Representations of the q-Deformed Algebra $so_q(2,1)$

M. HAVLÍČEK †, S. POŠTA † and A.U. KLIMYK ‡

- † Department of Mathematics, FNSPE, Czech Technical University CZ-120 00, Prague 2, Czech Republic
- ‡ Institute for Theoretical Physics, Kyiv, Ukraine

We give a classification theorem for irreducible weight representations of the q-deformed algebra $U_q(\mathrm{so}_{2,1})$ which is a real form of the nonstandard deformation $U_q(\mathrm{so}_3)$ of the Lie algebra $\mathrm{so}(3,\mathbf{C})$. The algebra $U_q(\mathrm{so}_3)$ is generated by the elements I_1 , I_2 and I_3 satisfying the relations $[I_1,I_2]_q:=q^{1/2}I_1I_2-q^{-1/2}I_2I_1=I_3,\ [I_2,I_3]_q=I_1$ and $[I_3,I_1]_q=I_2$. The real form $U_q(\mathrm{so}_{2,1})$ is determined for real q by the *-involution $I_1^*=-I_1$ and $I_2^*=I_2$. Weight representations of $U_q(\mathrm{so}_{2,1})$ are defined as representations T for which the operator $T(I_1)$ can be diagonalized and has a discrete spectrum. A part of the irreducible representations of $U_q(\mathrm{so}_{2,1})$ turn into irreducible representations of the Lie algebra $\mathrm{so}_{2,1}$ when $q \to 1$. Representations of the other part have no classical analogue.

1 The algebras $U_q(so_3)$ and $U_q(so_{2,1})$

The algebra $U_q(so_3)$ is obtained by a q-deformation of the standard commutation relations $[I_1, I_2] = I_3$, $[I_2, I_3] = I_1$, $[I_3, I_1] = I_2$ of the Lie algebra $so(3, \mathbf{C})$ and is defined as the complex associative algebra (with a unit element) generated by the elements I_1 , I_2 , I_3 satisfying the defining relations

$$[I_1, I_2]_q := q^{1/2} I_1 I_2 - q^{-1/2} I_2 I_1 = I_3,$$
(1)

$$[I_2, I_3]_q := q^{1/2} I_2 I_3 - q^{-1/2} I_3 I_2 = I_1,$$
(2)

$$[I_3, I_1]_q := q^{1/2} I_3 I_1 - q^{-1/2} I_1 I_3 = I_2.$$
(3)

A Hopf algebra structure is not known on $U_q(so_3)$. However, it can be embedded into the Hopf algebra $U_q(sl_3)$ as a Hopf coideal (see [1]). This embedding is very important for the possible application in spectroscopy.

It follows from the relations (1)–(3) that for the algebra $U_q(so_3)$ the Poincaré–Birkhoff–Witt theorem is true and this theorem can be formulated as: The elements $I_3^k I_2^m I_1^n$, $k, m, n = 0, 1, 2, \ldots$, form a basis of the linear space $U_q(so_3)$. This theorem is proved by using the diamond lemma [2] (or its special case from Subsect. 4.1.5 in [3]).

By (1) the element I_3 is not independent: it is determined by the elements I_1 and I_2 . Thus, the algebra $U_q(so_3)$ is generated by I_1 and I_2 , but now instead of quadratic relations (1)–(3) we must take the relations

$$I_1I_2^2 - (q+q^{-1})I_2I_1I_2 + I_2^2I_1 = -I_1, I_2I_1^2 - (q+q^{-1})I_1I_2I_1 + I_1^2I_2 = -I_2,$$
 (4)

which are obtained if we substitute the expression (1) for I_3 into (2) and (3). The equation $I_3 = q^{1/2}I_1I_2 - q^{-1/2}I_2I_1$ and the relations (4) restore the relations (1)–(3).

Up to now we did not introduce *-involutions on $U_q(so_3)$ determining real forms of this algebra. The *-involution $I_1 = -I_1$, $I_2 = -I_2$ determines the real form of $U_q(so_3)$ which can be called a compact real form of $U_q(so_3)$. The *-involution uniquely determined by the relations

$$I_1^* = -I_1, \qquad I_2^* = I_2$$
 (5)

gives a noncompact real form of $U_q(so_3)$ which is denoted by $U_q(so_{2,1})$. It is a q-analogue of the real form $so_{2,1}$ of the complex Lie algebra $so(3, \mathbf{C})$.

