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ABSTRACT

In the framework of infinite dimensional analysis on Wiener space we study
the raise of smoothness for the important class of not strongly continuous semi-
groups, associated with the second order elliptic differential operators of infinite
number of variables.

The principal unboundedness of the coefficients of operator can lead to sin-
gularities in the basic integration by parts formula on Wiener space. We show
how to avoid such singularities in our case.

To achieve the arbitrary order raise of smoothness in the spaces of continu-
ously differentiable functions we derive quasi-contractive nonlinear estimates on
directional derivatives, which permit us to study the smoothness of associated
Wiener functionals. The influence of nonlinearity parameters is also discussed
in this setting.



1 Introduction.

The original idea to consider the solutions to stochastic differential equations as
the smooth distributions on Wiener space, initiated in [31, 32] and developed in
6, 40, 41, 43] and later in [4, 7, 9, 26, 27, 28, 29, 33], has already influenced the
rich connection between infinite dimensional analysis and stochastic theory. The
keen interpretation of Wiener integral as the adjoint operator to the stochastic
directional derivative o

ED,F =EF [ udW, (1.1)
has given the scope of ground-breaking applications of the analysis on Wiener
space. The development of Malliavin calculus led not only to the deeper under-
standing of the Hormander hypoellipticity conditions for second order operators
with degenerate coefficients and regular properties of the associated semigroups,
but also to serious advances in the infinite dimensional geometry, operator the-
ory and the stochastic theory itself, see reviews [7, 10, 34, 36] and references
therein.

It is a natural question what happens when the differential operator is not
degenerate but has some poles in coefficients and how change the techniques of
Malliavin calculus in the study of regularity properties of associated semigroups.

The main obstacle is that one faces a problem of singularities, applying the
integration by parts formula following from (1.1)

BF (€)Y =B gp ) dWs = Do) (1.2

Indeed, to achieve the raise of smoothness for semigroup P, f(z) = Ef(£)(x)),
for example P; : C, — C}, t > 0, using representation

9 pf(a) = B ()M () = Eﬂm{@ iV — DS
8$ t a ¢ t t uff ’ uDu 19

in terms of first variation ft(l)(x) = 0€)(x)/0x we need good non-explosion
estimates on 5,5(1) and 1/D,£Y. The structure of principal parts of equations

on 515(1) and 1/D,&; requires the global Lipschitz assumptions on coefficients of
equation on £(x) to fulfill simultaneously the one-sided coercitivity condition
for both direct and inverse equations, see e.g. [10, 17, 29, 35, 36, 38, 41, 45].

In this paper we show how to avoid such global Lipschitz conditions for
important in applications class of differential operators with infinite number of
variables, associated with Gibbs measures of unbounded lattice spin systems
[12, 15, 16, 18, 42].

In spite of the principal unboundedness of interaction potentials in Gibbs
measure we demonstrate that the associated infinite dimensional diffusions ad-
mit a choice of directions, when derivative D& becomes a deterministic process

and non-Lipschitz singularities in the integration by parts disappear.
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We have to use the techniques of stochastic evolution equations because the
corresponding semigroups fail the strong continuity in spaces of continuously
differentiable functions and the Hille-Yosida approach does not work.

Let us discuss the key idea in a simple one-dimensional case. Consider semi-

group
(Pf)(x) = Bf(&(x))
associated with IR'-valued stochastic equation d¢? = dW; — F'(£))dt, £0],—g = x
for non-Lipschitz drift F' of at most polynomial behaviour.
Due to the property of stochastic derivative Dz€?(x) = t in direction @; =
1+ tF'(£)(x)) we obtain an integration by parts formula

B0 = B [ a.dW, — D;v)

which does not contain singularities in denominators and permits to work in
the domain of monotonicity condition on F.

Integrating by parts the representation of derivatives of semigroup in the
terms of variations £ (z) = 90 (z)/(9z)’ we have the connection of deriva-
tives of 9™ P, f with the behaviour of initial function f

IPFr) =3 Y BOE)U), i —

(=1 j1+...4+je=n
n 1
=2 X g
(=1 j1+...+je=n
where ID*V = U [; usdWs — Dz V. To obtain the raise of smoothness

1 Mt
1P lgprn < opKe I e, me N

Ef(&§) D"..D*(§9)..£7)

in the scales {Cf}men of continuously differentiable functions we study the

quasi-contractive behaviour of derivatives ID’¢U) = (D3)?¢U) and, using the
nonlinear symmetries of the associated variational equations, prove estimates

pn,m(t) < eMtpn,m(O)

for nonlinear expressions like

P = 30 S By a(€)
Jj=1p=0

my/j

D7’
th

The hierarchy of weights p; g, connected with non-Lipschitz parameter k of map
F, influences the special hierarchy of topologies in C’ﬁ scales.

The paper consists of five parts. In Section 2 we give necessary definitions of
Malliavin calculus and prove the integration by parts formula for diffusions with
essentially non-Lipschitz drift (Theorem 2.3). Section 3 is devoted to the non-
linear quasi-contractive estimate on the directional derivatives (Theorem 3.2).
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Section 4 contains the raise of smoothness result in the scale of continuously
differentiable functions (Theorem 4.2).

In Section 5 we provide a necessary background. In Subsection 5.1 we verify
the smoothness of £)(z) as a functional over the Wiener space (Theorem 2.2).
Subsection 5.2 is devoted to the correct proof of smooth properties of variations
IDP¢W and their finite order differentiability (Theorem 3.1).

The main stress is put on the development of monotone methods of nonlinear
analysis to the setting of Malliavin calculus.

2 Integration by parts without singularities for non-Lipschitz
diffusions.

Consider semigroup . o
(P f)(@”) = Ef(E(E,27)) (2.1)
associated with solutions to the nonlinear stochastic differential equation
€0t 2%) = 2% 4 [LdW, — R[F(E)) + (BEO)]ds, k € Z°

(2.2)
2’ € ly(a), tra= Yoap=1, ac P
keZ
The nonlinear diagonal map F : RZ " R7 s generated by smooth function

F: R'— R!such that 3k > -1Vne IN 3C, Va,y € R

FO(2) = FO(y)] < Colw =yl + | + y)< i =0,...n (23)
and linear finite-diagonal map B : IRZ " RZ" is defined by
37“0 (B.I)k = Z j \j—k|§r0b(k — j)lej (24)

The cylinder Wiener process W = {W}(t)} .z« with values in ¢5(a) is canoni-
cally realized on measurable space (2 = Cy([0, 77, ¢2(a)), F, F:, P) with canon-
ical filtration F; = o{W (s)|0 < s < t} and cylinder Wiener measure P. Pro-
cesses Wi, k € Z® are independent IR'-valued Wiener processes and E denotes
the expectation with respect to measure P. The set of all vectors a = {a } . 54
such that §, = supy,_;i— lar/a;| < oo we denote by IP.

