EXTENSION THEOREMS FOR HOLOMORPHIC BUNDLES ON COMPLEX MANIFOLDS WITH BOUNDARY

Andrei Teleman (Aix Marseille Univ, CNRS, I2M, Marseille, France) *E-mail:* andrei.teleman@univ-amu.fr

We begin with the following important result due to Donaldson [Do] for Kähler, and Xi [Xi] for general Hermitian complex manifolds with boundary:

Theorem 1. Let \overline{X} be a compact complex manifold with non-empty boundary $\partial \overline{X}$, g be a Hermitian metric on \overline{X} and \mathcal{E} be a holomorphic bundle on \overline{X} . Let h be a Hermitian metric on the restriction $\mathcal{E}|_{\partial X}$. There exists a unique Hermitian metric H on \mathcal{E} satisfying the conditions

$$\Lambda_q F_H = 0, \ H|_{\partial X} = h,$$

where $F_H \in A^2(\bar{X}, \operatorname{End}(\mathcal{E}))$ denotes the curvature of the Chern connection associated with H.

Note that the map $H \mapsto \Lambda_g F_H$ is a non-linear second order elliptic differential operator, so the system $\Lambda_g F_H = 0$, $H|_{\partial \bar{X}} = h$ can be viewed as a non-linear Dirichlet problem. The theorem of Donaldson and Xi states that this non-linear Dirichlet problem is always uniquely sovable.

Note also that the analogue statement for closed manifolds (i.e. in the case $\partial \bar{X} = \emptyset$) does not hold. Indeed, the classical Kobayashi-Hitchin correspondence states that, for a holmorphic bundle \mathcal{E} on a closed Hermitian manifold (X, g), the equation $\Lambda_g F_H = 0$ is solvable if and only if $\deg_g(\mathcal{E}) = 0$ (which is a topological condition if g is Kählerian) and \mathcal{E} is polystable with respect to g (see [LT]).

Recall that a unitary connection ∇ on a Hermitian differentiable bundle (E, H) on \bar{X} is called Hermitian Yang-Mills if $\Lambda_g F_{\nabla} = 0$, $F_{\nabla}^{02} = 0$. In the classical case dim_C(X) = 2 – which plays a fundamental role in Donaldson theory – these conditions are equivalent to the anti-self-duality condition $F_{\nabla}^+ = 0$.

In [Do] Donaldson shows that Theorem 1 has important geometric consequences:

Corollary 2. Let \overline{X} be a compact complex manifold with non-empty boundary, g be a Hermitian metric on \overline{X} and (E, H) be a Hermitian differentiable bundle on \overline{X} . There exists a natural bijection between:

- (1) the moduli space of pairs (\mathcal{E}, θ) consisting of a holomorphic structure \mathcal{E} on E and a differentiable trivialization θ of $E|_{\partial \bar{X}}$,
- (2) the moduli space of pairs (∇, τ) consisting of a Hermitian Yang-Mills connection on (E, H)and a differentiable unitary trivialization τ of $E|_{\partial \bar{X}}$.

In other words, the moduli space of boundary framed holomorphic structures on E can be identified with the moduli space of boundary framed Hermitian Yang-Mills connection on (E, H).

In the special case when \bar{X} is the closure of a strictly pseudoconvex domain (with smooth boundary) in \mathbb{C}^n , Donaldson states the following result which gives an interesting geometric interpretation of the quotient $\mathcal{C}^{\infty}(\partial \bar{X}, \operatorname{GL}(r, \mathbb{C}))/\mathcal{O}^{\infty}(\bar{X}, \operatorname{GL}(r, \mathbb{C}))$ of the group of smooth maps $\partial \bar{X} \to \operatorname{GL}(r, \mathbb{C})$ by the subgroup formed by those such maps which extend smoothly and formally holomorphically to \bar{X} :

Corollary 3. Let $\mathcal{O}^{\infty}(\bar{X}, \operatorname{GL}(r, \mathbb{C}))$ be the group of smooth, formally holomorphic $\operatorname{GL}(r, \mathbb{C})$ -valued maps on \bar{X} , identified with a subgroup of $\mathcal{C}^{\infty}(\partial \bar{X}, \operatorname{GL}(r, \mathbb{C}))$ via the restriction map.

