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A solution of many problems of the geometry, theoretical physics, astrophysics, differential equations,
nonlinear elasticity, fluid dynamics, optimal mass transportation, one-dimensional gas dynamics and
etc. has reduced to investigation of classes of Monge-Ampere equations in the spaces of different
dimensions and different types. At the present time, there are a lot of papers and books in which those
classes have been studied by different methods.

Let us consider the following class of (1 + 3)-dimensional Monge-Ampére equations:
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Here, M(1,3) is a four-dimensional Minkowski space, F' is an arbitrary real smooth function.

For the group classification of this class we have used the classical Lie-Ovsiannikov approach. At
the present time, we have performed partial preliminary group classification of the class under consid-
eration, using one-dimensional nonconjugate Galilean subalgebras of the Lie algebra of the Poincaré
group P(1,4).

In my report, I plan to present some of the results obtained concerning with partial preliminary
group classification of the class under consideration.

where u = u(z), = = (xg,z1,x2,23) € M(1,3) , yv,a=0,1,23.
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