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Representations of the q-Deformed Algebra soq(2, 1)
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We give a classification theorem for irreducible weight representations of the q-deformed
algebra Uq(so2,1) which is a real form of the nonstandard deformation Uq(so3) of the Lie
algebra so(3,C). The algebra Uq(so3) is generated by the elements I1, I2 and I3 satisfying
the relations [I1, I2]q := q1/2I1I2 − q−1/2I2I1 = I3, [I2, I3]q = I1 and [I3, I1]q = I2. The
real form Uq(so2,1) is determined for real q by the ∗-involution I∗1 = −I1 and I∗2 = I2.
Weight representations of Uq(so2,1) are defined as representations T for which the operator
T (I1) can be diagonalized and has a discrete spectrum. A part of the irreducible representa-
tions of Uq(so2,1) turn into irreducible representations of the Lie algebra so2,1 when q → 1.
Representations of the other part have no classical analogue.

1 The algebras Uq(so3) and Uq(so2,1)

The algebra Uq(so3) is obtained by a q-deformation of the standard commutation relations
[I1, I2] = I3, [I2, I3] = I1, [I3, I1] = I2 of the Lie algebra so(3,C) and is defined as the complex
associative algebra (with a unit element) generated by the elements I1, I2, I3 satisfying the
defining relations

[I1, I2]q := q1/2I1I2 − q−1/2I2I1 = I3, (1)

[I2, I3]q := q1/2I2I3 − q−1/2I3I2 = I1, (2)

[I3, I1]q := q1/2I3I1 − q−1/2I1I3 = I2. (3)

A Hopf algebra structure is not known on Uq(so3). However, it can be embedded into the Hopf
algebra Uq(sl3) as a Hopf coideal (see [1]). This embedding is very important for the possible
application in spectroscopy.

It follows from the relations (1)–(3) that for the algebra Uq(so3) the Poincaré–Birkhoff–
Witt theorem is true and this theorem can be formulated as: The elements Ik

3 I
m
2 In

1 , k,m, n =
0, 1, 2, . . ., form a basis of the linear space Uq(so3). This theorem is proved by using the diamond
lemma [2] (or its special case from Subsect. 4.1.5 in [3]).

By (1) the element I3 is not independent: it is determined by the elements I1 and I2. Thus,
the algebra Uq(so3) is generated by I1 and I2, but now instead of quadratic relations (1)–(3) we
must take the relations

I1I
2
2 − (

q + q−1
)
I2I1I2 + I2

2I1 = −I1, I2I
2
1 − (

q + q−1
)
I1I2I1 + I2

1I2 = −I2, (4)

which are obtained if we substitute the expression (1) for I3 into (2) and (3). The equation
I3 = q1/2I1I2 − q−1/2I2I1 and the relations (4) restore the relations (1)–(3).
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Up to now we did not introduce ∗-involutions on Uq(so3) determining real forms of this
algebra. The ∗-involution I1 = −I1, I2 = −I2 determines the real form of Uq(so3) which can be
called a compact real form of Uq(so3). The ∗-involution uniquely determined by the relations

I∗1 = −I1, I∗2 = I2 (5)

gives a noncompact real form of Uq(so3) which is denoted by Uq(so2,1). It is a q-analogue of the
real form so2,1 of the complex Lie algebra so(3,C).

Note that for real q the equations I∗1 = −I1 and I∗2 = I2 do not mean that I∗3 = I3 or
I∗3 = −I3:

I∗3 =
(
q1/2I1I2 − q−1/2I2I1

)∗
= q1/2I∗2I

∗
1 − q−1/2I∗1I

∗
2 = −q1/2I2I1 + q−1/2I1I2 �= ±I3.

However, if |q| = 1 then I∗3 = I3. Really,

I∗3 =
(
q1/2I1I2 − q−1/2I2I1

)∗
= q−1/2I∗2I

∗
1 − q1/2I∗1I

∗
2 = −q−1/2I2I1 + q1/2I1I2 = I3.

In this paper we are interested in irreducible infinite dimensional representations of the al-
gebras Uq(so2,1). Infinite dimensional irreducible representations of Uq(so2,1) are important
for physical applications. For example, irreducible ∗-representations of the so called strange
series (these representations were defined in [4]) are related to a certain type of Schrödinger
equation [5]. Infinite dimensional representations of Uq(so2,1) appear in the theory of quantum
gravity [6].