There exists a natural bijection between the moduli space of boundary framed Hermitian Yang-Mills connections on the trivial U(r)-bundle on \bar{X} and the quotient $\mathcal{C}^{\infty}(\partial \bar{X}, \operatorname{GL}(r, \mathbb{C}))/\mathcal{O}^{\infty}(\bar{X}, \operatorname{GL}(r, \mathbb{C}))$.

The idea of proof: Taking into account Corollary 2, it suffices to construct a bijection between the quotient $\mathcal{C}^{\infty}(\partial \bar{X}, \operatorname{GL}(r, \mathbb{C}))/\mathcal{O}^{\infty}(\bar{X}, \operatorname{GL}(r, \mathbb{C}))$ and the moduli space of boundary framed holomorphic structures on the trivial differentiable bundle $\bar{X} \times \mathbb{C}^r$. The construction is very natural: one maps the congruence class [f] of a smooth map $f : \partial \bar{X} \to \operatorname{GL}(r, \mathbb{C})$ to the gauge class of the pair (the trivial holomorphic structure on $\bar{X} \times \mathbb{C}^r, f$). The main difficulty is to prove the surjectivity of the map obtained in this way. This follows from the following existence result:

Proposition 4. Let \overline{X} be the closure of a strictly pseudoconvex domain (with smooth boundary) in \mathbb{C}^n and \mathcal{E} be a smooth, topologically trivial holomorphic bundle on \overline{X} . Then \mathcal{E} admits a global smooth trivialization on \overline{X} which is holomorphic on X.

The statement follows using Grauert's classification theorem for bundles on Stein manifolds and the following extension theorem, which is proved in [Do] only for n = 2:

Proposition 5. Let \overline{X} be the closure of a relatively compact strictly pseudoconvex domain (with smooth boundary) in \mathbb{C}^n and \mathcal{E} be a smooth, topologically trivial holomorphic bundle on \overline{X} . Then \mathcal{E} extends holomorphically to an open neighborhood U of \overline{X} in \mathbb{C}^n .

In my talk I will explain the idea of proof of the following general extension theorem (see [T]):

Theorem 6. Let M be a complex manifold, $X \subset M$ an open submanifold of M whose closure X has smooth, strictly pseudoconvex boundary in M. Let G be a complex Lie group, $\pi : Q \to M$ a differentiable principal G-bundle on M and J a holomorphic structure on the restriction $\bar{P} \coloneqq Q|_{\bar{X}}$.

There exists an open neighborhood M' of \overline{X} in M and a holomorphic structure J' on $Q|_{M'}$ which extends J.

The proof uses methods and techniques introduced in [HiNa] and [Ca1].

In the special case when $M = \mathbb{C}^n$ and $G = \operatorname{GL}(r, \mathbb{C})$ one obtains as corollary Proposition 5 (and hence Corollary 3) in full generality. Moreover, one also obtains the following generalization of this corollary:

Theorem 7. Let $G = K^{\mathbb{C}}$ be the complexification of a compact Lie group K, \bar{X} be a compact Stein manifold with boundary and g be a Hermitian metric g on \bar{X} . The moduli space of boundary framed Hermitian Yang-Mills connections on the trivial K-bundle on (\bar{X}, g) can be identified with the quotient $\mathcal{C}^{\infty}(\partial \bar{X}, G)/\mathcal{O}^{\infty}(\bar{X}, G)$.

References

- [Ca1] D. Catlin, A Newlander-Nirenberg theorem for manifolds with boundary, Mich. Math. J., 35 (1988), 233-240.
- [Do] S. Donaldson, Boundary value problems for Yang-Mills fields, Journal of Geometry and Physics 8 (1992) 89-122.
- [HiNa] C. Hill, M. Nacinovich, A collar neighborhood theorem for a complex manifold, Rendiconti del Seminario Matematico della Università di Padova, tome 91 (1994), 23-30.
- [Hö] L. Hörmander, Differential Operators of Principal Type, Math. Annalen 140, (1960) 124-146.
- [Le] H. Lewy, "An example of a smooth linear partial differential equation without solution", Annals of Mathematics, Vol. 66, No. 1 (1957), 155–158.
- [LT] M. Lübke, A. Teleman, The Kobayashi-Hitchin correspondence, World Scientific Publishing Co. (1995).
- [T] A; Teleman, Holomorphic bundles on complex manifolds with boundary, arXiv:2203.10818 [math.CV].
- [Xi] Z. Xi, Hermitian-Einstein metrics on holomorphic vector bundles over Hermitian manifolds, Journal of Geometry and Physics 53 (2005) 315-335.