Note that for real q the equations $I_1^* = -I_1$ and $I_2^* = I_2$ do not mean that $I_3^* = I_3$ or $I_3^* = -I_3$:

$$I_3^* = \left(q^{1/2}I_1I_2 - q^{-1/2}I_2I_1\right)^* = q^{1/2}I_2^*I_1^* - q^{-1/2}I_1^*I_2^* = -q^{1/2}I_2I_1 + q^{-1/2}I_1I_2 \neq \pm I_3.$$

However, if |q| = 1 then $I_3^* = I_3$. Really,

$$I_3^* = \left(q^{1/2}I_1I_2 - q^{-1/2}I_2I_1\right)^* = q^{-1/2}I_2^*I_1^* - q^{1/2}I_1^*I_2^* = -q^{-1/2}I_2I_1 + q^{1/2}I_1I_2 = I_3.$$

In this paper we are interested in irreducible infinite dimensional representations of the algebras $U_q(so_{2,1})$. Infinite dimensional irreducible representations of $U_q(so_{2,1})$ are important for physical applications. For example, irreducible *-representations of the so called strange series (these representations were defined in [4]) are related to a certain type of Schrödinger equation [5]. Infinite dimensional representations of $U_q(so_{2,1})$ appear in the theory of quantum gravity [6].

Infinite dimensional representations of $U_q(so_{2,1})$ were studied in [4]. However, not all such representations were found there. Note that *-representations of real forms of $U_q(so_3)$ different from $U_q(so_{2,1})$ were studied in [7] and [8]. Irreducible representations of $U_q(so_3)$ (including the case when q is a root of unity) are studied in [9–11].

2 Definition of weight representations of $U_q(so_{2,1})$

From this point we assume that q is not a root of unity.

Definition 1. By a weight representation T of $U_q(so_{2,1})$ we mean a homomorphism of $U_q(so_{2,1})$ into the algebra of linear operators (bounded or unbounded) on a Hilbert space \mathcal{H} , defined on an everywhere dense invariant subspace \mathcal{D} , such that the operator $T(I_1)$ can be diagonalized, has a discrete spectrum (with finite multiplicities of spectral points if T is irreducible), and its eigenvectors belong to \mathcal{D} . Two weight representations T and T' of $U_q(so_{2,1})$ on spaces \mathcal{H} and \mathcal{H}' , respectively, are called (algebraically) equivalent if there exist everywhere dense invariant subspaces $V \subset \mathcal{H}$ and $V' \subset \mathcal{H}'$ and a one-to-one linear operator $A: V \to V'$ such that AT(a)v = T'(a)Av for all $a \in U_q(so_{2,1})$ and $v \in V$.

Remark. Note that the element $I_1 \in U_q(so_{2,1})$ corresponds to the compact part of the group SO(2,1). Therefore, as in the classical case, it is natural to demand in the definition of representations of $U_q(so_{2,1})$ that the operator T(I) has a discrete spectrum (with finite multiplicities of spectral points for irreducible representations T). Such representations correspond to Harish-Chandra modules of Lie algebras. Note that the algebra $U_q(so_{2,1})$ has irreducible representations T for which the operator $T(I_1)$ can be diagonalized and has a continuous spectrum (this follows from the results of Section 4 in [12]). We do not consider such representations in this paper.

Since we shall consider only weight representations, below speaking about weight representations we shall omit the word "weight".

Definition 2. By a *-representation T of $U_q(so_{2,1})$ we mean a representation of $U_q(so_{2,1})$ in a sense of Definition 1 such that the equations $T(I_1)^* = -T(I_1)$ and $T(I_2)^* = T(I_2)$ are fulfilled on the domain \mathcal{D} .

Definition 1 does not use the *-structure of $U_q(so_{2,1})$. This means that representations of Definition 1 are in fact representations of $U_q(so_3)$.

