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Holomorphically projective mappings which preserved the Einstein tensor

Eij = Rij −
Rgij
n

were studied in [1]. Preserving the stress-energy tensor

Sij = Rij −
Rgij

2

by conformal mappings was explored in [3], [5]. It's worth for noting that in many classical issues e.
g. [2, p. 359], just the latter is referred to as the Einstein tensor.

Let us refer to

Eij
def
= Rij − κRgij . (1)

as the generalized Einstein tensor. Here κ is a constant. Conformal mappings which preserving
the introduced tensor were explored in [6].

It is known that a covariant vector ψi determining holomorphically projective mapping between two
K�ahler spaces (V n, J, g) and (V

n
, J, g) should satisfy the equations

ψi,j = ψiψj − ψαJ
α
i ψβJ

β
j +

1

n+ 2
(Rij −Rij). (2)

Here we denote by comma ′′,′′ covariant derivative respect to the metric g of a space (V n, J, g). The
a�nor Jhi is referred to as a complex structure. The structure is the same for both manifolds. The

symbols Rij and Rij denote Ricci tensors of spaces (V n, J, g) and (V
n
, J, g) respectively.

It follows from (1) that the deformation of the generalized Einstein tensor can be written as

Eij − Eij = Rij − κRgij −Rij + κRgij . (3)

Taking account of the preservation requirement, i. e. Eij = Eij , from (3) we get

Rij −Rij = κRgij − κRgij . (4)
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Since (4) holds we can rewrite (2) as

ψi,j = ψiψj − ψαJ
α
i ψβJ

β
j +

κ

n+ 2
(Rgij −Rgij). (5)

Let us recall that R = Rijg
ij .

Di�erentiating (5) covariantly with respect to xk and the connection Γ which is compatible with the
metric g of the manifold (V n, J, g), alternating in j and k and using the Ricci identity, we obtain the
conditions of integrability:

ψαW
α
ijk =

κ

n+ 2
(∂kRgij − ∂jRgik − ∂kRgij + ∂jRgik), (6)

where

W h
ijk

def
= Rhijk +

κR

n+ 2
(δhj gik − δhkgij − Jhj Jik + Jhk Jij − 2Jhi Jjk). (7)

Finally, we can summarize by the theorem

Theorem 1. If manifolds (V n, J, g) and (V
n
, J, g) are in holomorphically projective correspondence

and the mapping preserves the tensor Eij = Rij − κRgij, then the function ψ generating the mapping,

must satisfy the system of PDE's (5) whose conditions of integrability are (6). Also, the tensor W h
ijk

is preserved by the mapping.
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