WL2 = H0(L3)
∗ ⊂ H0(V)∗, where we use a surjection V → L3. To define the vector

bundleW precisely, we consider the universal line bundle L3 of degree 3 over E×Ẽ ≃ E×Pic3(E),
normalized so that the line bundle p2∗Hom(p∗1V,L3) is trivial. We set W := p2∗(L3)

∨. Note
that applying p2∗ to the natural surjection p∗1V → L3 we get a surjection H0(V)⊗O → p2∗(L3).
Passing to the dual, we get a morphism P(W) → PV , whose image is DE .

Lemma 3.2.4. The morphism P(W) → DE is an isomorphism over DE \ SE.

Proof. We need to check two conditions of Lemma 3.2.2 for the morphism H0(V)⊗O → W∨

over Ẽ, with Z ⊂ P(W) being the preimage of SE . Note that the intersection of Z with each
plane PH0(L3)

∗ ⊂ H0(V)∗ is the elliptic curve E embedded by the linear system |L3|.
To check the first condition, we use the exact sequence

0 → H0(L2) → H0(V) → H0(L3) → 0,

where L2 ⊗ L3 ≃ det(V). If L′
3 is different from L3 then the composed map L2 → V → L′

3

is nonzero, hence, it identifies L2 with the subsheaf L′
3(−p) for some point p ∈ E. Hence, the

image ofH0(L2) is precisely the planeH0(L′
3(−p)) ⊂ H0(L′

3). Hence, the only point of PH0(L′
3)

∗

orthogonal to this plane is the point p ∈ E ⊂ PH0(L′
3)

∗, which lies in Z.
To check the second condition, we need to understand the map H0(V) → H0(W∨|2x)

for x ∈ Ẽ ≃ Pic3(E). For this we observe that this map is equal to the composition

H0(V) → H0(E × {2x}, p∗1V|E×{2x}) → H0(E × {2x},L3|E×{2x}),

which is the map induced on H0 by the morphism of sheaves on E,

α : V → V ⊗H0(O2x) = p1∗(p
∗
1V|E×{2x}) → p1∗(L3|E×{2x}).

Note that for x = L3, the bundle Fx := p1∗(L3|E×{2x}) on E is an extension of L3 by T ∗
x Ẽ⊗L3,

which gives the Kodaira–Spencer map for the family L3, so this extension is nontrivial. The
composition

V α- Fx → L3

is the canonical surjection with the kernel L2 ⊂ V. Hence, α fits into a morphism of exact
sequences

0 - L2
- V - L3

- 0

0 - T ∗
x Ẽ ⊗ L3

α|L2

?
- Fx

α

?
- L3

id

?
- 0.
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Note that the map α|L2 is nonzero, since otherwise we would get a splitting of the exten-
sion Fx → L3.

Now the kernel of the map H0(V) → W∨|x = H0(L3) is identified with H0(L2), and the
induced map H0(L2) → T ∗

x Ẽ ⊗H0(L3) is given by a nonzero map

α|L2 : L2 → T ∗
x Ẽ ⊗ L3 ≃ L3.

Hence, its image is the subspace of the form H0(L3(−p)), and we again deduce that any point
of PH0(L3)

∗ orthogonal to it lies in Z. ■

Corollary 3.2.5.

(i) There is a regular map DE \ SE → Ẽ such that the fiber over L2 is the symplectic
leaf PWL2 \ E.

(ii) Any line contained in DE is either contained in SE (and so has form PΛp for some p ∈ E)
or in some plane PWL2, where L2 ∈ Pic2(E).