3 Representations of the principal series

Let us study irreducible infinite dimensional representations of the algebra $U_q(so_{2,1})$ which were constructed in [4] and [11].

Let $q = e^{\tau}$ and ϵ be a fixed complex number such that $0 \leq \operatorname{Re} \epsilon < 1$ and $\epsilon \neq \pm i\pi/2\tau$. Let \mathcal{H}_{ϵ} be a complex Hilbert space with the orthonormal basis

$$|m\rangle$$
, $m=n+\epsilon$, $n=0,\pm 1,\pm 2,\ldots$

To every complex number a there corresponds the representation $R_{a\epsilon}$ of $U_q(so_{2,1})$ on the Hilbert space \mathcal{H}_{ϵ} defined by the formulas

$$R_{a\epsilon}(I_1)|m\rangle = i[m]|m\rangle,$$
 (6)

$$R_{a\epsilon}(I_2)|m\rangle = \frac{1}{q^m + q^{-m}} \{ [a-m]|m+1\rangle - [a+m]|m-1\rangle \},$$
 (7)

$$R_{a\epsilon}(I_3)|m\rangle = \frac{iq^{1/2}}{q^m + q^{-m}} \left\{ q^m[a-m]|m+1\rangle + q^{-m}[a+m]|m-1\rangle \right\}.$$
 (8)

(Everywhere below, under considering representations of $U_q(so_{2,1})$, we do not give the operator corresponding to I_3 since it can be easily calculated by using formula (3).)

Note that we excluded the cases $\epsilon = \pm i\pi/2\tau$ since for these ϵ the coefficients in (7) and (8) are singular.

If $\epsilon = -i\pi/2\tau + \sigma$ and $q^{\sigma} = \lambda$, then the representation $R_{a\epsilon}$ can be reduced to the following form:

$$R_{a\epsilon}(I_1)|n\rangle = \frac{\lambda q^n + \lambda^{-1}q^{-n}}{q - q^{-1}}|n\rangle,$$

$$R_{a\epsilon}(I_2)|n\rangle = \frac{-1}{\lambda q^n - \lambda^{-1}q^{-n}} \left(\frac{\lambda q^{n-a} + \lambda^{-1}q^{-n+a}}{q - q^{-1}} |n+1\rangle + \frac{\lambda q^{n+a} + \lambda^{-1}q^{-n-a}}{q - q^{-1}} |n-1\rangle \right),$$

where the basis elements $|n + \epsilon\rangle$ are denoted by $|n\rangle$, $n = 0, \pm 1, \ldots$ In particular, if $a = \pm i\pi/2\tau$ and $q^{\sigma} = \lambda$, $0 \le \text{Re }\sigma < 1$, then after rescaling the basis vectors the representation $R_{a\epsilon}$ (we denote it in this case as Q_{λ}^{+}) takes the form

$$Q_{\lambda}^{+}(I_{1})|m\rangle = \frac{\lambda q^{m} + \lambda^{-1}q^{-m}}{q - q^{-1}}|m\rangle, \qquad Q_{\lambda}^{+}(I_{2})|m\rangle = \frac{1}{q - q^{-1}}|m + 1\rangle + \frac{1}{q - q^{-1}}|m - 1\rangle.$$

If $a = \pm i\pi/2\tau$ and $q^{\sigma} = -\lambda$, $0 \le \text{Re } \sigma < 1$, then we obtain the representation $R_{a\epsilon}$ (we denote it in this case as Q_{λ}^{-}) in the form

$$Q_{\lambda}^{-}(I_1)|m\rangle = -\frac{\lambda q^m + \lambda^{-1}q^{-m}}{q - q^{-1}}|m\rangle, \qquad Q_{\lambda}^{-}(I_2) = Q_{\lambda}^{+}(I_2).$$

Since the representations $R_{a\epsilon}$ are determined for $\epsilon \neq \pm i\pi/2\tau$, then the representations Q_{λ}^{\pm} are determined for $\lambda \neq 1$. However, the operators $Q_{\lambda}^{\pm}(I_j)$, j = 1, 2, 3, are well defined also for $\lambda = \pm 1$ and satisfy the defining relations (1)–(3). Thus, the representations Q_{λ}^{\pm} are determined for all complex values of λ .