Infinite dimensional representations of Uq(so2,1) were studied in [4]. However, not all such
representations were found there. Note that ∗-representations of real forms of Uq(so3) different
from Uq(so2,1) were studied in [7] and [8]. Irreducible representations of Uq(so3) (including the
case when q is a root of unity) are studied in [9–11].

2 Definition of weight representations of Uq(so2,1)

From this point we assume that q is not a root of unity.

Definition 1. By a weight representation T of Uq(so2,1) we mean a homomorphism of Uq(so2,1)
into the algebra of linear operators (bounded or unbounded) on a Hilbert space H, defined on
an everywhere dense invariant subspace D, such that the operator T (I1) can be diagonalized,
has a discrete spectrum (with finite multiplicities of spectral points if T is irreducible), and
its eigenvectors belong to D. Two weight representations T and T ′ of Uq(so2,1) on spaces H
and H′, respectively, are called (algebraically) equivalent if there exist everywhere dense invariant
subspaces V ⊂ H and V ′ ⊂ H′ and a one-to-one linear operator A : V → V ′ such that AT (a)v =
T ′(a)Av for all a ∈ Uq(so2,1) and v ∈ V .

Remark. Note that the element I1 ∈ Uq(so2,1) corresponds to the compact part of the group
SO(2, 1). Therefore, as in the classical case, it is natural to demand in the definition of rep-
resentations of Uq(so2,1) that the operator T (I) has a discrete spectrum (with finite multipli-
cities of spectral points for irreducible representations T ). Such representations correspond to
Harish–Chandra modules of Lie algebras. Note that the algebra Uq(so2,1) has irreducible repre-
sentations T for which the operator T (I1) can be diagonalized and has a continuous spectrum
(this follows from the results of Section 4 in [12]). We do not consider such representations in
this paper.
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Since we shall consider only weight representations, below speaking about weight represen-
tations we shall omit the word “weight”.

Definition 2. By a ∗-representation T of Uq(so2,1) we mean a representation of Uq(so2,1) in a
sense of Definition 1 such that the equations T (I1)∗ = −T (I1) and T (I2)∗ = T (I2) are fulfilled
on the domain D.

Definition 1 does not use the ∗-structure of Uq(so2,1). This means that representations of
Definition 1 are in fact representations of Uq(so3).

3 Representations of the principal series

Let us study irreducible infinite dimensional representations of the algebra Uq(so2,1) which were
constructed in [4] and [11].

Let q = eτ and ε be a fixed complex number such that 0 ≤ Re ε < 1 and ε �= ±iπ/2τ . Let Hε

be a complex Hilbert space with the orthonormal basis

|m〉, m = n + ε, n = 0,±1,±2, . . . .

To every complex number a there corresponds the representation Raε of Uq(so2,1) on the Hilbert
space Hε defined by the formulas

Raε(I1)|m〉 = i[m]|m〉, (6)

Raε(I2)|m〉 =
1

qm + q−m
{[a−m]|m + 1〉 − [a + m]|m− 1〉} , (7)

Raε(I3)|m〉 =
iq1/2

qm + q−m

{
qm[a−m]|m + 1〉 + q−m[a + m]|m− 1〉} . (8)

(Everywhere below, under considering representations of Uq(so2,1), we do not give the operator
corresponding to I3 since it can be easily calculated by using formula (3).)

Note that we excluded the cases ε = ±iπ/2τ since for these ε the coefficients in (7) and (8)
are singular.

If ε = −iπ/2τ + σ and qσ = λ, then the representation Raε can be reduced to the following
form:

Raε(I1)|n〉 =
λqn + λ−1q−n

q − q−1
|n〉,

Raε(I2)|n〉 =
−1

λqn − λ−1q−n

(
λqn−a + λ−1q−n+a

q − q−1
|n+1〉 +

λqn+a + λ−1q−n−a

q − q−1
|n−1〉

)
,

where the basis elements |n + ε〉 are denoted by |n〉, n = 0,±1, . . .. In particular, if a = ±iπ/2τ
and qσ = λ, 0 ≤ Reσ < 1, then after rescaling the basis vectors the representation Raε (we
denote it in this case as Q+

λ ) takes the form

Q+
λ (I1)|m〉 =

λqm + λ−1q−m

q − q−1
|m〉, Q+

λ (I2)|m〉 =
1

q − q−1
|m + 1〉 +

1
q − q−1

|m− 1〉.