Proof. For (ii) we observe that given a line L ⊂ DE not contained in SE , the restriction of
the map DE \ S → Ẽ to L \ SE → Ẽ is necessarily constant. Hence, L is contained in some
plane PWL2 . Similarly, we have a fibration SE → E with fibers PΛp, so any line contained in SE

is one of the fibers. ■

3.3 Two-dimensional distribution on G(2, 5) associated
with the elliptic curve

Let E = EW ⊂ G(2, V ) be the elliptic curve obtained as the intersection with a linear sub-
space PW ⊂ P

(∧2V
)
in the Plücker embedding, where dimW = 5. Equivalently, E is cut out

by the linear subspace of sections W⊥ ⊂
∧2V ∗ ≃ H0(G(2, V ),O(1)). As before, we denote by V

the restriction of U∨, the dual of the universal bundle. Then
∧2(V) is the restriction of O(1),

and we have an exact sequence

0 → W⊥ →
∧2

V ∗ → H0
(
E,

∧2
(V)

)
→ 0.

In other words, we can identify the dual map to the embedding W ↪→
∧2V with the natural

map ∧2
H0(V) → H0

(∧2
V
)
.

We have a regular map f : G(2, V ) \ E → P4 given by the linear system |W⊥| ⊂ |O(1)|.

Definition 3.3.1. For every point Λ ∈ G(2, V ) \ E, we define the subspace

DΛ = DE,Λ ⊂ TΛG(2, V )

as the kernel of the tangent map to f at Λ.

Note that for generic Λ, one has dimDΛ = 2. We have the following characterization of DΛ.

Lemma 3.3.2. Let Λ ⊂ V be a 2-dimensional subspace corresponding to a point of G(2, V ) \E.

(i) Under the identification TΛG(2, V )⊗ det(Λ) ≃ Λ⊗ V/Λ, we have

DΛ ⊗ det(Λ) = W ∩ (Λ ∧ V ) = W ∩ (Λ⊗ V/Λ),

where the second intersection is taken in
∧2V/

∧2Λ.
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(ii) For each v ∈ Λ, let us denote by πv : TΛG(2, V ) → V/Λ the natural projection. Assume
that ΠE,v has rank 4, for some nonzero v ∈ Λ. Then DΛ is 2-dimensional, and πv(DΛ) is
the 2-dimensional subspace of V/Λ given as follows:

πv(DΛ) =
{
x ∈ V/Λ | x ∧Πnorm

E,v = 0
}
,

where Πnorm
E,v ∈

∧2(V/Λ) is the image of ΠE,v ∈
∧2(V/v).

Proof. (i) The map f is the composition of the Plücker embedding G(2, V ) → P
(∧2V

)
with

the linear projection

P
(∧2

V
)
\ P(W ) → P

(∧2
V/W

)
.

Thus, the tangent map to f at Λ ⊂ W is the composition

Hom(Λ, V/Λ)
α- Hom

(∧2
Λ,

∧2
V/

∧2
Λ
)
→ Hom

(∧2
Λ,

∧2
V/

(∧2
Λ +W

))
,

where α(A)(l1 ∧ l2) = Al1 ∧ l2 + l1 ∧Al2mod
∧2Λ. Equivalently, the map α is the natural map

Hom(Λ, V/Λ) ≃ Λ∗ ⊗ V/Λ ≃ det−1(Λ)⊗ Λ⊗ V/Λ → det−1(Λ)⊗
∧2

V/
∧2

Λ,

given by l ⊗ (vmodΛ) 7→ l ∧ vmod
∧2Λ.

Now the assertion follows from the identification

W = ker
(∧2

V/
∧2

Λ →
∧2

V/
(∧2

Λ +W
))

.

(ii) Our identification of ΠW from Theorem A implies the following property of the bivec-
tor ΠW,v ∈

∧2(V/v). Consider the natural map ϕv : W →
∧2(V/v). Recall that S = SE ⊂ PV

denotes the surface, obtained as the union of lines corresponding to E ⊂ G(2, V ). We claim that
the map ϕv is injective if and only if ⟨v⟩ is not in S. Indeed, an element in the kernel of ϕv is
an element v ∧ v′ contained in W , so the plane ⟨v, v′⟩ corresponds to a point of E. Hence, this
is true when ΠW,v is nonzero.

