# An explicit formula for the $A$-polynomial of the knot with Conway's NOTATION $C(2 n, 4)$ 

## Ji-Young Ham

(Department of Architecture, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, Korea 05029)

E-mail: jiyoungham1@gmail.com

## Joongul Lee

(Department of Mathematics Education, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul, Korea 05029)

E-mail: jglee@hongik.ac.kr
An explicit formula for the $A$-polynomial of the knot with Conway's notation $C(2 n, 4)$ up to repeated factors is presented.

The main purpose of the paper is to find the explicit formula for the $A$-polynomial of the knot with Conway's notation $C(2 n, 4)$ up to repeated factors. Let us denote the knot with Conway's notation $C(2 n, 4)$ by $T_{2 n}$ and the $A$-polynomial of the knot with Conway's notation $C(2 n, 4)$ by $A_{2 n}$. The following theorem gives the explicit formula for the $A$-polynomial of $T_{2 n}$.

Theorem 1. The $A$-polynomial $A_{2 n}=A_{2 n}(L, M)$ is given explicitly by

$$
A_{2 n}=p_{2 n}(u) p_{2 n}(-u)
$$

where

$$
p_{2 n}(z)=\left\{\begin{array}{l}
\sum_{i=0}^{2 n}\binom{\left\lfloor\frac{i}{2}\right\rfloor+n}{i} 2^{-2\left\lfloor\frac{i+1}{2}\right\rfloor-i}\left(M^{2}\right)^{-\left\lfloor\frac{i}{2}\right\rfloor-2\left\lfloor\frac{i+1}{2}\right\rfloor+i+n}\left(L M^{2}+1\right)^{-2\left\lfloor\frac{i+1}{2}\right\rfloor-i+2 n} \\
\times\left(-2 L M^{6}+L M^{4}-L M^{2}-M^{4}+M^{2} z+M^{2}-2\right)^{\left\lfloor\frac{i+1}{2}\right\rfloor} \\
\times\left(L M^{2}+L+M^{2}+z+1\right)^{i}\left(-3 L M^{2}+L+M^{2}+z-3\right)^{\left\lfloor\frac{i-1}{2}\right\rfloor} \\
\times\left((-1)^{i+1}\left(L M^{2}+1\right)-2 L M^{2}+L+M^{2}+z-2\right) \quad \text { if } n \geq 0, \\
\sum_{i=0}^{-2 n}\left(\left\lfloor\frac{i-1}{2}\right\rfloor-n\right. \\
i
\end{array} 2^{-2\left\lfloor\frac{i+1}{2}\right\rfloor-i}\left(M^{2}\right)^{-\left\lfloor\frac{i}{2}\right\rfloor-2\left\lfloor\frac{i+1}{2}\right\rfloor+i-n}\left(L M^{2}+1\right)^{-\frac{1}{2}-2\left\lfloor\frac{i+1}{2}\right\rfloor-i-2 n}, ~\left(-2 M^{6}+L M^{4}-L M^{2}-M^{4}+M^{2} z+M^{2}-2\right)^{\left\lfloor\frac{i+1}{2}\right\rfloor} \begin{array}{l}
\times\left(-2 L M^{i}\left(-3 L M^{2}+L+M^{2}+z-3\right)^{\left\lfloor\frac{i-1}{2}\right\rfloor}\right. \\
\left.\times\left(L M^{2}+L+M^{2}+z+1\right)^{i}(-2)-L M^{2}-1\right) \quad \text { if } n<0,
\end{array}\right.
$$

and

$$
u=\sqrt{5 L^{2} M^{4}-2 L^{2} M^{2}+L^{2}-2 L M^{4}+12 L M^{2}-2 L+M^{4}-2 M^{2}+5}
$$

Acknowledgement: This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. NRF-2018R1A2B6005847). The second author was supported by 2018 Hongik University Research Fund.

## References

[1] D. Cooper, M. Culler, H. Gillet, D. D. Long, and P. B. Shalen. Plane curves associated to character varieties of 3-manifolds. Invent. Math., 118(1):47-84, 1994.
[2] Daniel V. Mathews. An explicit formula for the A-polynomial of twist knots. J. Knot Theory Ramifications, 23(9), 2014.


Figure 1. A two bridge knot with Conway's notation $C(2 n, 4)$ for $n>0$ (left) and for $n<0$ (right)
[3] Ji-Young Ham and Joongul Lee. An explicit formula for the $A$-polynomial of the knot with Conway's notation $C(2 n, 3)$. J. Knot Theory Ramifications, 25(10):1650057, 9, 2016.
[4] Ji-Young Ham and Joongul Lee. Explicit formulae for Chern-Simons invariants of the twist-knot orbifolds and edge polynomials of twist knots. Mat. Sb., 207(9):144-160, 2016.
[5] Ji-Young Ham, Joongul Lee, Alexander Mednykh, and Aleksei Rasskazov. On the volume and Chern-Simons invariant for 2-bridge knot orbifolds. J. Knot Theory Ramifications, 26(12):1750082, 22, 2017.