It is well known that for initial data 2° € ok H)g(a) there is a unique strong

solution to equation (2.2), i.e. fo(a) continuous JF; adapted process £°(¢,2°) €
Dy, o) (F) which fulfills P a.e. equation (2.2) in f5(a) and for 2° € £y(a) the
generalized solution is obtained as a uniform on [0,7] P a.e. limit of strong
solutions [13, 15, 25, 30, 39]. Moreover 3 M, IK € p@l LP(Q),P) such that

V20 y° € l5(a) one has P a.e. estimates on generalized solutions
Sup 187t ) [l eaey < M N1 py(a) + K ()

sup (€062 = €061 ey < 7 = 4l 29

e,
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In [3, Th.2.4] it was shown that semigroup P, preserves certain spaces Cg(f2(a))
of continuously differentiable functions, in particular, for C*° cylinder function
f of polynomial with derivatives behaviour at infinity the representation of
partial derivatives holds:

7]

LPfz)=Y Y E<fO) ¢ 0..0¢,> (2.6)

(=1 71U..Uy=7

0

<fOE) @ 08 >= X 0 S (€ )nm i

.jl 7777 ]éezd

Above we used notations 7 = {ji, ..., Jn}, O = 0;

8j17 aj

n'*"*

and &, (t,z) = 0,,£°(¢,x) denotes the unique strong solution to corresponding
system in variations for initial equation (2.2)

by = Ty — JSL(F'(E]) + B)§, }rds—
o 2 9 fg O (gg)gk,al-'-fk,wds (27)

aU...Uayp=", >
T~y = O for v={j} and Ty, =0 for |y| > 2

In this paper we are going to show that semigroup F; raises the smoothness
of initial function in the scale C'g. To control the non-Lipschitz singularities of
initial infinite-dimensional SDE we write a special integration by parts formula
on Wiener space. The following Definition adopts a notion of differentiable
Wiener functionals to our setting.

Denote by Je, the set of F; adapted continuous integrable cylinder-valued
processes Uy = {Usk eyt 1-€. A, C Ze |Au| < oo such that VE & A, wy =
0,t€[0,7] and -
VheA, Vp>1 E [ |ufdt < oo (2.8)

Definition 2.1. Measurable function G on €2 is differentiable in direction
u € Jeu and has directional derivative D,G if 3¢y > 0 V|e| < g function

G(w. + € [§ usds) belongs to Ny>1 LP(2, P) and there is a measurable function
D,G € Ny>1 LP(2, P) such that

o Sd _
vp>1 lim E‘G(w. + € [Jusds) — G(w)
le]—0 e
We say that G € Dy.(Q) iff Vj € Z? there is a map D;G ¢ 0 LP(Q,P,H)
p>
and Vu € Jy 3D,G in the sense above which admits representation

D,G =Y <D,G, [ uyds >y (2.10)
jeku

_DGWIPP=0 (2.9

Above H denotes the Cameron-Martin space of absolutely continuous functions
v:[0,7] — IR', v(0) = 0, equipped with the scalar product < v,y >x= /T | ol
(5)|*ds.
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Immediately remark that the following properties hold by a slight modifica-
tion of results [6, 7, 31, 32, 34, 36, 37, 41, 45]
1°. Vf e C®UR", R") of polynomial with all derivatives behaviour at
infinity and VGy, ..., G, € DZOC(Q) we have f(Gy,...,G,) € Di,(2) and

D, f(Gy,...,G,) = Z[@f (G1, ..., Gn)| DuGiy,  u € Ty (2.11)

2°.  For all real- Valued Fi adapted continuous processes H; € Dj,.(Q2),
€ [0, T] such that
T , p T
E/O |H,|’ds < 0o and Vje€ Z E/O |D; H, | ds < 00, Vp>1
we have

Vie[0.T)Vkez! ([ Hds. [ HdWi(s)} € Die()

and Yu € J,.,
! D, / "H.ds = / "D, H.ds

D, / H dWy(s / Huskds+/ Dy HydWi(s) (2.12)
The following Theorem checks Definition 2.1 for solutions to nonlinear equa-
tion (2.2).
Theorem 2.2. V' € fly(a) the generalized solution £°(t,2°) to (2.2) has
coordinates £)(t, 2°) € Djo(Q), Vk € Z%t € [0,T].
MoreoverVu € Joy the derivatives D,&p(t,2°), k € Z form a unique strong
solution to system

D&Y 2") = [ unds — [ {[F/(E)(s.2%)) + B] D&(s.2°) uds, & € Z°

(2.13)
The strong solution is understood as F; adapted f5(a) continuous process D, £%(¢, 2Y) €

Dy,a)(F'(€°(t,2°)) + B) a.e. on [0,T] which P a.e. satisfies equation (2.13) in
space f5(a) and 3 M such that
T
sup Duotsc < MT uszads
sup 1D ") < M [ sl

Proof of Theorem is given in Subsection 5.1. In Lemmas 5.1 and 5.2 we con-
struct processes £°(t, 2%, w, +¢ f§ usds) and D,E%(t, 2°) as solutions to stochastic
equations and state their continuity with respect to z° € ly(a) and u € Ty
Lemma 5.3 gives a sense to Dufo(t, a:o) as derivative in direction u € J.y. The
final verification of £ € Dj,.(Q) is done in Lemma 5.4. =

Denote by Pgy;(¢2(a)) the set of C*-smooth cylinder functions of polynomial
with all derivatives behaviour at infinity, i.e. Vf € Pi(fa(a)) Imy IA =
suppef C Z%, |A| < 0o and Ih € C®(IRY) such that Vo € fy(a) f(z) =
h({zy, k € A}) and V7 C Z°

10, f(x)] < const, (1+ 3 x2)™ (2.14)

i€l
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The following Theorem gives an integration by parts formula for functionals
on Wiener space generated by solutions to the infinite dimensional stochastic
equations with non-Lipshitz drift. In Section 4 we apply it to obtain the raise of

smoothness under the action of associated not strongly continuous semigroup
P

Theorem 2.3. Let £°(t,2°) be a generalized solution to (2.2) at 2° € f5(a).
Introduce process

Tw = [Id+t(F'(¢"(t,2°)) + B)]v € Jey (2.15)

(i . . .
for vector v € RZ" with finite number of nonzero coordinates.
Then the derivative in direction u; = I'yv gives

Dr,&%t, 2% = tv (2.16)

Moreover, the integration by parts formula holds
1 t
E < 8f(£?),v >g2(1) U = ;E f(f?){\lf/o < FSU,CZW(S) >g2(1) —DFU\I’} (217)

for all Fy measurable V € Di,e(Q), f € Poy(la(a)), t > 0.