Now assume the rank of ΠW,v is 4. We have a nondegenerate symmetric pairing on
∧2(V/v)

with values in det(V/v), given by the exterior product. Now our description of ΠW implies that
for ⟨v⟩ ̸∈ S, ΠW,v is nonzero and

ϕv(W ) = ⟨ΠW,v⟩⊥.

Since ΠW,v has maximal rank, the skew-symmetric form (x1, x2) = x1 ∧ x2 ∧ ΠW,v on V/v
is nondegenerate. Hence, the subspace (Λ/⟨v⟩) ⊗ (V/Λ) cannot be contained in ⟨ΠW,v⟩⊥ (this
would mean that Λ/⟨v⟩ lies in the kernel of (·, ·)). Hence, the intersection

I := (Λ/⟨v⟩)⊗ (V/Λ) ∩ ⟨ΠW,v⟩⊥

is 2-dimensional. Since the subspace ϕv(W ∩ (Λ ∧ V )) is contained in I, we deduce that its
dimension is ≤ 2, and so dimDΛ ≤ 2. But we also know that dimDΛ ≥ 2, hence in fact, we
have dimDΛ = 2 and ϕv(W ∩ (Λ ∧ V )) = I.

The last assertion follows from the fact that under trivialization of Λ/⟨v⟩, the subspace
I ⊂ V/Λ coincides with πv(DΛ). ■

Definition 3.3.3. We define ΣE ⊂ G(2, V ) as the closed locus of points Λ ∈ G(2, V ) such
that dimW ∩ (Λ ∧ V ) ≥ 3.
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Lemma 3.3.4. One has ΣE ⊂ G(2, V ) \ E.

Proof. We have to prove that dimW ∩ (Λp ∧ V ) ≤ 2, where Λp = H0(V|p)∗ ⊂ H0(V)∗ = V for
some p ∈ E. We have, Λ⊥

p = H0(V(−p)) ⊂ H0(V) and so, V/Λp ≃ H0(V(−p))∗.
The intersection W ∩ (Λp ∧ V ) is the kernel of the composed map

W ↪→
∧2

V →
∧2

(V/Λp).

The dual map can be identified with the composition∧2
H0(V(−p)) →

∧2
H0(V) → H0(detV),

which also factors as the composition∧2
H0(V(−p)) → H0

(∧2
(V(−p))

)
= H0((detV)(−2p)) ⊂ H0(detV).

We need to check that this map has corank 2, or equivalently the first arrow is an isomorphism.
Set V ′ = V(−p). This is a stable bundle of rank 2 and degree 3. We need to check that the

map ∧2
H0(V ′) → H0(detV ′)

is surjective. For any point p′ ∈ E, we have an exact sequence

0 → H0(O(p′)) → H0(V ′) → H0((detV ′)(−p′)) → 0

and it is easy to see that the restriction of the above map to H0(O(p′)) ∧H0(V ′) surjects onto
the subspace H0((detV ′)(−p′)) ⊂ H0(detV ′). Varying the point p′ ∈ E, we get the needed
surjectivity. ■

Thus, by Lemma 3.3.2 (i), ΣE is exactly the set of points Λ ∈ G(2, V ) \E where dimDΛ ≥ 3.
We have the following geometric description of ΣE . Recall that we have a collection of 3-
dimensional subspaces Wq ⊂ V , associated with points of Ẽ = Pic2(E) (see (3.2)).

Proposition 3.3.5. For Λ ∈ G(2, V ), we have Λ ∈ ΣE if and only if the corresponding line PΛ
is contained in some plane PWq, where q ∈ Ẽ. In other words, ΣE =

⋃
q∈Ẽ G(2,Wq).