If a = ±iπ/2τ and qσ = −λ, 0 ≤ Reσ < 1, then we obtain the representation Raε (we denote it
in this case as Q−

λ ) in the form

Q−
λ (I1)|m〉 = −λqm + λ−1q−m

q − q−1
|m〉, Q−

λ (I2) = Q+
λ (I2).
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Since the representations Raε are determined for ε �= ±iπ/2τ , then the representations Q±
λ

are determined for λ �= 1. However, the operators Q±
λ (Ij), j = 1, 2, 3, are well defined also for

λ = ±1 and satisfy the defining relations (1)–(3). Thus, the representations Q±
λ are determined

for all complex values of λ.

Theorem 1. The representation Raε is irreducible if and only if a �≡ ±ε (mod Z) or if ε �≡
±iπ/2τ +1/2 or if (a, ε) does not coincide with one of four couples (±iπ/2τ,±iπ/2τ +1/2). The
representation Q±

λ is irreducible if and only if λ �= ±1,±q1/2.

This theorem follows from Theorem 1 in [4] and the results of Section 7 in [11].
There exist equivalence relations between irreducible representations Raε. They are com-

pletely described in [4].
In the excluded cases of Theorem 1, representations Raε and Q±

λ are reducible. In particular,
the representations Q±

λ , λ = ±1,±q1/2, are reducible (see [11]) and leads to the irreducible
representations which are described as follows.

Let V1 and V2 be the vector spaces with the bases

|m〉′, m = 0, 1, 2, . . . , and |m〉′′, m = 1, 2, 3, . . . ,

respectively. Then the operators Q1,±
1 (I1), Q1,±

1 (I2), Q2,±
1 (I1), Q2,±

1 (I2) given by the formulas

Q1,±
1 (I1)|m〉′ = ±qm + q−m

q − q−1
|m〉′, Q2,±

1 (I1)|m〉′′ = ±qm + q−m

q − q−1
|m〉′′,

Q1,±
1 (I2)|0〉 =

√
2

q − q−1
|1〉′, Q2,±

1 (I2)|1〉′′ =
1

q − q−1
|2〉′′,

Q1,±
1 (I2)|1〉′ =

√
2

q − q−1
|0〉′ +

1
q − q−1

|2〉′, Q2,±
1 (I2)|2〉′ =

1
q − q−1

|1〉′ +
1

q − q−1
|3〉′,

Q1,±
1 (I2)|m〉′ =

1
q − q−1

|m + 1〉′ +
1

q − q−1
|m− 1〉′, m > 1,

Q2,±
1 (I2)|m〉′′ =

1
q − q−1

|m + 1〉′′ +
1

q − q−1
|m− 1〉′′, m > 2,

determine irreducible representations of Uq(so2,1) which are denoted by Q1,±
1 and Q2,±

1 , respec-
tively.

Let W1 and W2 be the vector spaces spanned by the basis vectors

|m +
1
2
〉′, m = 0, 1, 2, . . . , and |m +

1
2
〉′′, m = 0, 1, 2, . . . ,

respectively. Then the operators Q1,±√
q (I1), Q1,±√

q (I2), Q2,±√
q (I1), Q2,±√

q (I2) given by the formulas

Q1,±√
q (I1)|m + 1

2〉′ = ±qm+1/2 + q−m−1/2

q − q−1
|m + 1

2〉′,

Q2,±√
q (I1)|m + 1

2〉′′ = ±qm+1/2 + q−m−1/2

q − q−1
|m + 1

2〉′′

and

Q1,±√
q (I2)|12〉′ = − 1

q − q−1
|12〉′ +

1
q − q−1

|32〉′,
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Q1,±√
q (I2)|m + 1

2〉′ =
1

q − q−1
|m + 3

2〉′ +
1

q − q−1
|m− 1

2〉′, m > 0,

Q2,±√
q (I2)|12〉′′ =

1
q − q−1

|12〉′′ +
1

q − q−1
|32〉′′,

Q2,±√
q (I2)|m + 1

2〉′′ =
1

q − q−1
|m + 3

2〉′′ +
1

q − q−1
|m− 1

2〉′′, m > 0,

determine irreducible representations of Uq(so2,1) which are denoted by Q1,±√
q and Q2,±√

q , respec-
tively. We have

Q±
1 = Q1,±

1 ⊕Q2,±
1 , Q±√

q = Q1,±√
q ⊕Q2,±√

q .

