Recent progress in Iwasawa theory of knots and links

Jun Ueki

(Department of Mathematics, Ochanomizu University, Tokyo, Japan) *E-mail:* uekijun460gmail.com

We briefly survey joint works with Ryoto Tange, Hyuga Yoshizaki, and Sohei Tateno.

Twisted Iwasawa invariants of knots [1]. Let K be a knot in S^3 with $\pi_K = \pi_1(S^3 - K)$ and let $X_n \to X = S^3 - K$ denote the $\mathbb{Z}/n\mathbb{Z}$ -cover for each $n \in \mathbb{Z}_{>0}$. Let p be a prime number and let $m \in \mathbb{Z}$ with $p \nmid m$. Let $\rho : \pi_K \to \operatorname{GL}_N(O_p)$ be a representation over a finite extension O_p of the p-adic number field \mathbb{Q}_p and let $\Delta_{\rho}(t)$ denote the twisted Alexander polynomial. Then we have the following.

Theorem 1. Let (K, p, m, ρ) be as above. Then there exists some $\lambda, \mu, \nu \in \mathbb{Z}$ such that for any $n \gg 0$, $|H_1(X_{mp^n}, \rho)_{tor}| = p^{\lambda n + \mu p^n + \nu}$ holds. (We have $\operatorname{Nr}\Delta_{\rho}(T) \doteq p^{\mu}(\lambda + p(lower \ terms))$ in $\mathbb{Z}_p[[T]]$.)

For each (K, p, ρ) , there exists some m such that $\lambda/[O_{\mathfrak{p}}] : \mathbb{Z}_p] = \deg \Delta_{\rho}(t)$. Hence for each K, there exists some (p, ρ, m) such that λ coincides with the genus of K.

For each (p, K, ρ) , μ 's and λ 's determine whether $\Delta_{\rho}(t)$ is monic in $O_{\mathfrak{p}}[t]$ and whether K is fibered.

Example 2. (1) The λ 's of the lifts $\rho_{\text{hol}}^{\pm} : \pi_K \to \text{SL}_2(O)$ of the holonomy representation of the figure eight knot $K = 4_1$.

(2) For any SL₂-representations of the twist knots J(2, 2k) $(k \in \mathbb{Z})$, we have $\mu = 0$. We may expect that if $k \neq 0, \pm 1$, then there exists some ρ of J(2, 2k) with $\mu > 0$.

Weber's class number problem for knots [2]. Weber's class number problem for number fields is mostly unsolved for 200 years. Yoshizaki [3] recently pointed out that the sequence of the class numbers converges in the ring of *p*-adic integers \mathbb{Z}_p . In the knot theory side, we obtain the following.

Theorem 3. Let K be a knot in S^3 and let p be a prime number. Then the sizes of the p-torsion subgroups of $H_1(X_{p^n};\mathbb{Z})$ converges in \mathbb{Z}_p . The limit value is given by the roots of unity that are close to the roots of the Alexander polynomial $\Delta_K(t)$.

Example 4. The limit values for the torus knot $T_{a,b}$ $(a, b \in \mathbb{Z}; \text{ coprime})$ and the twist knot J(2, 2k) $(k \in \mathbb{Z})$.

Iwasawa invariants of the \mathbb{Z}_p^d -covers of links [4]. Cuoco-Monsky gave a variant of the Iwasawa class number formula for \mathbb{Z}_p^d -extensions of number fields and pointed out the existence of the term O(1). In our side, we have the following.

Theorem 5. Let L be a d-component link in a rational homology 3-sphere M and let $Y_n \to X = M - L$ denote the $\mathbb{Z}/n\mathbb{Z}^d$ -cover. Then there exists some λ, μ such that the size of p-torsion subgroup of $H_1(Y_n, \mathbb{Z})$ is given by $p^{p^{(d-1)n}(\mu p^n + \lambda n + O(1))}$, where O(1) is the Bachmann-Landau notation. If M is an integral homology 3-sphere, then the \mathbb{Z}_p^d -cover is Greenberg, namely, O(1) is a constant.

Example 6. The values μ , λ , and O(1) of Solomon's link 4_1^2 and the twisted Whitehead link W_{2k-1} $(k \in \mathbb{Z})$. We have a link with $O(1) \neq 0$ and a link with any $\mu \in \mathbb{Z}_{\geq 0}$.

References

- [1] Ryoto Tange and Jun Ueki. Twisted Iwasawa invariants of knots, preprint, 2022. arXiv:2203.03239
- [2] Jun Ueki and Hyuga Yoshizaki. On Weber's class number problem for knots, preprint, 2022.
- [3] Hyuga Yoshizaki, A New Continued Fraction Expansion and Weber's Class Number Problem, in preparation, 2020. arXiv: 2010.06399
- [4] Sohei Tateno and Jun Ueki. Iwas awa invariants of \mathbb{Z}_p^d -covers of links, in preparation, 2022.