Proof. Assume first that Λ ∈ ΣE . As we have seen above, this means that Λ ∈ G(2, V ) \ E
and dimDΛ ≥ 3. By Lemma 3.3.2 (ii), this implies that the rank of the Poisson bracket ΠW

on points of PΛ is ≤ 2. Hence, by Lemma 3.2.1 (ii), PΛ is contained in the quintic DE . By
Corollary 3.2.5, this implies that PΛ is contained in some plane PWq.

Conversely, assume that we have a 2-dimensional subspace Λ ⊂ H0(M)∗ ⊂ H0(V)∗ = V ,
where V → M is a surjection to a degree 3 line bundle M . Then Λ = ⟨s⟩⊥ ⊂ H0(M)∗ for
some 1-dimensional subspace ⟨s⟩ ⊂ H0(M). Set P = Λ⊥ ⊂ H0(V). Then P is the preimage
of ⟨s⟩ ⊂ H0(M) under the projection H0(V) → H0(M).

By Lemma 3.3.2, the space DΛ is isomorphic to the kernel of the composed map

W →
∧2

V →
∧2

(V/Λ).

Hence, dim(DΛ) is equal to the corank of the dual map∧2
(P ) →

∧2
H0(V) → H0

(∧2
V
)
. (3.3)
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Let B denote the divisor of zeroes of s. We claim that the image of (3.3) is contained in the
subspace H0

(∧2V(−B)
)
⊂ H0

(∧2V
)
. Indeed, we have an exact sequence

0 → N → V → M → 0,

where N is a line bundle of degree 2. It is easy to see that the composed map

H0(N) ∧H0(V) ↪→
∧2

H0(V) → H0
(∧2

V
)

coincides with the natural multiplication map

H0(N) ∧H0(V)/
∧2

H0(N) ≃ H0(N)⊗H0(M) → H0(N ⊗M) ≃ H0
(∧2

V
)
.

The exact sequence

0 → H0(N) → P → ⟨s⟩ → 0

shows that
∧2P ⊂ H0(N)∧H0(V) and its image in H0(N)⊗H0(M) is contained in H0(N)⊗⟨s⟩.

This proves our claim about the image of the map (3.3). It follows that the corank of this map
is ≥ 3, so Λ ∈ ΣE . ■

Corollary 3.3.6. The locus of lines in P4 contained in the degeneration locus DE of ΠE corre-
sponds to the union E ⊔ ΣE ⊂ G(2, V ).

Proof. Combine Proposition 3.3.5 with Corollary 3.2.5 (ii). The union is disjoint by Lem-
ma 3.3.4. ■

Lemma 3.3.7. Let Λ ∈ G(2, V ) \ E.

(i) For any 3-dimensional subspace M ⊂ V containing Λ, one has W ∩
∧2M =

∧2Λ.

(ii) Assume that for generic v ∈ Λ, the rank of ΠE,v is 4. Then the map DΛ⊗O → V/Λ⊗O(1)
over the projective line PΛ is an embedding of a rank 2 subbundle.

Proof. (i) Since all elements of
∧2M are decomposable, the intersection Q := W ∩

∧2M is
a linear subspace consisting of decomposable elements. But all decomposable elements of W are
of the form

∧2Λp for some point p ∈ E. Hence, we would get an embedding P(Q) → E, which
implies that Q is 1-dimensional, so Q =

∧2Λ.
(ii) From part (i) and from Lemma 3.3.2 we get that for any 3-dimensional subspace M ⊂ V

containing Λ, one has DΛ ∩ Λ ⊗M/Λ = 0. Let us set P = V/Λ, and let us consider the exact
sequence over PΛ,

0 → DΛ ⊗O(−1) → P ⊗O → Q → 0.

We want to prove that the rank 1 sheaf Q on P1 has no torsion. Since deg(Q) = 2 and Q is gener-
ated by global sections, we only have to exclude the possibilities Q ≃ Ox⊕O(1) and Q ≃ T ⊕O,
where T is a torsion sheaf of length 2.