Remark. The integration by parts above uses, in fact, the set of derivatives
in directions, generated by the monotonicity parameter F’'(x) + B of initial
operator. This parameter also describes the log-concavity properties of the
associated Gibbs measure with local specifications

din(e) = -exp{—y X bk} T e o, 0(@) = [ Fly)dy

A 2 (k¥ nA£0 keA

Proof of Theorem 2.3. Properties of generalized solution £°(¢, 2°) (Theorem
2.2), polynomiality of F' (2.3) and finite radius of B (2.4) give I''v € J,; for

finite vector v € RZ". By Theorem 2.2 Dr,£0(t, 2°) satisfies

Dr&0(t, 2° / {T,v}pds — /t[{F’(fo(s,xo)) + BYDr,& (s, 2% pds  (2.18)

Substitution of Dr,&p(t,2°) = tvy makes equation (2.18) hold identically and
due to the uniqueness of solutions we have (2.16).
For F; measurable U € Dj,.(§2) and f € Pg(l2(a)) by Theorem 2.2 and

(2.11) we have f(£°(¢,2°))¥ € Dy,.(Q). Using the integration by parts Theorem
3.1 [37] for projection onto Iren, Co([0,T], IR') of product measure P with

subsequent integration with respect to wy, k & A, we achieve by chain rule
(2.11)

Ef(€(ta")U [ < Tw,dW(s) >,0)=
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—E Y < D{f("(t,2") ¥}, [{Ts}jds >u=E Dr,[f(€"(t,2°))¥] =

JeEA,
=tE < 0f(£°(t,2%)), v >4,0) ¥ + Ef(£(t, 2")) Dp, ¥
which gives (2.17). Remark that we used the closure of [37, Th.3.1] from
bounded cylinder-valued F; adapted continuous processes u; to any LP(€) x

[0,T]) summable processes, p > 1, which is possible due to the property (2.10)
for functionals from Dj,.(2). ™

3 Quasi-contractive nonlinear estimate on directional deriva-
tives.

Applying below the integration-by-parts Theorem 2.3 we rewrite the represen-
tation of partial derivatives 0, P, f (2.6) in the terms of directional derivatives
on variations &, and specify the quasi-contractive nonlinear estimates [3] to this
setting. Introduce notation DF — Dr,, (3.1)

for the directional derivative, generated by Ft (2.15) and k™ unit vector e; =
(...,0,14,0,...) € RZ'. Formula (2.17) gives for F; measurable W € D,.(£2)

1 X
V fePilla(a)) EOf(E)V =~ Bf(E) DY (3.2)
' t
with DU = [ < Tyey, dW(s) >p,0) —D" (3.3)
Therefore the partial derivatives of semigroup (2.6) permit representation

7] D% ...ID% (&,1---Eimy)

OPf) =Y Y X Bj(g)Trehatinn gy
(=1 71U..Uye=T7 Tl ngZd

and to obtain the raise of smoothness under the action of semigroup P; we have
to investigate the behaviour of derivatives

DﬂgT:Djl"'Djnga 6:{j17"'7j€}
on solutions &, to variational equations (2.7).

Theorem 3.1. V' € ly(a) the variations & (t,2°) (2.7) have coordinates
VkeZ' &.(ta°) € Die(Q) and ¥V € Z°%, 18| > 1 3 D¢, € Dine(9).
They are represented as a strong solutions in the scale of spaces €y, (c;5), m, =
m1/|7|, to system

V1B 20 DPEr(t) = Tirs — [ [(F'(E) + B)D & uds — [ rerals)ds (3.5)
where T, 3 =0, |B] > 1, Z,9 =T, (2.7),

ka;T,ﬂ@) - Z Z t|ao|5goF(€+|aol)(£2> Dalfkm“-pwfk,w

NnU..Uy=7 ogU..Ug =0
il > 1, €>1 foo| >2—4, [o5] >0

(3.6)
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and vectors c; g € IP are any that fulfill hierarchy

+1

dK. 0p° [ck;T,g]ma;Tml < Kc[ckm’gl]m'... [ck;wm]m‘, ke z? (3.7)

Above 5]5 = Ilie 5; 1s a product of Kronnecker symbols and the subdivisions
of sets T =y U...Uv, 8 =o09U..Udagy are such that 1 < ¢ < |7| and for
(=1, |og| >1; forl>2|oy| >0.
Moreover, at t = 0 there is asymptotic VR > 0 3Kp € p@l LP(Q,P) such
that B
v|5| > 1 HﬂjﬂfT(taxo) L < t|ﬂ|+1KR(w)n te [OvT] (38)

uniformly on max(||z%)|s(a), 1250l (e, 0): 7 € T) < R

mr (Cﬂﬂ)

The strong solutions are understood as F; adapted ¢,,_(c; 3) continuous finite
variation processes

0,75t = D& (t,2") € Dy, (e, ) (F(€(t,2%)) + B), 8] 20, |7] > 1
which for P a.e. w € 2 fulfill equation (3.5) in ¢, (c.3) a.e. on [0, 7.

Proof of this Theorem is quite complicated and we provide it through the set
of Lemmas in Subsection 5.2. There we successively check Definition 2.1 for
DﬁﬁT(t,xO). In Lemmas 5.6 and 5.7 we construct processes Dﬁi}(t,xo,w. -+
e 3 ugds) and D, ID"¢,(t,2°) as solutions to nonautonomous stochastic equa-
tions and state their continuity on 2° € ¢5(a) and u € J.;. Lemma 5.8 gives a
sense to Dy D" &- as derivative in direction u € Jey. In Lemma 5.9 we provide
a final verification of ]D/BEM € Dioe(2) and show that Dpej]Dﬂ&@ = ]DBU{J}&, .
We also prove asymptotic (3.8). An important tool to deal with the multiplica-
tive structure of ¢, 3 (3.6) is given in Lemma 5.5. ®

Remark that the equations (3.5) are obtained by direct action of ID” on
equations (2.7), because (2.16) and chain rule (2.11) for F' (2.3) give

D¢ (50(75 X )) _ 5?t|5|F(5+\5|)(§?(t, xO))

We see that the property Dkﬁt = tey (2.16) implies not only the simple
integration by parts formula, but also a simplified structure of coefficients in
equations (3.5), which depend exclusively on t and &).

Taking into account this reason we introduce, like in [2, 3], a nonlinear
expression

D¢
pr,ﬁ(t) - Z Epv,a(Zt)H t|0|7 Hfm (cr.0) (3.9)
~CT, oCf3, v#£D K
for m, = my/|y], z = [|€°(, 2%)|17,0)- It accumulates the nonlinear symmetries

of equation on ID’¢. (3.5), i.e. that the terms
F'(£% D, tIBIF(HIBI)(gO)gT’ tIﬂIF(ITIHBI)(gO)gjlmfjm 7 =1{j1, s jn}

appear in the r.h.s. of (3.5) simultaneously.
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The following Theorem gives a quasi-contractive estimate on p, 3. In Section
4 it is applied to control the raise of smoothness.

