Some critical point results for Fréchet manifolds

Kaveh Eftekharinasab

(Institute of Mathematics of NAS of Ukraine)

E-mail: kaveh@imath.kiev.ua

Linking techniques (see [1]) provide significant results in critical points theory. We present linking theorem and some of its corollaries, namely a mountain pass theorem and a three critical points theorem for Keller C^1 -functional on C^1 -Fréchet manifolds. We refer to [2] for the definitions.

Theorem 1 (Linking Theorem, [2]). Let M be a C^1 - Fréchet manifold endowed with a complete Finsler metric ρ and let $\varphi : M \to \mathbb{R}$ be a closed Keller C_c^1 -functional. Suppose $\{S_0, S, C\}$ is a linking set through $\gamma \in C(S_0, \mathsf{T})$, C is closed and $\rho(\gamma(S_0), C) > 0$. Suppose the following conditions hold

(1) $\mathbf{s} \coloneqq \sup_{\gamma(S_0)} \leq \inf_C \varphi \eqqcolon \mathbf{i},$

(2) φ satisfies the Palais-Smale condition at

$$c \coloneqq \inf_{h \in \mathcal{H}} \sup_{x \in S} \varphi(\gamma(x)), \tag{1}$$

where $\mathcal{H} \coloneqq \{h \in C(S, \mathsf{T}) : h|_{\partial S_0} = \gamma\}.$

Then c is a critical value and $c \ge \mathbf{i}$. Furthermore, if $c = \mathbf{i}$ then $\operatorname{Cr}(\varphi, c) \cap C \ne \emptyset$.

The theorem yields the following corollaries:

Theorem 2 (Mountain Pass Theorem, [2]). Suppose that $x_0, x_1 \in M$, x_0 belongs to an open subset $U \subset M$ and $x_1 \notin \overline{U}$. Let $\varphi : M \to \mathbb{R}$ be a closed a Keller C_c^1 -functional satisfying the following condition:

(1) $\max\{\varphi(x_0), \varphi(x_1)\} \leq \inf_{\partial U} \varphi(x) \coloneqq \mathbf{i};$

(2) φ satisfies the Palais-Smale condition at

$$c \coloneqq \inf_{h \in \mathcal{C}} \sup_{t \in [0,1]} \varphi(h(t)), \tag{2}$$

where $C := \{h \in C([0,1], M) : h(0) = x_0, h(1) = x_1\}.$

Then c is a critical value and $c \ge \mathbf{i}$. If $c = \mathbf{i}$ then $\operatorname{Cr}(\varphi, c) \cap U \neq \emptyset$.

Theorem 3 (Three Critical Points Theorem, [2]). Let M be a connected Fréchet manifold and φ : $M \to \mathbb{R}$ a closed a Keller C_c^1 -functional satisfying the Palais-Smale condition at all levels. If φ has two minima, then φ has one more critical point.

We apply the mountain pass theorem and the Minimax principle to prove the following theorem which provides the sufficient conditions for a local diffeomorphism to be a global one.

Theorem 4. [2] Let M, N be connected C^1 - Fréchet manifolds endowed with complete Finsler metrics δ, ρ respectively. Assume that $\varphi : M \to N$ is a local diffeomorphism of class Keller C_c^1 . Let $\mathcal{I} : N \to [0, \infty]$ be a closed Keller C_c^1 -functional such that $\mathcal{I}(x) = 0$ if and only if x = 0 and $\mathcal{I}'(x) = 0$ if and only if x = 0. If for any $q \in N$ the functional ϕ_q defined by

$$\phi_q(x) = \mathcal{I}(\varphi(x) - q)$$

satisfies the Palais-Smale condition at all levels, then φ is a Keller C_c^1 -global diffeomorphism.

References

[1] Martin Schetcher. Linking Method in Critical Point Theory. Berlin Birkhäuser Basel, 1999.

^[2] Kaveh Eftekharinasab. Some critical point results for Fréchet manifolds. https://arxiv.org/abs/2205.01359.