Assume first that Q ≃ Ox⊕O(1). Consider the composed surjection f : P ⊗O → Q → O(1).
It is induced by a surjection P → H0(O(1)), which has 1-dimensional kernel ⟨v⟩. It follows that
the inclusion of DΛ ⊗O(−1) into P ⊗O factors as

DΛ ⊗O(−1) → ⟨v⟩ ⊗ O ⊕O(−1) → P ⊗O.

Hence, DΛ has a nontrivial intersection with H0(O(1))⊗ ⟨v⟩ = Λ⊗M/Λ ⊂ Λ⊗ V/Λ, for some
3-dimensional M ⊂ V , containing Λ. This is a contradiction, as we proved that there could be
no such M .



Compatible Poisson Brackets Associated with Elliptic Curves in G(2, 5) 15

In the case Q ≃ T ⊕ O, we get that DΛ ⊗ O(−1) is contained in the kernel of a surjec-
tion P ⊗O → O, i.e.,DΛ⊗O(−1) is contained inO2 ⊂ P⊗O. But any embeddingO(−1)2 → O2

factors through some O(−1)⊕O → O2 (occurring as kernel of the surjection O2 → Ox, for some
point x in the support of the quotient). Hence, we can finish again as in the previous case. ■

Remark 3.3.8. The rational map f from G(2, V ) to P4 has the following interpretation, which
can be proved using projective duality. Start with a generic line ℓ ⊂ P(V ). Then the inter-
section ℓ ∩ DE with the degeneration quintic of ΠE consists of 5 points. Taking the images of
these points under the projection DE \ SE → Ẽ (see Corollary 3.2.5) we get a divisor Dℓ of
degree 5 on Ẽ. All these divisors will belong to a certain linear system P4 of degree 5, and the
map ℓ 7→ Dℓ is exactly our map f .

3.4 Calculation of the Schouten bracket and proof of Theorem B

Lemma 3.4.1.

(i) Let E ⊂ G(2, V ) be the elliptic curve defined by W ⊂
∧2V . Then for each point p ∈ E, the

bivector ΠE vanishes on the projective line PΛp ⊂ PV , where Λp ⊂ V is the 2-dimensional
subspace corresponding to p. For a generic point v of Λp, the Lie algebra g = T ∗

v PV has
a basis (h1, h2, e1, e2) such that

[h1, h2] = [e1, e2] = 0,

[hi, ei] = 2ei, [hj , ei] = −ei for i ̸= j.

Equivalently, the linearization of ΠE takes form

Πlin
E = 2e1∂h1 ∧ ∂e1 − e1∂h2 ∧ ∂e1 + 2e2∂h2 ∧ ∂e2 − e2∂h1 ∧ ∂e2 .

Furthermore, the conormal subspace N∨
PΛp,v

⊂ g∗ is spanned by e1, e2, h1 + h2 (dually the

tangent space to TPΛp is spanned by ∂h1 − ∂h2).

(ii) We have an identification

H0(PΛp, NPΛp) ≃ H0(PΛp, V/Λp ⊗O(1)) ≃ Λ∗
p ⊗ V/Λp ≃ TpG(2, V ).

Under this identification, the line TpE ⊂ TpG(2, V ) has the property that the corresponding
global section of NPΛp evaluated at generic v ∈ PΛp spans the line

⟨∂h1 , ∂h2⟩/⟨∂h1 − ∂h2⟩ ⊂ NPΛp,v ≃ V/Λp.

Equivalently, the tangent space at v to the surface SE ⊂ PV is ⟨∂h1 , ∂h2⟩ ⊂ TvPV .