The representations Raε with ε = ±iπ/2τ + 1
2 are also reducible. They lead to the following

irreducible representations. For any complex number a we define the representations R(i,±)
a and

R
(−i,±)
a of Uq(so2,1) acting on the Hilbert space H with the orthonormal basis |n〉, n = 1, 2, 3, . . .,

by the formulas

R(i,±)
a (I1)|k〉 = −qk−1/2 + q−k+1/2

q − q−1
|k〉,

R(i,±)
a (I2)|1〉 = ± [a]

q1/2 − q−1/2
|1〉 + i

[a− 1]
q1/2 − q−1/2

|2〉,

R(i,±)
a (I2)|k〉 = i

[a− k]
qk−1/2 − q−k+1/2

|k + 1〉 + i
[a + k − 1]

qk−1/2 − q−k+1/2
|k − 1〉, k �= 1,

and by the formulas

R(−i,±)
a (I1)|k〉 =

qk−1/2 + q−k+1/2

q − q−1
|k〉, R(−i,±)

a (I2) = −R(i,±)
a (I2).

For ε = ±iπ/2τ + 1
2 we have

Ra,±iπ/2τ+1/2 = R(i,±)
a ⊕R(−i,±)

a .

Note that for a = 1/2 the representations R
(±i,±)
a are equivalent to the corresponding repre-

sentations Q1,±√
q and Q2,±√

q .
The algebra Uq(so2,1) has also irreducible infinite dimensional representations with highest

weights or with lowest weights which are classified in the paper [4]. They are subrepresentations
of the corresponding representations Raε. We give a list of these representations.

Let l = 1
2 , 1,

3
2 , 2, . . .. We denote by R+

l the representation of Uq(so3) acting on the Hilbert
space Hl with the orthonormal basis |m〉, m = l, l + 1, l + 2, . . ., and given by formulas (6)–(8)
with a = −l. By R−

l we denote the representation of Uq(so3) acting on the Hilbert space Ĥl

with the orthonormal basis |m〉, m = −l,−l− 1,−l− 2, . . ., and given by formulas (6)–(8) with
a = l.

Now let a �= 0 (mod Z) and a �= 1
2 (mod Z). We denote by Ha the Hilbert space with the

orthonormal basis |m〉, m = −a,−a + 1,−a + 2, . . .. On this space the representation R+
a acts

which is given by formulas (6)–(8). On the Hilbert space Ĥa with the orthonormal basis |m〉,
m = a, a− 1, a− 2, . . ., the representation R−

a acts which is given by (6)–(8).
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4 Other infinite dimensional representations of Uq(so2,1)

Let us construct additional two series of infinite dimensional irreducible representations of
Uq(so2,1) which cannot be obtained from the representations Raε. Let H be the complex Hilbert
space with the basis |m〉, m = 0,±1,±2, . . .. Let a and b be complex numbers such that
a2 + b2 = 1, a �= 0, b �= 0 and a �= b. We define on the operators Q̂±

ab(I1) and Q̂±
ab(I2) determined

by the formulas

Q̂±
ab(I1)|m〉 = ±qm + q−m

q − q−1
|m〉,

Q̂±
ab(I2)|m〉 =

1
q − q−1

|m− 1〉 +
1

q − q−1
|m + 1〉, m �= 0,±1,

Q̂±
ab(I2)|0〉 =

b
√

2
q − q−1

|1〉 +
a
√

2
q − q−1

| − 1〉,

Q̂±
ab(I2)|1〉 =

b
√

2
q − q−1

|0〉 +
1

q − q−1
|2〉,

Q̂±
ab(I2)| − 1〉 =

a
√

2
q − q−1

|0〉 +
1

q − q−1
| − 2〉.

A direct computation shows that these operators satisfy the determining relations (1)–(3) and
therefore determine a representation of Uq(so2,1) which is denoted by Q̂±

ab.
Let now H′ be the complex Hilbert space with the basis |k〉, k = ±1

2 ,±3
2 , . . .. Let a and b be

complex numbers such that a2 + b2 = 1, a �= 0, b �= 0. We define on the space H′ the operators
Q̆±

ab(I1) and Q̆±
ab(I2) determined by the formulas

Q̆±
ab(I1)|k〉 =

qk + q−k

q − q−1
|k〉,

Q̆±
ab(I2)|k〉 =

1
q − q−1

|k − 1〉 +
1

q − q−1
|k + 1〉, k �= ±1

2
,

Q̆±
ab(I2)|12〉 =

a

q − q−1
|12〉 +

1
q − q−1

|32〉 +
b

q − q−1
| − 1

2〉,

Q̆±
ab(I2)| − 1

2〉 = − a

q − q−1
| − 1

2〉 +
b

q − q−1
|12〉 +

1
q − q−1

| − 3
2〉.