Theorem 3.2.  Let F fulfill (2.3), 2° € l3(a) and vectors ¢, € IP satisfy
hierarchy (3.7). Suppose that monotone functions p,, € C*(IRL) are such that
de>03dK,>0Vze Ry

Pro(2) 2 € and (1+ Z)(lplya(z)l + ‘pga(z)‘) < Kppyo(2) (3.10)

and ko
pral (1 4+ 2)75™ < Ky [py ][] (3.11)

for any subdivision T =y, U ..Uy, 8 =00U...Uay such that 2 — £ < |oy|.
Then there 1s a constant M = M, 3 € IR' such that the quasi-contractive
nonlinear estimate holds

pra(t) < e"'pr.s(0) (3.12)
The r.h.s. limit ¢ = 0 is substituted by Theorem 3.1 (3.8) and (2.7).
Proof. Let 2° € 82(k+1)2(a). Introduce for 7 = {k1,....,k.}, 6 = {j1, s Im}

function : Dee
B =Y XY Epal
(=0 o CcB yCrT
lof=¢ ~#0
We will show by induction that Vi € {0, ...,m}
hi(t) < eMith,(0) (3.13)

which at i = m, h,, = p-(t) gives the statement of Theorem. Base of induction
at i =0, i.e. when 8 = (), was proved in [3, Th.2.2]. Note that

hz(t) = hifl(t) + Z gg(t) (314)
oCB, |o|=i
where
D& im,
et = % EJOW(Zt)Hﬂiﬂ7 lomr (Cr.0)
YCT#D
Therefore to obtain (3.13) it is sufficient to prove that for any o C 3, |o| =i
¢
g0 (t) < e™1tg,(0) + K> /0 =9, (s)ds (3.15)

Then due to inductive assumption and representation (3.14) we have
hi(t) < eMi=t'h;_1(0)+
t
+ X {Mg(0) + Kol 1 (0) | €M 0eMvds) <

oCB;|ol=i

< MR - Kt h(0) < MR 0)

10



D¢,
tlol 7

where D¢, satisfies equation (3.5). Due to (3.8) ||no|| = 0. Ito formula for
2 = [|&117, ) gives

It remains to show (8.15). Introduce notations X, , = £y, (¢y0), 7 =

My My t My
Pro(GIIE, = proo)Imllx:, +2 [ 92z Il (€0(5) AW () i)+

t dns m
iy [po22) < T >0 — I3 [y o)(20) s =

T~ t mey
= Do (20)Imoll7, +2 [ 2o (z)lImsll, (€0(), W () o)+

d o]

t 1 o m,
+m’y/0 p7,0(23>{8| | < %D ‘5%77# > _?HUSHXWT}CZS_ (316)

iy [ nall% (o) (20)ds

Here (2,9)6,0) = Ziezt OkTrYk,

< u,v? >0 0= > cupvglogm? (3.17)
keZ"
for v = HUl‘ZLn_(CQ),/_“U with duality map F in /£,,(c) and operator H, acts on

1
cylinder test functions by rule (H,f)(.) = 2 44 {—5(9,% + B0k} f(+) with By =

Far) + e g0 0(k = j)x;.
Estimates (2.5), [3, (3.61)], (3.8) and inequality |H,p|(z:) < Cp(z)[M +

K| go(t)HZ((ll({i))(a)] guarantee the integrability on [0, 7] x € of all expressions in

[to formula. Thus we have
Ep, o (=) Inl%, = Epo (o) Il —m, [ Bln % [Hp, (=) ds+

' d . o]
b [ B2l oy < 506 > D 13, )ds

Due to inequality H,p,(2) > K, opy0(2), 2 € Ry (see [1, Hint 9]) and prop-
erty —1/s < 0 we have

90(t) < g,(0) + K, /Ot 9o (s)ds+

1 d
+ > mv/ Ep, ;(zs)— T < 7 — D¢, n" > ds (3.18)
VCT, A0 5

It remains to estimate (3.18). The process ID?¢, satisfies equation (3.5)
therefore

DU
(318)=— ¥ m, [[Ep () < (F+ B2t 5
YCT, v#0 sl v

11



90,
- Z mv/ Epwa Zs 1.7 777 >X70§
YCT#D sl7

< (Kro + K47a) /0 go(s)ds+ > > )

YCT, Y D U...Uay =~ mU..Um =0
‘Oéi|>1 £>1 |7T0|>2—f, |7T1’20

ol gmo fr(E+Imol) (¢0Y D™ ¢, ... ID™ &
t S Qaq «
/0 Ep%U(ZS)H §lo] ‘ HE dS (3.19)

with K;, = Sycrm:||Blgx,,). Above we used that F'(z) > 0, z € R,
representation (3.6) of ¢, , and inequality

myy c’yo

m —1
_— m 3.20
m H77||£m(c) ( )

Due to the property |o| — |mo| = |m| + ... + |7Tg| we obtain
D™¢,,.. D™, D™, ID™E,,

3|‘7‘ o 3|771‘ 5|7T€|

|<¢777# >€ ’<*H¢

glmol

(3.21)

Moreover, by (2.3)

k+1

kit
| FEHmD 20y < (1 + |1‘2|)k+1 <Ca, * (1+ H:L‘Ong )2 (3.22)

Using (3.21), (3.22) and hierarchies (3.7), (3.10) we have estimate on each
term in (3.19)

Dﬂ-lgk,al Dmgkj,a@

Ep%a(zs) ) Ck;%0520|F(£+|7T0|)(§2) EI 7] " <
keZ* s §
‘ D&,
< oMKV EYE Y H{paj,wj(zt)ck;aj,m\|£’“\ma Yo/l <
dj S ]
keZ
Q lDﬂjfa
< KB 3 g (I (3.23)
o trera . \361\‘” B el
Above we applied Holder inequality |x;...z/| < +...+ with ¢; = ﬁ
qr Qs

Now, if ¢ = 1 therefore my # () and for subdivision ¢ = my U m; we have
|70], |m1| < |o| — 1 and for (3.23) the inductive assumption (3.15) works.
If ¢ = 2 then even for my = () there exists at least two subsets m; Umy = o for

which |7;| < |o| — 1 and inductive assumption is again applicable. We obtain
(3.23) < Ky h;—1(t) which by (3.18) and (3.19) gives

9o (1) < 00(0) + Ky [ go()ds + s [ By (s)ds

This implies (3.15) with K1 = K+ K, ,+K , and finishes the proof of nonlinear
estimate (3.12) for 2" € ZQ(kH)Q(a). The closure up to 2° € f(a) is simple by
Lemma 5.1 (5.2) and 5.6 (5.26) with u! =u?> =0. =
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4 Smoothing properties of semigroups.

