Foliations on closed three-dimensional Riemannian manifolds with a bounded mean curvature of leaves

Dmitry V. Bolotov

(B. Verkin ILTPE of NASU, 47 Nauky Ave., Kharkiv, 61103, Ukraine) *E-mail:* bolotov@ilt.kharkov.ua

Recall that a foliation \mathcal{F} of codimension one on a smooth 3-manifold M is called *taut* if its leaves are minimal submanifolds of M for some Riemannian metric on M. In [1] it was proved that if \mathcal{F} is taut, then a number of cohomological classes $H^2(M)$ realized as Euler classes $e(\mathcal{F})$ of the tangent distribution to \mathcal{F} is finite.

We present the following result.

Theorem 1. Let M be a smooth closed three-dimensional orientable irreducible Riemannian manifold. Then, for any fixed constant $H_0 > 0$, there are only finitely many cohomological classes of the group $H^2(M)$ that can be realized by the Euler class of a two-dimensional transversely oriented foliation whose leaves have a modulus of mean curvature bounded above by the constant H_0 .

References

 Y. Eliashberg, W. Thurston. Confoliations, volume 46 of University Lecture Series 13. Providence. Amer. Math. Soc., 1988.