Triangular maps 'picture'  ...
HM    CEMIHAP
a seminar in Dynamical Systems and Related Topics.  Usually seminars take place on Tuesdays between 2.00 and 3.00 pm, in  208 (unless otherwise indicated)  in the   Institute of Mathematics

21   May   1999 (Friday, 3.00 pm)

Mariusz   LEMANCZYK  ( Uniwersytet Mikolaja Kopernika , Torun, Poland )

RANDOM ERGODIC THEOREMS OF VON NEUMANN AND COCYCLES


25   May   1999 (Tuesday, 3.00 pm)

Sergii   KOLYADA  ( Institute of Mathematics, Kiev)

Minimality, Invertibility and Openness of Maps


7   December   1999 (Tuesday, 2.00 pm)

Sergii   KOLYADA  ( Institute of Mathematics, Kiev)

On Li-Yorke Pairs


8   February   2000 (Tuesday, 3.00 pm)

1. Volodymyr   NEKRASHEVYCH  ( Taras Shevchenko University, Kiev)

On Dynamics of Group Actions on Cantor Sets

2. Sergii   KOLYADA  ( Institute of Mathematics, Kiev)

On some problems in Topological Dynamics


15   February   2000 (Tuesday, 3.00 pm)

1. Vitaly  SUSHCHANS'KYI  ( Taras Shevchenko University, Kiev)

Cycles of Cellular Automata

2. Sergii   KOLYADA  ( Institute of Mathematics, Kiev)

Minimality, Invertibility and Openness of Maps II


21-30   August   2000

Conference and Ukrainian-US workshop


26  September   2000  (Tuesday, 4.00 pm)

Oleg Kozlovski (Warwick University, UK)

Hausdorff Dimension of Attractors of Unimodal maps 

If one wants to investigate properties of a dynamical system, one of the first things to do is to check attractors of this dynamical system and their properties. We will discuss Hausdorff dimension of attractors of unimodal maps (i.e. maps of an interval with one critical point) and show the following remarkable fact: Hausdorff  dimension of an attractor of a unimodal map with a non-degenerate critical point is either 1 and in this case this attractor is a union of intervals or it is less than some  universal constant. This constant is strictly less than 1 and does not depend on anything.

For further information about  the seminar, contact the organizer Sergii Kolyada   and / or   http://www.imath.kiev.ua/~skolyada/nmsem98.html