Theorem 1. The representation $R_{a\epsilon}$ is irreducible if and only if $a \not\equiv \pm \epsilon \pmod{\mathbf{Z}}$ or if $\epsilon \not\equiv \pm i\pi/2\tau + 1/2$ or if (a, ϵ) does not coincide with one of four couples $(\pm i\pi/2\tau, \pm i\pi/2\tau + 1/2)$. The representation Q_{λ}^{\pm} is irreducible if and only if $\lambda \neq \pm 1, \pm q^{1/2}$.

This theorem follows from Theorem 1 in [4] and the results of Section 7 in [11].

There exist equivalence relations between irreducible representations $R_{a\epsilon}$. They are completely described in [4].

In the excluded cases of Theorem 1, representations $R_{a\epsilon}$ and Q_{λ}^{\pm} are reducible. In particular, the representations Q_{λ}^{\pm} , $\lambda = \pm 1, \pm q^{1/2}$, are reducible (see [11]) and leads to the irreducible representations which are described as follows.

Let V_1 and V_2 be the vector spaces with the bases

$$|m\rangle'$$
, $m = 0, 1, 2, ...$, and $|m\rangle''$, $m = 1, 2, 3, ...$,

respectively. Then the operators $Q_1^{1,\pm}(I_1),\,Q_1^{1,\pm}(I_2),\,Q_1^{2,\pm}(I_1),\,Q_1^{2,\pm}(I_2)$ given by the formulas

$$\begin{split} Q_1^{1,\pm}(I_1)|m\rangle' &= \pm \frac{q^m + q^{-m}}{q - q^{-1}} \, |m\rangle', \qquad Q_1^{2,\pm}(I_1)|m\rangle'' = \pm \frac{q^m + q^{-m}}{q - q^{-1}} \, |m\rangle'', \\ Q_1^{1,\pm}(I_2)|0\rangle &= \frac{\sqrt{2}}{q - q^{-1}} \, |1\rangle', \qquad Q_1^{2,\pm}(I_2)|1\rangle'' = \frac{1}{q - q^{-1}} \, |2\rangle'', \\ Q_1^{1,\pm}(I_2)|1\rangle' &= \frac{\sqrt{2}}{q - q^{-1}} \, |0\rangle' + \frac{1}{q - q^{-1}} \, |2\rangle', \qquad Q_1^{2,\pm}(I_2)|2\rangle' = \frac{1}{q - q^{-1}} \, |1\rangle' + \frac{1}{q - q^{-1}} \, |3\rangle', \\ Q_1^{1,\pm}(I_2)|m\rangle' &= \frac{1}{q - q^{-1}} \, |m + 1\rangle' + \frac{1}{q - q^{-1}} \, |m - 1\rangle', \qquad m > 1, \\ Q_1^{2,\pm}(I_2)|m\rangle'' &= \frac{1}{q - q^{-1}} \, |m + 1\rangle'' + \frac{1}{q - q^{-1}} \, |m - 1\rangle'', \qquad m > 2, \end{split}$$

determine irreducible representations of $U_q(so_{2,1})$ which are denoted by $Q_1^{1,\pm}$ and $Q_1^{2,\pm}$, respectively.

Let W_1 and W_2 be the vector spaces spanned by the basis vectors

$$|m + \frac{1}{2}\rangle'$$
, $m = 0, 1, 2, ...$, and $|m + \frac{1}{2}\rangle''$, $m = 0, 1, 2, ...$,

respectively. Then the operators $Q_{\sqrt{q}}^{1,\pm}(I_1)$, $Q_{\sqrt{q}}^{1,\pm}(I_2)$, $Q_{\sqrt{q}}^{2,\pm}(I_1)$, $Q_{\sqrt{q}}^{2,\pm}(I_2)$ given by the formulas

$$Q_{\sqrt{q}}^{1,\pm}(I_1)|m+\tfrac{1}{2}\rangle'=\pm\frac{q^{m+1/2}+q^{-m-1/2}}{q-q^{-1}}\,|m+\tfrac{1}{2}\rangle',$$