(iii) Let Π′ be a Poisson bracket compatible with ΠE. Then for p ∈ E and a generic v ∈ Λp,
one has

Π′
v ∈ ⟨(2∂h1 − ∂h2) ∧ ∂e1 , (2∂h2 − ∂h1) ∧ ∂e2 , ∂h1 ∧ ∂h2⟩. (3.4)

Proof. (i) Extensions Ṽ of V by O, corresponding to the line PΛp, are exactly nontrivial
extensions that split under O → O(p). We claim that for a generic point of PΛp we have
Ṽ ≃ O(p)⊕ L1 ⊕ L2, where L1 and L2 are nonisomorphic line bundles of degree 2. Indeed, by
Lemma 3.2.1 (ii), the only other possibility is Ṽ ≃ O(p) ⊕ V ′, where V ′ is a nontrivial exten-
sion of M by M , where M2 ≃ det(V)(−p). Since the corresponding extension splits over the
unique embedding M → V, this gives one point on the line PΛp for each of the four possible line
bundles M .
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We can compute the Lie algebra g for the point corresponding to Ṽ ≃ O(p)⊕ L1 ⊕ L2 using
the isomorphism of Theorem 2.3.1,

End
(
Ṽ
)
/⟨id⟩ ∼- g ⊂ H0(V). (3.5)

We consider the following basis in End
(
Ṽ
)
/⟨id⟩:

hi = idLi − idO(p), ei ∈ Hom(O(p), Li), i = 1, 2.

Then it is easy to check the claimed commutator relations between these elements.

The conormal subspace to PΛp is identified with Λ⊥
p = H0(V(−p)). The image of the sub-

space Hom(O(p), L1 ⊕ L2) under the map (3.5) will consist of compositions

O → O(p) → L1 ⊕ L2 → V,

which vanish at p, so they are contained in H0(V(−p)). We have

h1 + h2 = idL1 ⊕ idL2 −2 idO(p) ≡ −3 idO(p)mod⟨idṼ⟩,

and the element idO(p) is mapped under (3.5) to the composition

O → O(p) → V,

which also vanishes at p. This proves our claim about the conormal subspace.

(ii) To identify the direction corresponding to TpE, we first recall that the map E → G(2, V )
is associated with the subbundle V∨ ↪→ V ⊗O over E. We have an exact sequence

0 → T ∗
pE ⊗ V|p → H0(V|2p) → V|p → 0.

The dual of the natural map V ∗ → H0(V|2p) fits into a morphism of exact sequences

0 - V∨|p - H0(V|2p)∗ - TpE ⊗ V∨|p - 0

0 - Λp

∼

?
- V

?
- V/Λp

β

?
- 0

and the map β corresponds to a map TpE → Hom(V∨|p, V/Λp) = Hom(Λp, V/Λp) which is the
tangent map to E → G(2, V ). Note that the dual to β is the natural linear map

(V/Λp)
∗ = ker

(
H0(V) → V|p

)
→ ker

(
H0(V|2p) → V|p

)
≃ T ∗

pE ⊗ V|p. (3.6)

Now, given a functional v : V|p → k, the image of TpE under πv : Λ
∗
p ⊗ V/Λp → V/Λp

corresponds to the composition of (3.6) with v. In other words, it is given by the composition

Λ⊥
p = H0(V(−p)) → V(−p)|v ≃ V|p

v- k

(here we use a trivialization of TpE).

Let Ṽ → V be the extension corresponding to v. As we have seen in (i), for a generic v,
we have Ṽ ≃ O(p) ⊕ L1 ⊕ L2, where Li are as above. As we have seen in (i), under the
isomorphism (3.5), Λ⊥

p = H0(V(−p)) is the image of the subspace ⟨h1 + h2, e1, e2⟩.
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Hence, it remains to check that the composition

⟨e1, e2⟩ → H0(V(−p)) → V(−p)|p ≃ V|p
v- k,

is zero (where the first arrow is induced by (3.5)). Let us consider the element e1 (the case of e2
is similar). It maps to the element of H0(V(−p)) given by the embedding

O → L1(−p) → V(−p),

where we use the composed map L1 → Ṽ → V. Thus, it is enough to check that the composition
L1 → V v- Op is zero. To this end we use the fact that the extension Ṽ is the pull-back of
the standard extension O(p) → Op via v. Hence, we have a commutative diagram with exact
rows and columns,