Using the quasi-contractive properties of derivatives ID” &, governed by I'; (2.15)
and the integration-by-parts Theorem 2.3 we show that semigroup P; (2.1) raises
the smoothness in certain scale of Banach spaces Cg(f2(a)) of continuously dif-
ferentiable functions which essentially depend on the non-Lipschitz parameter
k (2.3).

The following Proposition displays the precise behaviour of directional deriva-
tives D¢, (t,2°) (3.5) with respect to the lattice Z” and points 20 € £y(a).
We apply here the nonlinear estimate (3.12).

Proposition 4.1.  Let F fulfill (2.3), ¢ € IP and function Q € C*(IR") satisfy
(3.10). Then¥n € IN AM = M, (¢, Q) such that the estimate holds

vt e0.7] BQUIEW )2 w) D ™ <

ki
_ M 0@l 0) (1 + 12117, ) "2 Y

B K (r-1) ki, m /|T\ @)
ak T H Z T H ¢ 1
1€ JET
for all1 <my <mn, {k,7,8} C Z%, |7| < my, |B] <n and m, = my/|7|.
Proof. For fixed 7, 8 introduce
ki o
Pyo(2) = Q(2)(1 + 2) o (=1 NCT, 0Cf (4.2)
k+1m1 @ml\ m /| |
Crvo = (ITa; * May, T, velP (4.3)
i€o JEY

where function @ € C*(IR') fulfills (3.10). These weights satisfy conditions
(3.7), (3.11) with uniform constants Kz = K; = 1. Indeed, for y = a; U... Uy
and o =g U ... Uy

k+1m1 Z( S w)\aﬂ

(1 4+ =) g oy KR < g

or 2 — ¢ < |my| which holds by assumptions on hierarchy (3.11).
Substituting ¢, , in (3.7) we have

ki L ki

5 (H 7m1)ak ma(|y[-1) H@D 7m1§

€0 JjeY

1, K _
<Hﬁnﬁm%ﬁww”nwﬁ
=1 iem, JEayq
or equivalently, because Y| = Joa| + ... + |y,

T le le(é—Q)

o’ Il a;* " «aq;” <1 (4.4)
| ETT
J&To 13



Due to a;, < tra = 1, inequality (4.4) is obvious for ¢ > 2. For ¢ = 1 the set
7o # () and rewriting

k+1 k+1
- @ml aTm157fo\{k} 0 a2 ™o Len
0r.° ‘H a;> =4 F F jemo\{k} 7 ’ !
JE™o 0, ké&m

the condition (4.4) is also satisfied.
Using that for v = 7, 0 =  weight p,(z) = Q(z) and for |y| =1, 0 =0

Pyp(2) = Q(2)(1 + Z)kTmT“T'Hﬁ' ) we apply Theorem 3.2 and have

g
EQ(|I€°(t, «")|I7 )HID £TH () < eM'prp(0) =
M@ =57 e, @) < Prol) < € prg

k'Hm T
= 79 QU 17, @) (L + [l2°IF, @) = "I (4.5)

where we used (3.8) and (2.7) with [|Z;[|s,, (¢, = %0. The coordinate form
of (4.5) gives (4.1). Constant M is uniform with respect to |7|,|3| < n due to
K = Kz =1 and uniformity of K, and || Bz, (c, ) [3, (3.24)]. =

Proposition just proved shows that for D" & there is a certain ordering of
behaviour with respect to 8,y C Z?, generated by weights

k 1
(0 + I B) F o Se)
Due to the representation (3.4) it influences corresponding relations between
different order derivatives of semigroup F; and therefore requires a reduction of
weights in seminorms on partial derivatives 0, P, f in Cg.
Let © = Oy U ... U ©,, denote any array of pairs (p,G) € O; with i-tensor
G =G'®...9G", constructed by vectors G, ..., G € IP, and monotone functions
p € C*(R!) with property (3.10). Array ©, should consist of pairs (p, )
with empty tensor @) such that 0 ® G = G ® 0 = G, G € IP. The array
©=060yU..UB,, n € IN,is quasi-contractive with parameter k iff V (p,G =
Gl®..®G) € ©,i=2..n Vkje{l,.., i}, k # j, there is a pair
(p,6=G'® .. G 1) €0, such that IK >0Vz € R,

(14 z)k‘zﬂﬁ(z) < Kp(z) and (GWNH < KG', (=1,..,i-1 (4.6)

Here (i — 1)-tensor G*7} is constructed from i-tensor G = G' ® ... ® G* by the
rule 3t = '@ .. 9 GF @G ®.. Gl A KIGGIig it g ... @ G
with A-(+1) = {a,;(kﬂ)}kezd.

We say that f € Co(la(a)), © = O U ...UO, iff f € C(l2(a)) and VT =
{k1,....;k;}, |7| < n there are partial derivatives 0,f = O,...0rf € C(¢2(a))
such that the following norm is finite

(4.7)

.....



where i
@) 109 f(2)]4

= sup max (4.8)
O e 090 p(||z]7 ()
and (i) 2 1 i 2
109 f@)lg = > G.Glo-f(2)

={k1,...ki YEZ"*
Above partial derivatives 9, f are understood in the sense that V2" € £3(a) Vh €
Xo(la,b]) = N ACx(la,b], ¢ (c)) representations hold
p=1L,c

Vir|=0,.on—1 0. f(2"+h(.) / S ey f(a0+ h(s))h(s)ds (4.9)

a keZz*
where we used notation AC([a,b], X) = {h € C([a,b], X); Ih" € L>([a,b], X)}

for Banach space X.
In [3, Th.2.4] it was shown that the semigroup P, (2.1) preserves spaces
Co(l2(a)) and fulfills estimate 3 Mg, Ko: V f € Co(2(a))

1P:fllce < Koe®'| flicq (4.10)

if the array © is quasi-contractive with parameter k (2.3). In particular the
partial derivatives of semigroup P; fulfill representation (2.6) for all f € Clo.
Introduce

0 = {((1+ ) p(2), sym(@ @ AK)); gy e0}  (A11)

and denote _—
@)= U Te, (©-6
Remark that for quasi-contractive with parameter k array © the array (©)™ is
also quasi-contractive. This follows from (©)" = (8)"'UT} ()" and ordering
(4.6).
Next Theorem gives the raise of smoothness in scale Cg under the action
of semigroup F;. Denote by Dg the closure in Cg of f € P (f2(a)) such that

1£llce < oo

Theorem 4.2. Let © be quasi-contractive array with parameter k (2.3). Then
Vm > 1 3 Kem, Mem such that V f € Dg we have P, f € Cigym, t >0 and

1
HPtf”C(@)m >~

tm/2K@meM@mf|yf|\ 0y >0 (4.12)

Proof. Let © = Oy U ... U ©, be a quasi-contractive array. Consider f &
o (f2(a)) such that ||fllc, < oo. Due to cylindricity and property (2.14)
the norms are finite ||f||ce» < 00, m > 1. By [3, Th.2.4] B f € Cgm and
HPtfHC(@)m < 0.
[ At first we show V f € P (f2(a))