$$Q_{\sqrt{q}}^{2,\pm}(I_1)|m+\frac{1}{2}\rangle''=\pm\frac{q^{m+1/2}+q^{-m-1/2}}{q-q^{-1}}|m+\frac{1}{2}\rangle''$$

and

$$Q_{\sqrt{q}}^{1,\pm}(I_2)|\frac{1}{2}\rangle' = -\frac{1}{q-q^{-1}}|\frac{1}{2}\rangle' + \frac{1}{q-q^{-1}}|\frac{3}{2}\rangle',$$

$$Q_{\sqrt{q}}^{1,\pm}(I_2)|m+\frac{1}{2}\rangle' = \frac{1}{q-q^{-1}}|m+\frac{3}{2}\rangle' + \frac{1}{q-q^{-1}}|m-\frac{1}{2}\rangle', \qquad m>0,$$

$$Q_{\sqrt{q}}^{2,\pm}(I_2)|\frac{1}{2}\rangle'' = \frac{1}{q-q^{-1}}|\frac{1}{2}\rangle'' + \frac{1}{q-q^{-1}}|\frac{3}{2}\rangle'',$$

$$Q_{\sqrt{q}}^{2,\pm}(I_2)|m+\frac{1}{2}\rangle'' = \frac{1}{q-q^{-1}}|m+\frac{3}{2}\rangle'' + \frac{1}{q-q^{-1}}|m-\frac{1}{2}\rangle'', \qquad m>0,$$

determine irreducible representations of $U_q(so_{2,1})$ which are denoted by $Q_{\sqrt{q}}^{1,\pm}$ and $Q_{\sqrt{q}}^{2,\pm}$, respectively. We have

$$Q_1^{\pm} = Q_1^{1,\pm} \oplus Q_1^{2,\pm}, \qquad Q_{\sqrt{q}}^{\pm} = Q_{\sqrt{q}}^{1,\pm} \oplus Q_{\sqrt{q}}^{2,\pm}$$

The representations $R_{a\epsilon}$ with $\epsilon = \pm i\pi/2\tau + \frac{1}{2}$ are also reducible. They lead to the following irreducible representations. For any complex number a we define the representations $R_a^{(i,\pm)}$ and $R_a^{(-i,\pm)}$ of $U_q(\text{so}_{2,1})$ acting on the Hilbert space \mathcal{H} with the orthonormal basis $|n\rangle$, $n=1,2,3,\ldots$, by the formulas

$$\begin{split} R_a^{(\mathbf{i},\pm)}(I_1)|k\rangle &= -\frac{q^{k-1/2}+q^{-k+1/2}}{q-q^{-1}}|k\rangle, \\ R_a^{(\mathbf{i},\pm)}(I_2)|1\rangle &= \pm \frac{[a]}{q^{1/2}-q^{-1/2}}|1\rangle + \mathrm{i}\frac{[a-1]}{q^{1/2}-q^{-1/2}}|2\rangle, \\ R_a^{(\mathbf{i},\pm)}(I_2)|k\rangle &= \mathrm{i}\frac{[a-k]}{q^{k-1/2}-q^{-k+1/2}}|k+1\rangle + \mathrm{i}\frac{[a+k-1]}{q^{k-1/2}-q^{-k+1/2}}|k-1\rangle, \qquad k \neq 1, \end{split}$$

and by the formulas

$$R_a^{(-i,\pm)}(I_1)|k\rangle = \frac{q^{k-1/2} + q^{-k+1/2}}{q - q^{-1}}|k\rangle, \qquad R_a^{(-i,\pm)}(I_2) = -R_a^{(i,\pm)}(I_2).$$

For $\epsilon = \pm i\pi/2\tau + \frac{1}{2}$ we have

$$R_{a,+i\pi/2\tau+1/2} = R_a^{(i,\pm)} \oplus R_a^{(-i,\pm)}$$
.

Note that for a=1/2 the representations $R_a^{(\pm i,\pm)}$ are equivalent to the corresponding representations $Q_{\sqrt{q}}^{1,\pm}$ and $Q_{\sqrt{q}}^{2,\pm}$.