0 - O - O(p) - Op
- 0

0 - O

id

6

- Ṽ

6

- V

v

6

- 0

L1 ⊕ L2

6

id
- L1 ⊕ L2

6

which shows that the composition L1 ⊕ L2 → V → Op is zero.
(iii) This is obtained by a straightforward computation using the vanishing of [ΠE ,Π

′] and
the formula for Πlin

E from part (i). ■

Lemma 3.4.2. Let E,E′ ⊂ G(2, V ) be a pair of elliptic curves obtained as linear sections, such
that [ΠE ,ΠE′ ] = 0. Then E is not contained in ΣE′ ⊂ G(2, V ).

Proof. Assume E ⊂ ΣE′ . Then, by the description of ΣE′ in Proposition 3.3.5, for every p ∈ E
there exists a line bundle L2 of degree 2 on E′ such that the image ofH0(V|p)∗ → H0(E,V)∗ = V
is contained in H0(E′, L2)

⊥ ⊂ H0(E′,V ′)∗ = V . In other words, each line PΛp ⊂ PV , for p ∈ E,
is contained in the projective plane PH0(E′, L2)

⊥ ⊂ PV . This plane intersects the zero locus
of ΠE′ in a smooth cubic (see Lemma 3.2.1 (iii)), hence, for a generic point v ∈ Λp, the rank
of ΠE′ |v is 2.

Hence, ΠE′ |v = w1 ∧ w2, where ⟨w1, w2⟩ is the tangent plane to the leaf of ΠE′ (i.e., to
the projective plane PH0(E′, L2)

⊥). Furthermore, the plane ⟨w1, w2⟩ contains the tangent line
to PΛp at v. In the notation of Lemma 3.4.1 (i), the latter tangent line is spanned by ∂h1 − ∂h2 .
So, ΠE′ |v = (∂h1 − ∂h2) ∧ w for some tangent vector w. But we also know by Lemma 3.4.1 (iii)
that ΠE′ |v is a linear combination of (2∂h1 − ∂h2) ∧ ∂e1 , (2∂h2 − ∂h1) ∧ ∂e2 and ∂h1 ∧ ∂h2 .
This is possible only when w ∈ ⟨∂h1 , ∂h2⟩, which is the tangent plane to the surface SE (see
Lemma 3.4.1 (ii)).

This implies that SE is tangent to the corresponding projective plane PH0(E′, L2)
⊥ ⊂ DE′ .

Assume first that SE ̸⊂ SE′ . Then we get that the regular morphism

SE \ SE′ → DE′ \ SE′ → Pic2(E′)

(see Corollary 3.2.5) has zero tangent map at every point. Hence, SE is contained in a projective
plane, which is a contradiction (since the map P

(
V∨) → PH0(V)∗ = PV induces an isomorphism

on sections of O(1)).
Finally, if SE ⊂ SE′ then E = E′ ⊂ G(2, V ) and, we get a contradiction by Lemma 3.3.4. ■
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Proof of Theorem B. (i) We can assume that E ̸= E′. We will check that for a generic
point p ∈ E, one has

TpE ⊂ DE′,p ⊂ TpG(2, V ). (3.7)

By Lemma 3.4.2, for a generic p ∈ E, we have p ̸∈ ΣE′ , hence, by Corollary 3.3.6, the line PΛp

is not contained in the degeneracy locus DE′ of ΠE′ . Let us pick a generic point v of Λp, so that
the rank of ΠE′,v is 4. We want to study the normal projection

Πnorm
E′,v ∈ ∧2(TvPV/TvPΛp) ≃ ∧2(V/Λp)

(see Lemma 3.3.2).
Recall that in the notation of Lemma 3.4.1, the tangent space to PΛp at v is spanned

by ∂h1 − ∂h2 . Hence, the inclusion (3.4) implies that Πnorm
E′,v is proportional to a bivector of

the form ∂h1 ∧ ξ . By Lemma 3.4.1 (ii), we can reformulate this as

Πnorm
E′,v ∈ πv(TpE) ∧ V/Λp ⊂ ∧2(V/Λp).