V>0 [Pflou < 5 Ke I fle, (1.13
15



Definition (4.7) implies

and due to (4.10) estimate (4.13) will sm’lply follow if we show that Vi &
{0,...,n}Vt>0 Y »
10" VP fllly o, < \/Ke 1 fllce (4.14)

Now we prove inductively that the next estimate: Vi =0,...,n VO, € ©

0“0 Pl o, < Ke o+ s (110l 119 15 o,
S . . (4.15)
implies (4.14). Inductive base for (4.14) holds by (4.15) at ¢ = 0. Let for i < 4g
estimate (4.14) be fulfilled. Due to the P, f = P, 9P, /of and (4.15) we have

m@(io+2)ptf|”Tk@_ = ‘Ha(iO+2)Pt/2Pt/2fmTk®

’LO+1

V2,00
\/H\é‘ VB e

<
i0+1 -

K Mﬁ/?{

1+1

K'e M't
+,_max (N0 P o, 10" Pt/2f|HTk®g )< i 1 llce

.....

Above we used (4.10), inductive assumption (4.14) and the structure of semi-
norms in space Cg. Therefore (4.14) and (4.13) are proved.

To obtain (4.12) we represent Pif = Pyjp... Py f for f € Po(l2(a)) and
apply m times (4.13).

Consider a sequence of functions {g,} € Pg;(f2(a)) such that [|g,(|c, < oo
and g, — ¢* € Do, n — o0 in Cg, ©® = O U ...UO,. By [3, Th.2.4] and
property Hgm||g(@)g < 0o, £ > 1, we have that semigroup Fign, € Croy, £ > 1,
and possesses integral representations (4.9) up to order n + ¢. Substituting
f = gm — gn in (4.12) we have

1
HPtgm Ptg”HC(O)f — tE/QKG)geM@[tHgm gnHC@ (4'16)

Estimate (4.16) implies the uniform on balls on 2° € ¢3(a) convergence of
partial derivatives 0, P;g,, to some continuous functions on ¢5(a). They fulfill
the representations (4.9) up to (n + €)™ order and give the partial derivatives
of P,g* in sense (4.10). This finishes the proof of Theorem and gives that
Vg€ Do Pg* € Cry, £ >1 and fulfills an estimate (4.12).

I1. It remains to show (4.15). Due to integration by parts formula (3 2) and

representation (2.6) for partial derivatives {0tV P f}r, .., = OOk, Pif of
semigroup P; we have
Opy O Pif =3 3 E<df(e") ¢, ®..086, >+ (4.17)

1 /=1 71U...U’Yg:{k1,...,ki+1}

t
+¥ Z E8ji...8j1f(§0)£jhkl...gji%kiﬂ/0 < Fsejiﬂ,dW(s) >52(1) — (418)

e ji EZC
n Ji+1 16



1 +1

—fz z dEaji...ajlf(go)gjhkl...JDJ’M@W..gmhkm (4.19)

In the proof of Theorem 3.9 [3] we have shown by application of nonlinear
estimates that for any quasi-contractive array ¥ = ¥oU ..U WV,, VI < 1 €
{1,...,n} and |y1|+ ... + || =1

X E<d9f().6 008,

Y1U...Uye

v, = KeMtHla(@me

For quasi-contractive array © = ©g U ... U ©, the array T3.0; is a subset of
quasi-contractive array (©)! = © U 1© = Yo U ... U ¥, with ¥y = Oy,
U1 =110, and ¥y, = ©, U T3 0,_;. Therefore we have Vi € {1,...,n}

.....

To finish the proof of (4.15) it is sufficient to show that V (p,G) € ©;
1

(4-18)lz 5.0) \/Ke (4.20)
(419l .g) < Ke (4.21)
. ki
with Ti(p,G) = (14 2) % p(2), G ® AK*2) (4.11),
Estimate (4.20). Applying Holder inequality we have

| = @RSl ke
4 18 < J1yeens ]i+1€Zd p (Zt) g®A 4 22
(4-18)lzy (5. 0) < k. (4.22)

t (14 [|2117,0) = 2120117, 0))
with 2 = [|€°(t, x )ng and

Kyeokint t 1/2
Ajl ji;rl = (Ep (Zt) ‘gjlakl"‘gji-&-l,ki-&-l/o < F56j1+17dW(8> >f2(1) |2) /

.....

A simple consequence of finite dimensional Ito formula
t n nyn— t n
Vo€ J(Q)  B([ <0, dW(s) >,0)" < (n(2n = 1)) B [ [|og]|7)ds

gives

k. ki
]+12 (1 + HxOHEQ )
o . (4-23)
with Iy introduced in (2.15). We used || B|| z(s,(1)) < 00, property (2.5) of process

£%(t, 2°) and estimate

t 1
B([ < Tty dW(s) >0 )20 < KM ia

2

1

ki k.
()] < O+ €K < Cay 2 (1+]I€% )

17



The successive application of Hélder inequality with ¢, = 1/(i + 2), (4.23)
and nonlinear estimate (4.1) with |5| =0, 7 = {j} lead to
i+1
AR < TLEP R g0 ) B[ < Dy, di¥ )02y 20 <

J1s-- ]H—l —
(=1

ko
Mt oz K 012 Wiy
< KMV + 1|12°17,) 2 p(12° 17, 0) 72— (4.24)
i1 Je—ke
Substituting (4.24) in (4.22) we obtain
KeMt k
4.18 < Gy ... +2
(4-18)ll7y (5. g) < i (kh%“ k-Gl e
o o
JoY (E‘0J28231f('5 )‘ 1/2_ aiji+1 |2)1/2 <
JlseensJit1 p (Zt) Hl‘_[ w i
o Vi
k+1
KeMt 5a2 1V
< tra)'/? Gl
i £ 2 %E L-
’aj""ajlf(go)’ 1/2 2\1/2
| 2 (B ) H —)77<
jl ~~~~~ ji p2(2t) wjz ko
KleMt K/ Mt
< Kaw\llf9 ' flllpg) < 7 ——Ka 10V fllle, (4.25)

i1 —kit| % 3
< 6a? ay,, . Wwith 6, = supj,_j;1 |lax/a;| and

9, 8J1f<50>\2)1/2 and b(k) = 1/4.

Above we used a;,

s
+
HM‘E"‘S

Proposition 4.3 with z;, ;, = (E

P*(zt)
The choice of vector ¢» € IP makes the constants K¢, = H ( |k|/2/¢ )
ki
in Proposition 4.3 and sum > 0§42 I# /Yy be finite Wthh ﬁnlshes proof of

kez*
(4.20).

FEstimate (4.21) can be done in a similar way.