A direct computation shows that these operators also determine representations of Uq(so2,1)
which are denoted by Q̆±

ab.
Thus, we have constructed the following classes of irreducible infinite dimensional represen-

tations of the algebra Uq(so2,1):
(a) The representations Raε with the exclusions of Theorem 1.
(b) The representations R±i,±

a , a ∈ C.
(c) The representations R±

l , l = 1
2 , 1,

3
2 , 2, . . ., and R±

a , a �= 0 (mod Z), a �= 1
2 (mod Z).

(d) The representations Q1,±
1 and Q2,±

1 .
(e) The representations Q1,±√

q and Q2,±√
q .

(f) The representations Q̂±
ab and Q̆±

ab, a
2 + b2 = 1, a �= 0, b �= 0, and a �= b for Q̂±

ab.
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Theorem 2. Every irreducible infinite dimensional weight representation of the algebra Uq(so2,1)
is equivalent to one of the representations of classes (a)–(f) describe above.

A proof of this theorem is long and will be given in a separate paper. In particular, the proof
uses the following proposition:

Proposition. Let |q| �= 1. If b �= 1
2 and b �= 1, then the set

qb+m + q−b−m

q − q−1
, m ∈ Z,

has no coinciding numbers. If b = 1
2 , then this set consists only of pairs of coinciding numbers.

If b = 1, then this set consists of the point 0 and pairs of coinciding numbers.

This proposition show for which representations the operator R(I1) has multiple eigenvalues.

5 ∗-representations of Uq(so2,1)

In the previous section we described all irreducible infinite dimensional representations of
Uq(so2,1). The aim of this section is to separate ∗-representations of Uq(so2,1) from the set
of the representations (a)–(f).

Note that ∗-representations of the universal enveloping algebra U(so2,1) correspond to unitary
representations of the Lie group SO(2, 1). Irreducible ∗-representations of Uq(so2,1) can be found
by using the method described, for example, in Section 6.4 of [13]. The same method is used for
separation of ∗-representations in the set of the representations (a)–(f). Let us give the result
of this separation.

Theorem 3. Let q = eh, h ∈ R. Then the following representations from the set (a)–(f) are
∗-representations or equivalent to ∗-representations:

(a) the representations Raε, a = iρ − 1/2, ρ ∈ R, ε = c + inπ/h, 0 ≤ c < 1, n = 0, 1 (the
principal series);

(b) the representations Raε, a ∈ R, ε = c+inπ/h, 0 ≤ c < 1, n = 0, 1, such that −c < a < c−1
for c > 1/2 and c− 1 < a < −c for c < 1/2 (the supplementary series);

(c) the representations Raε, Im a = π/2h, ε = c + inπ/h, 0 ≤ c < 1, n = 0, 1 (the strange
series);

(d) all the representations R+
a , a ≥ −1/2, and R−

a , a ≤ 1/2 (the discrete series).

This list of irreducible ∗-representations of Uq(so2,1) coincides with that of [4].

Theorem 4. Let q = eiϕ, 0 < ϕ ≤ 2π. We suppose that q is not a root of unity. The following
representations from the set (a)–(f) are ∗-representations or equivalent to ∗-representations:

(a) the representations Raε, a = iρ− 1/2, ρ ∈ R, 0 ≤ ε < 1, if

cos(ε + n)ϕ · cos(ε + n + 1)ϕ > 0 for all n ∈ Z;

(b) the representations Raε, Re a = π/2ϕ, 0 ≤ ε < 1, if

sin(ε + n− a)ϕ · sin(ε + n + a + 1)ϕ · cos(ε + n)ϕ · cos(ε + n + 1)ϕ > 0 for all n ∈ Z;

(c) the representations R±i,±
a if

sin(a− n)ϕ · sin(a + n)ϕ · sin(n− 1/2)ϕ · sin(n + 1/2)ϕ < 0 for n = 1, 2, 3, . . . .
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