The algebra $U_q(so_{2,1})$ has also irreducible infinite dimensional representations with highest weights or with lowest weights which are classified in the paper [4]. They are subrepresentations of the corresponding representations $R_{a\epsilon}$. We give a list of these representations.

Let $l = \frac{1}{2}, 1, \frac{3}{2}, 2, \ldots$ We denote by R_l^+ the representation of $U_q(so_3)$ acting on the Hilbert space \mathcal{H}_l with the orthonormal basis $|m\rangle$, $m = l, l + 1, l + 2, \ldots$, and given by formulas (6)–(8) with a = -l. By R_l^- we denote the representation of $U_q(so_3)$ acting on the Hilbert space $\hat{\mathcal{H}}_l$ with the orthonormal basis $|m\rangle$, $m = -l, -l - 1, -l - 2, \ldots$, and given by formulas (6)–(8) with a = l.

Now let $a \neq 0 \pmod{\mathbf{Z}}$ and $a \neq \frac{1}{2} \pmod{\mathbf{Z}}$. We denote by \mathcal{H}_a the Hilbert space with the orthonormal basis $|m\rangle$, $m = -a, -a + 1, -a + 2, \ldots$ On this space the representation R_a^+ acts which is given by formulas (6)–(8). On the Hilbert space $\hat{\mathcal{H}}_a$ with the orthonormal basis $|m\rangle$, $m = a, a - 1, a - 2, \ldots$, the representation R_a^- acts which is given by (6)–(8).

Other infinite dimensional representations of $U_q(so_{2,1})$ 4

Let us construct additional two series of infinite dimensional irreducible representations of $U_a(so_{2,1})$ which cannot be obtained from the representations $R_{a\epsilon}$. Let \mathcal{H} be the complex Hilbert space with the basis $|m\rangle$, $m=0,\pm 1,\pm 2,\ldots$ Let a and b be complex numbers such that $a^2 + b^2 = 1$, $a \neq 0$, $b \neq 0$ and $a \neq b$. We define on the operators $\hat{Q}_{ab}^{\pm}(I_1)$ and $\hat{Q}_{ab}^{\pm}(I_2)$ determined by the formulas

$$\begin{split} \hat{Q}_{ab}^{\pm}(I_1)|m\rangle &= \pm \frac{q^m + q^{-m}}{q - q^{-1}} \, |m\rangle, \\ \hat{Q}_{ab}^{\pm}(I_2)|m\rangle &= \frac{1}{q - q^{-1}} \, |m - 1\rangle + \frac{1}{q - q^{-1}} \, |m + 1\rangle, \qquad m \neq 0, \pm 1, \\ \hat{Q}_{ab}^{\pm}(I_2)|0\rangle &= \frac{b\sqrt{2}}{q - q^{-1}} \, |1\rangle + \frac{a\sqrt{2}}{q - q^{-1}} \, |-1\rangle, \\ \hat{Q}_{ab}^{\pm}(I_2)|1\rangle &= \frac{b\sqrt{2}}{q - q^{-1}} \, |0\rangle + \frac{1}{q - q^{-1}} \, |2\rangle, \\ \hat{Q}_{ab}^{\pm}(I_2)|-1\rangle &= \frac{a\sqrt{2}}{q - q^{-1}} \, |0\rangle + \frac{1}{q - q^{-1}} \, |-2\rangle. \end{split}$$

A direct computation shows that these operators satisfy the determining relations (1)–(3) and therefore determine a representation of $U_q(so_{2,1})$ which is denoted by Q_{ab}^{\pm} .