E|ajzaj1f(€o)| 1/2 gt

| s @2 o
L 1 5eens i 1€Zd p (Zt) J1sees Ji+1 G AK+2
4197y gy < 2 Judi B
=1 t(1+ (120012 )2 pUI20112, o)
with
i+1 _ | |
Bitvitet = (B I p (IG5, D @) D ) <
m=1,m##{
i+l _ | | | |
< p #g(EPQ(Zt)|€jm,km‘2(Z+1))1/2(Z+1).(Ep2(Zt)‘D]iﬂé‘wm 2(Z+1))1/2(H—1) <

18



ko
Q CL'Z. ’
< KeM't(1+ 12°017,) 2 p(12°]17,0) 72— (4.26)
Zgl Je—ky
Above we applied nonlinear estimate (4.1) for |3] € {0,1}, 7 = {j}.
As the expression (4.26) up to the factor v/# coincides with (4.24) we proceed

further like in (4.25) and obtain (4.21). =

Below we give a simple Proposition on convolutional estimates, which was
used in the proof of Theorem 4.2.

Proposition 4.3. Let G!,b € IP, b, < 1. Suppose that

Koy =TI X b;og)/*) < oo

/=1 jezd
Then .
ki,...kicZ* G1yenji €2 (=1
< Kep( D Gzlﬁ---Gii\xkl,...,ki 2172
ky,...kicZ®

Proof. Indeed
(X GGl S bt =) =

kh...,kiezd jl,...,jiEZd
- ( Z Gllfl 211‘ Z $m1+k1a---;mi+kibm1"'bmi 2)1/2 <
kl,...,kiézd ’fle,‘.qmiGZd
S Z bm1bmz( Z Gllcl"'Gﬁfil‘rm1+k17m7mi+ki 2)1/2 S
ml,...,mieZd kl,...,kiezd
<Kep( Y G ..Gilog, ul)Y?
kl,...7kiezd

where we used G, < (5|Gm|Gm+k. |

5 (C°°-smoothness of Wiener functionals.

It remains to prove Theorems 2.2 and 3.1. To do this we discuss in this Sec-
tion how the nonlinearity parameter k influences the smoothness of & and
its variations & as Wiener functionals. We apply the monotone methods of
nonlinear analysis to work with the unbounded nonautonomous coefficients of
corresponding equations.
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5.1 Proof of Theorem 2.2.

In successive Lemmas 5.1-5.4 we check that £)(¢,2°) € Dj,(2) and prove The-
orem 2.2.

Lemma 5.1. V' € €2<k+1)2(a) Vu € Ty process E(t, 2% u,w) = (¢, 20, w, +
€ g usds) is represented as a unique strong solution to equation

E(t, 2% u) = af) + Wi(t) + 8/0t Us ds — /Ot[ (& (s, 2° u)) + {BE (s, 2° u)}1]ds
0.1
i.e. Us(a) continuous F; adapted process & (t,2°) € Dyyo)(F), t € [0,T7, P( a.e).
w € Q, which fulfills equation (5.1) in ly(a) P a.e.
Moreover ¥ x° € ly(a) there is a unique generalized solution £(t, 2% u) to
equation (5.1), which is a uniform on [0,T] P a.e. limit of strong solutions and
fulfills estimate: IM V' " € ly(a), u',u* € Tuy

T
sup sup |17 (2", u') =& (", u)||7, ) < €MT(||SUO—ZJOHZ(G)+€(2)/O [ —2][7, (o))
le|<eo t€[0,T) ( )
5.2

up sup 652", ) S K@) + MM+ K] uslonds) (53)
g€

with K € N LP(§), P).
p=1

Proof. Like in [14, 15] due to representation

t
&t 2% u) = ni(t, 2% u) + Wi(t) + ¢ /0 U ds (5.4)
strong solvability of equation (5.1) is equivalent to the solvability of equation
t s
ni(t) = af = [[[(F + B)('(s) + W(s) + | urdr)]ids (5.5)

For v € J. process [ju.dr is {y(a) continuous for any p > 1. By [14,
Th.4.1] due to £,(a) continuity of W (s) (see e.g. [15]) we have that for 2° €
k12 (a) equation (5.5) is strongly solvable in space ¢5(a) and its solution 7° ()
is Ly H)(a)—valued uniformly on ¢ € [0,7] bounded finite variation process.
Furthermore for IP a.e. w € €}

(F+ B)(f (:) + W () + ¢ [“urdr) € Lao([0,T], 2(a))

and due to representation (5.5) function [0,7] > t — n°(t,2%u) is P a.e.
absolutely continuous in ¢5(a) and thus for a.e. t € [0,T] differentiable. This
guarantees the correctness of the following differentiation.

Denote &§ = £°(¢, 2%, ul), & = (¢, y°, u?) for 2,90 € EZ(kH)Q(a) and ul, u? €
Jeyr then

d € &€ d 9 9
SN — &%) = G0 ) = w0 w) + e [ uh = u)asl) =

= 2 <&~ G.[F(&) - FE)] + BE — &) +eu} —u}) ><

20



< QIBI+ DIET = &ty + g — uillzym)
Above we used the monotonicity of map F' : ¢y(a) — ¢3(a). This gives (5.2) for
T lyky1y2(@). Choosing Y = 20 and u® = 0 as a consequence of (5.2) we

T
have sup 652", ut) = @) [ < 22T [ sl ds

t€(0,7)
which together with (2.5) gives (5.3). The closure of estimates (5.2) and (5.3)
up to 2°,y° € f5(a) proves the statement. W

Lemma 5.2. V' € ly(a) Vu € T,y the equation
t ¢
D&t ) = [ugpds — [ {[F(€)(s,2") + BID.& (5,2 ids  (5.6)

has a unique strong solution in ¢3(a). Moreover

T
Sup 1D (2 < 7 sl oy s (5.7)
T
Duot _uot 2 < MT g 0_ .02 32 d
S 1D, %) = D6} ke, < € Kn(@)lla” —y o) f Nslords

. 5.8
with Kg € pgl LP(Q, P), R = maX(HxOH@(a), Hy0|‘g2(a)). ( )

Proof. For any u € J.,; the inhomogeneous part of equation (5.6) u, €

C([0,T],¢2(c)) P a.e. for all ¢ € IP. Following the lines of Th.3.1 proof in

[3] we have that linear non-autonomous equation (5.6) has a unique l5(a) con-

tinuous F; adapted strong solution D,&%(t,2°) € Dy, (F'(§(t,2°))) P a.e.,
d

which possesses a strong ¢5(a) derivative — o D,£°(t, 2") and has representation

like (3.12) in [3
e (312)in 18 D& (t, 2° w) / o(t, s)usds (5.9)

with F; adapted strongly continuous in ¢(a ) evolution system {U%(t,s), 0 <
s <t} generated by A(t, 2", w) = F'(€°(t,2°)) + B.
Inequality (5.7) simply follows from D,£°(0,2°) = 0 and estimate

d
al\Duﬁf(fEO)HZ(a) =2 < Du&(2"),us — (F'(§") + B) D& ><

< QIIBl gieatay + DIDu&) (@) 170y + el o)
To obtain (5.8) we write

d 0/,.0 07,0Y(2 _
%HDugt (33 ) - Dugt (y >H€2(ak+2) =

= -2 < DY) — DY), B[D,£(2") — D£(y)] > —
=2 < Du&"(a") = D (y"), F( (@) Du(2") = FI(E (")) D" (W) >, ke, <