By Lemma 3.3.2 (ii), the subspace πv(DE′,p) ⊂ V/Λp consists of x such that x ∧ Πnorm
E′,v = 0.

Thus, we deduce the inclusion

πv(TpE) ⊂ πv(DE′,p) ⊂ V/Λp

for generic v ∈ Λp.
In other words, the section s generating

TpE ⊂ TΛpG(2, V ) ≃ Hom(Λp, V/Λp) ≃ H0(PΛp, V/Λp ⊗O(1))

has the property that for generic point v ∈ PΛp the evaluation s(v) belongs to the image of the
evaluation at v of the embedding DE′,p ⊗O → V/Λp ⊗O(1). Since by Lemma 3.3.7 the latter
is an embedding of a subbundle, this implies that in fact s ∈ DE′,p as claimed.

This proves the inclusion (3.7) for a generic p ∈ E. But this implies that the composed map

E \ E′ → G(2, V ) \ E′ → P4

has zero derivative everywhere, so it is constant. Hence, E is contained in a linear sec-
tion of PU ∩G(2, V ), for some 6-dimensional subspace U ⊂

∧2V containing W ′. Hence,
dim(W +W ′) ≤ 6.

Conversely, assume W and W ′ are such that U = W +W ′ is 6-dimensional. Then we claim
that [ΠW ,ΠW ′ ] = 0. Indeed, since the space of such pairs (W,W ′) is irreducible, it is enough
to consider the case when the surface S = PU ∩ G(2, V ) is smooth. Then EW and EW ′ are
anticanonical divisors on S, and we can apply [3, Theorem 4.4] to the bundle VS := U∨|S on S.
The fact that (OS ,VS) is an exceptional pair is easily checked using Koszul resolutions, as in
Section 2.2.

(ii) It is well known that if a collection of k-dimensional subspaces in a vector space has
the property that any two subspaces intersect in a (k − 1)-dimensional space, then either all
of them are contained in a fixed (k + 1)-dimensional subspace, or they contain a fixed (k − 1)-
dimensional subspace. The statement immediately follows from (i) using this fact for k = 5 and
the collection (Wi). ■

Proof of Corollary C. By Theorem B (ii), the brackets (ΠWi) are pairwise compatible when
either there exists a 6-dimensional subspace U ⊂

∧2V , containing all Wi, or there is a 4-
dimensional subspace K ⊂

∧2V , contained in all Wi. In the former case the corresponding
tensors

∧5Wi are all contained in the 6-dimensional subspace∧5
U ⊂

∧5 (∧2
V
)
.
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In the latter case all the tensors
∧5Wi are contained in the 6-dimensional subspace∧4

K ⊗
(∧2

V/K
)
≃

(∧4
K
)
∧
(∧2

V
)
⊂

∧5 (∧2
V
)
.

Conversely, by [3, Theorem 4.4], if we take a smooth linear section S = PU ∩ G(2, V ),
where dimU = 6, we claim that we will get a 6-dimensional subspace of compatible Poisson
brackets coming from anticanonical divisors of S. We just need to show that the corresponding
linear map from H0

(
S, ω−1

S

)
to the space of Poisson bivectors on P(V ) is injective. Suppose

there exists an anticanonical divisor E0 ⊂ E such that the corresponding Poisson bivector is
zero. Pick a generic anticanonical divisor E. Then all elliptic curves in the pencil E + tE0 map
to the same Poisson bivector. But this is impossible since we can recover E ⊂ G(2, V ) from the
corresponding Poisson bracket ΠE on P(V ), as the set of all lines lying in the zero locus SE (see
Section 3.2). ■
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