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Let M be a compact connected surface and P is a real line R or a circle S1. Denote by F(M,P )
the space of smooth functions f ∈ C∞(M,P ) satisfying the following conditions:

1) the function f takes constant value at ∂M and has no critical point in ∂M ;
2) for every critical point z of f there is a local presentation fz : R2 → R of f near z such that fz

is a homogeneous polynomial R2 → R without multiple factors.

Let X be a closed subset of M . Denote by D(M,X) the group of C∞-di�eomorphisms of M �xed
on X, that acts on the space of smooth functions C∞(M,P ) by the rule: (f, h) 7−→ f ◦ h, where
h ∈ D(M,X), f ∈ C∞(M,P ).

The subset S(f,X) = {h ∈ D(M,X) | f ◦ h = f} is called the stabilizer of f with respect to the
action above and O(f,X) = {f ◦ h |h ∈ D(M,X) is orbit of f . Denote by Did(M,X) the identity
path component of D(M,X) and let S ′(f,X) = S(f) ∩ Did(M,X).

Homotopy types of stabilizers and orbits of Morse functions were calculated in a series of papers
by Sergiy Maksymenko, Bohdan Feshchenko, Elena Kudryavtseva and others. Furthermore, precise
algebraic structure of such groups for the case M 6= S2, T 2 was described in [1]. In particular, the
following theorem holds.

Theorem 1. [1] Let M be a connected compact oriented surface except 2-sphere and 2-torus and let

f ∈ F(M,P ). Then π0S
′
(f, ∂M) ∈ B, where B is a minimal class of groups satisfying the following

conditions:

1) 1 ∈ B;
2) if A,B ∈ B, then A×B ∈ B;
3 if A ∈ B and n ≥ 1, then A on Z ∈ B.

Note that a group G belongs to the class B i� G is obtained from trivial group by a �nite number of
operations ×, onZ. It is easy to see that every group G ∈ B can be written as a word in the alphabet
A = {1,Z, (, ) ,×, o2, o3, o4, . . . }. We will call such word a realization of the group G in the alphabet A.

Denote by β1(G) the number of symbols Z in the realization ω of group G. The number β1(G) is
the rank of the center Z(G) and the quotient-group G/[G,G] (Theorem 1.8 [2]). Note, this number
depends only on the group G, not the presentation ω. Moreover, β1(G) is �rst Betti number of O(f).

Edge of Γf will be called external if it is incident to the vertex of Γf that is corresponding to a
non-degenerate critical point of f or non-�xed boundary component of ∂M with respect to the action
of S

′
(f,W ) for f-adapted submanifold X which contains W = S1 × 0. Otherwise, it will be called

internal. Denote by ]Orbint(M,W ) the number of orbits of the action of S
′
(f,W ) on internal edges

of Γf |X .
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Theorem 2. Let M be a disk D2 or a cylinder C = S1 × [0, 1] and f ∈ F(M,P ). Then

]Orbint(M,W ) = β1(π0S
′
(f, ∂M)),

where W = ∂M if M = D2 or W = S1 × 0 if M is a cylinder.
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