Let now \mathcal{H}' be the complex Hilbert space with the basis $|k\rangle$, $k=\pm\frac{1}{2},\pm\frac{3}{2},\ldots$ Let a and b be complex numbers such that $a^2 + b^2 = 1$, $a \neq 0$, $b \neq 0$. We define on the space \mathcal{H}' the operators $\check{Q}_{ab}^{\pm}(I_1)$ and $\check{Q}_{ab}^{\pm}(I_2)$ determined by the formulas

$$\begin{split} & \breve{Q}_{ab}^{\pm}(I_1)|k\rangle = \frac{q^k + q^{-k}}{q - q^{-1}} \, |k\rangle, \\ & \breve{Q}_{ab}^{\pm}(I_2)|k\rangle = \frac{1}{q - q^{-1}} \, |k - 1\rangle + \frac{1}{q - q^{-1}} \, |k + 1\rangle, \qquad k \neq \pm \frac{1}{2}, \\ & \breve{Q}_{ab}^{\pm}(I_2)|\frac{1}{2}\rangle = \frac{a}{q - q^{-1}} \, |\frac{1}{2}\rangle + \frac{1}{q - q^{-1}} \, |\frac{3}{2}\rangle + \frac{b}{q - q^{-1}} \, |-\frac{1}{2}\rangle, \\ & \breve{Q}_{ab}^{\pm}(I_2)|-\frac{1}{2}\rangle = -\frac{a}{q - q^{-1}} \, |-\frac{1}{2}\rangle + \frac{b}{q - q^{-1}} \, |\frac{1}{2}\rangle + \frac{1}{q - q^{-1}} \, |-\frac{3}{2}\rangle. \end{split}$$

A direct computation shows that these operators also determine representations of $U_q(so_{2,1})$ which are denoted by \hat{Q}_{ab}^{\pm} .

Thus, we have constructed the following classes of irreducible infinite dimensional representations of the algebra $U_q(so_{2,1})$:

- (a) The representations $R_{a\epsilon}$ with the exclusions of Theorem 1. (b) The representations $R_a^{\pm i,\pm}$, $a\in \mathbf{C}$.
- (c) The representations R_l^{\pm} , $l=\frac{1}{2},1,\frac{3}{2},2,\ldots$, and R_a^{\pm} , $a\neq 0 \ (\mathrm{mod}\ \mathbf{Z})$, $a\neq \frac{1}{2} \ (\mathrm{mod}\ \mathbf{Z})$. (d) The representations $Q_1^{1,\pm}$ and $Q_1^{2,\pm}$. (e) The representations $Q_{\sqrt{q}}^{1,\pm}$ and $Q_{\sqrt{q}}^{2,\pm}$.

- (f) The representations $\hat{Q}_{ab}^{\stackrel{\star}{\downarrow}}$ and $\check{Q}_{ab}^{\stackrel{\star}{\downarrow}}$, $a^2+b^2=1,\ a\neq 0,\ b\neq 0,$ and $a\neq b$ for $\hat{Q}_{ab}^{\stackrel{\star}{\downarrow}}$

Theorem 2. Every irreducible infinite dimensional weight representation of the algebra $U_q(so_{2,1})$ is equivalent to one of the representations of classes (a)–(f) describe above.

A proof of this theorem is long and will be given in a separate paper. In particular, the proof uses the following proposition:

Proposition. Let $|q| \neq 1$. If $b \neq \frac{1}{2}$ and $b \neq 1$, then the set

$$\frac{q^{b+m}+q^{-b-m}}{q-q^{-1}}, \qquad m \in \mathbf{Z},$$

has no coinciding numbers. If $b = \frac{1}{2}$, then this set consists only of pairs of coinciding numbers. If b = 1, then this set consists of the point 0 and pairs of coinciding numbers.

This proposition show for which representations the operator $R(I_1)$ has multiple eigenvalues.

5 *-representations of $U_q(so_{2,1})$

In the previous section we described all irreducible infinite dimensional representations of $U_q(so_{2,1})$. The aim of this section is to separate *-representations of $U_q(so_{2,1})$ from the set of the representations (a)–(f).

Note that *-representations of the universal enveloping algebra $U(so_{2,1})$ correspond to unitary representations of the Lie group SO(2,1). Irreducible *-representations of $U_q(so_{2,1})$ can be found by using the method described, for example, in Section 6.4 of [13]. The same method is used for separation of *-representations in the set of the representations (a)–(f). Let us give the result of this separation.

