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We define an analog of the regular representations
.of the Virasoro—Bott group Vir, which is the central
extension of the group Diff,(§") of orientation preserv-
ing diffegmorphisms of the ¢ircle, with the use of quasi-
. invariant measures on-Vir. The decomposition of these

) representanons gives a family of nonisomorphic repre-

sentations 7-%"" ‘where >0 andn,me Z. In[1],a - '

similar result is obtamed for the group Diff,(S%).

- The Kac-Moody groups and the central extension
of the group of diffeomorphisms of the-circle are
- important for quantum physics (see [2, 3]). The differ-
ence between them is that, for the Kac-Moody groups,

A unitary representation for.the Kac—-Moody groups
was constructed in [13, 14]; it generalizes the Albev-
erio—Hoegh-Krohn representation for loop groups [9].

' 1. REGULAR REPRESENTATIONS

Let Diff,(S*) be the group of orientation preserving
=_diffeomorphisms of the circle S' = {ze Chi[z|=1} =
{6 € [0,11} =R/2nZ. Recall [5] (see also [6]) that
the group Vir is the central extension of the group G=

- Diff,(SY; i.e, Vir=G xR, and its rnultlphcatlon oper-

- the-coeycles are defined only locally [4], while for the

~ group of diffeormorphisms of the circle, they are defined
globally [5, 6]. ,

Our goal is. to deﬁne regular representations of the
: Vlrasoro—Bott group with the use of quasi-invariant
measurés on some: completion of this group. These

measures extend the Shavgulidze-Malliavin measure.

[7, 8].-

‘ Apparently, the-first regular representatlons for non-
. corhmutative infinite-dimensional groups were consid-
‘ered i [9-11].. The’ first criterion for the irreducibility

" of the regular representatlons of some infinite-dimen-
_ sional groups was ngen in [12] (see also reference [i13
" in [12]). Book [5] is also concerned with the represen-

tation theory of infinite-dimensional groups, in particu-

. lar, with representations of the group of diffeomor-
phlsms of the c1rcle _

! Thrs artit:'le was ‘sibmitted by the authors in English.
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Vir/2nZ, which. is the set G X

ation is defined by

(0, 1) 0 (Oty, 1) = (0 © O, £y + 1 '1'5(0'-"1’ a,)), (1

where B is the Bott cocycle, i.e., o _'
B(at,, &) = j In(o, o 0,)dnoy. . (2) .

Sl

Our further considerations em: ?loy the quotient group
S

with the multiplication
(0, Ty) o (0, T,)
= (0t © Oy, Ty Tpexp(iB(0y, ;)))

3

for this group, we use the same notation Vir.

Let us define some quasi-invariant measures on.the -

group Vir. By Diff; (S, where n=1,2, ...,

- the gioup of C7-diffeomorphisms of the circle, and by

" canbe uniquely represented as the product o= B¢, where a
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DIff? (SY), its subgroup of diffeomorphisms leaving the -
initial point 1 = exp(i0) fixed. We have Diff, (§") = §! -
Diff} (S!). This means that any element 0. € Diff} ()

0 e %, ¢ & Diffy (51), 0 = «(0), and 9 = ((0))'ex.
In [8] (see also [1] for more details), a measure Vg
with © > 0 is constructed on the group Diff} (81 = St

'lefo (SY); it has the form v, = mbyg, where m is the Haar :

measure on S1 and ba-— BG is the measure on Diff} (S1)

we denote
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corréspon’ding fo the Brownian Bridge B, on oGol0, 1]
in accordance with the Shavgulidze mapping (see [7])

A4: Diffy (Y = 4C[0, 1],

Diffy(S')s  @() > (49)(2)
= e () - Ing'(0) € ,G,[0, 1], (4)

where

o OCO[O, 1] = {xE C[O, 1] x(O) =x(1) .__..0}

- We'set Vir" = §1 - Diff] (81) - 8! for n = 1,2,....Note
that Vir*is a group for n = 2, 3, ..., but Vir! is not a

- group-(see (2)). Nevertheless, by virtue of (2), the right
and left actions of the group Vir® are well-defined on the
‘manifold Vir'; they act by the rules Reh=hgland L k=
. ghforge Vird, h e Vir. Indeed, the stochastic infe-

* gral (2) is well-defined in this case. We define a mea- . -

. sure-on the manifold Virl = §t - Diff} (8! - " as the
_product, i.e, by Lo =m - b, - m,
Theére“iﬁvl'. The measure U, on the manifold Vir! is
quasi-invariant with respect lo the left action of the
. group Vid, ie, -p’é"’ ~ Us far any ¥g e Vird.

..~ The proof is baséd on Lemma 8 from 1, p‘. 525] (see
alse [15, p. 324)). Now, we can define an analog 7% °:
Vit — U(H_y of the left regular representation of the

 group Vir’ in the space H, = L2(Vir!, u.) in a natural,
wayas . oS ;

o o
dig(g hN? .
( du iy s TE:

' fr_e H, ge Vi,

TN =

- 2.A DECOMPOSITION OF THE REGULAR
- REPRESENTATION

. To prove the redﬁcibilify ‘of the left regular represen-

tation, we-show’ that the’ measure N 1s invariant with
respect :tothe right action of the torus T2, By T?, we

deﬁdf_e_?th"e-"s,ﬁ_l"_j'group St e §1=S8'x S of the group S! -
Diffy(8:- 5,

. yvhére‘ e is: the identity clement in
Diffy(sly s
: . Theorem 2 (i} The measure W 5 invariant with
_ respect-to the Fight action, of the group T2 =§' - ¢ - 81,

: i-e.‘_, g =UgforanyNs= (€, e, 1) e T

-
F Lo

orthogonal to the initial measure, i.e.,

(i) the image' ug“ of the measure \\; under the rigkt
action of the group Diffy(S!) = e - Diffy (S") - e is
Ho* L i, Vg = (6,0, €) € e Diff(s") - o,

p#e.

The proof is based on Lemmas 9 and 10 from 1,
p. 528].

Thus, we can construct a right representation of the
group T? in the space A, which is defined by the rule
( Tf C AR = S(hs) for s = (€, e, ) € T? and commutes

with the left representation 749, ie., [T;"",_Tf °1=0
forany Vg e Virdand s e T2

Setting
Hymo = {f€ Hy: TgS o f = €11},
nmelZ,
- we obtain _
H =0 H,,o . (5) .
mme .
TL,G’ = @ TL,n,m,G, E . . (6)
nmeZ C

where T2.%m9 g the restriction of the répieéehtatiqn .
T*° to the invariant subspace Hypo
Conjecture. (i) Decomposition (6) is a decomposi:
tion of the representation T“9 into irreducible repre-
sentations T“ ™™ withn, m € Z; o

(H_) TLhnma TL, n',m'.,cr' = (n, m, G) =-(n', m', 0.1). .
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