Theorem 3. Let $q = e^h$, $h \in \mathbf{R}$. Then the following representations from the set (a)–(f) are *-representations or equivalent to *-representations:

- (a) the representations $R_{a\epsilon}$, $a = i\rho 1/2$, $\rho \in \mathbf{R}$, $\epsilon = c + in\pi/h$, $0 \le c < 1$, n = 0, 1 (the principal series);
- (b) the representations $R_{a\epsilon}$, $a \in \mathbf{R}$, $\epsilon = c + in\pi/h$, $0 \le c < 1$, n = 0, 1, such that -c < a < c-1 for c > 1/2 and c 1 < a < -c for c < 1/2 (the supplementary series);
- (c) the representations $R_{a\epsilon}$, $\operatorname{Im} a = \pi/2h$, $\epsilon = c + in\pi/h$, $0 \le c < 1$, n = 0, 1 (the strange series);
 - (d) all the representations R_a^+ , $a \ge -1/2$, and R_a^- , $a \le 1/2$ (the discrete series).

This list of irreducible *-representations of $U_q(so_{2,1})$ coincides with that of [4].

Theorem 4. Let $q = e^{i\varphi}$, $0 < \varphi \le 2\pi$. We suppose that q is not a root of unity. The following representations from the set (a)–(f) are *-representations or equivalent to *-representations:

(a) the representations $R_{a\epsilon}$, $a = i\rho - 1/2$, $\rho \in \mathbf{R}$, $0 \le \epsilon < 1$, if

$$\cos(\epsilon + n)\varphi \cdot \cos(\epsilon + n + 1)\varphi > 0$$
 for all $n \in \mathbf{Z}$;

(b) the representations $R_{a\epsilon}$, $\operatorname{Re} a = \pi/2\varphi$, $0 \le \epsilon < 1$, if

$$\sin(\epsilon + n - a)\varphi \cdot \sin(\epsilon + n + a + 1)\varphi \cdot \cos(\epsilon + n)\varphi \cdot \cos(\epsilon + n + 1)\varphi > 0$$
 for all $n \in \mathbb{Z}$;

(c) the representations $R_a^{\pm i,\pm}$ if

$$\sin(a-n)\varphi \cdot \sin(a+n)\varphi \cdot \sin(n-1/2)\varphi \cdot \sin(n+1/2)\varphi < 0$$
 for $n=1,2,3,\ldots$

Acknowledgements

The second co-author (A.U.K.) was supported by Ukrainian State Foundation of Fundamental Researchs Grant No. 1.4/206 and by INTAS Grant INTAS-93-1038EXT. This co-author would like to thank Department of Mathematics of FNSPE, Czech Technical University, for the hospitality when part of this work was done.

References

- [1] Noumi M., Adv. Math., 1996, V.123, 11.
- $[2] \ \ \text{Bergman G.M.}, \ Ann. \ Math., \ 1978, \ V.29, \ 178.$
- [3] Klimyk A. and Schmüdgen K., Quantum Groups and Their Representations, Springer, Berlin, 1997.
- [4] Gavrilik A.M. and Klimyk A.U., J. Math. Phys., 1994, V.35, 3670.
- [5] Spiridonov V. and Zhedanov A., Ann. Phys., 1994, V.221.
- [6] Nelson J., Regge T. and Zertuche F., Nucl. Phys. B, 1990, V.339, 516.
- [7] Samoilenko Yu.S. and Turowska L.B., in Quantum Groups and Quantum Spaces, Banach Center Publications, Vol.40, Warsaw, 1997, p.21.
- [8] Bagro O.V. and Kruglyak S.A., Preprint, Kyiv, 1996.
- [9] Havlíček M., Klimyk A. and Pelantová E., Czech. J. Phys., 1997, V.47, 13.
- [10] Havlíček M., Klimyk A. and Pelantová E., Hadronic J., 1997, V.20, 603.
- [11] Havlíček M., Klimyk A. and Pošta S., J. Math. Phys., 1999, V.40, 2135.
- [12] Klimyk A.U. and Kachurik I.I., Commun. Math. Phys., 1996, V.175, 89.
- [13] Vilenkin N.Ja. and Klimyk A.U., Representations of Lie Groups and Special Functions, Vol.1, Kluwer Acad. Publ., Dordrecht, 1991.