< 1B+ DIDuE (") = DGO 1.t

+2)
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HIFE @) = FEGNDL ] koo <

< MDY ") = D WO k.ot

FE(1+ @) @ + 1€ 6 lew) ") - €(° )H@(a)HDué?(fEO)H%aio)

)=

Above we used that F'(z) > 0, Vz € IR', and inequality V¢ € IP

IF'(©) = FOylde < K2 Y al(ér — )1+ & + |GhKul® <

kez?

< K? Y k lyrl*ell€ = CIlEya (+|\£I|e2<a>+\IC\Ima))?kS
keZz® akH
k
< K201€ = Cllyay (L + 1€l esta) + I€lleai) Ny, (5.11)

with dj > a,;kH, which is a simple consequence of property (2.3) for map F.
Properties of process £ (2.5) and estimates (5.10), (5.7) give (5.8). =

Lemma 5.3. Vu € T, the solutions &5, D,&° to equations (5.1), (5.6) fulfill:
VR>03K,pr € Np=1 LP(Q,P) such that V||2°| ) < R

c(00 N c0(0
sup sup S E) o) L <ekn)  (612)

‘6‘ SeO tE[O7T]

0( .0
Proof. Denote Ay(t) = G u)g @) D& (z%). Due to representation

(5.4) and properties of strong solution D,£Y(z%) to equation (5.6) the differen-
tiation below is justified. Using

)~ @) = fly—a) + [ 1z + Ay —2) = F @)y — )dA

notation ¢, = &% + A(€° — €°) and monotonicity of F: F'(z) > 0, z € IR" we
have

d
dtHA@“Z(akw) = —2 < Ay, BAy >4,00) —

—2< A@a F(g&) - F(fo) + U — U — FlDUftO >€2(a)§

1 & —¢°
< @IBI+ DIME ., ~2 ] H[F’(Q)—F’(ﬁo)JTHQ k+2)dA§
/ 0 ok | 0 50
< KA, e +2 ) KO 1 e 0= o IS Py h <
< K| Ag|* 4+ K (12°117, ) (5.13)
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At last two steps we used estimates (5.11), (2.5) and properties of £° and &°
(Lemma 5.1).
Due to Ay(0) = 0 and (5.13) we obtain (5.12) for 2" € KQ(kH)Q(a). By (5.2),

(5.8) we can close this estimate up to 2° € l3(a) for P a.e. w € Q. =

Lemma 5.4. V' € ly(a) Vu € Ty Vk € Z* the coordinates &)(t,1°) €
Dioe(2), t €10, T7.

Proof. Formula (5.12) gives: Va° € fy(a), u € Joy, k € Z°

t b(t,a”

hm E Sup | ( x U) gk( 7'r )
lel=0 tefo, 1) €

By (5.3) and (5.7) we have that D,£Q(¢,2°) is derivative of £2(¢,2°) in sense of

Definition 2.1.
Representation (5.9) leads to the property (2.10): Vu € Jey

Dufg(t,x / > [Un(t, 8)lkjus jds = > < Djfk(t X ) /0. s jds >y
jEZd JEA,

with F; adapted D;EQ(¢, 2°) = [3§ xs<t[U%(t, s)|x;ds € H. From estimate (5.7)
we have P a.e.

— D&t 2P =0, Vp>1  (5.14)

1 t
Vue J. Duot’02<7Mt Szd
we Jon D) < e [l s

J Uz )i

1Dt 20) 3, = [ |Vt )i Pds < e
and D;EN(t, 2%) € pgl LP(Q,P,H) =

therefore 1 (M

ak

ly(a=1) dS
This implies

ak:

5.2 Proof of Theorem 3.1.

The correct proof of Theorem 3.1 requires some bookkeeping. The following
Lemma gives a tool to work with the multiplicative structure of ¢, 5 in (3.5).

Lemma 5.5. Let vectors {cyq}ycrocp satisfy hierarchy (3.7) and function Q)
such 3K >0Va,y € R |Q(x) — Qy)| < K|z —y|(1+ |z| + \y|)k Then for

' we have

3C Y,y € ba(a)  QWct, @ers)to e < CL+ [ylla@) T (5.15)

HQ(y) — Qx)]u

k
tn(erp) < Oy = 2lea0) (1 + Y lleaia) + |2l e2) " Nl (e, )
(5.16)
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for diagonal map [Q(y)ulk = Q(yi)ur and my = ma/|7| > 1.
Consider subdivisions T =y U...U~, B =o09U...Uoy with |og| > 2—{ and
vl > 1, |oi| >0 fori=1,...,0,{>1. Then IK Vn=1,...,¢

H 500 [Q(yo)y’)ﬁ ,01°° 'y'\hmo'n - Q (ajo)x'}/lao—l o ':C’Ynaan] uWn+17Un+1 . 'U’YE»UZ Hgmr (CT,B) S

k n
< KA1l + 12 llea) < TLOH Tyl e+ Nyl 0%

7=1
n 14
X{Hyo - :L.O”‘eQ(a) —|— Z Hy’y_naj o x7j7aj|“€mfy,(c’y‘,o’-)} H Hufy_]va-_/l“emfy (C'yv,o“) (5'17)
i1 AN N0

where 67° = [Licy, 0% is a product of Kronnecker symbols and vector
k J€oo Yk

7 ! 1,01 Y Vn,00 Yynp1,0m1 0 Wyp,o ]k —
[07°Q(y")y Yrpsr U Uy, o]

0 0
51{7 Q (yk:)ykﬁlﬁl o 'ykaUnuk?'YnJrlaUnJrl o 'U’kﬁbge

Proof. Inequalities (5.15) and (5.16) simply follow from estimate

Q) — Q@)|ully (o) < K™ > crl(yr — xr) (1 + Jyr| + )| <
kez?
<K"(Y

kez? 5 m
A

m m mk
[ ) [y = ]2 0) (L + 19 llez(a) + 2l o))

To prove (5.17) first remark that

H(SJOQ(UO)ymol---yw,ae - 5UOQ(x0)5U%01"-$W,OeHEmT(cT.ﬂ) <
S H(SO—O [Q(yo) - Q(xo)]y717a—l"'y’y£aafHé'mT(CT,B)+ (518)

4
+ 2:1 H(SUOQ(xO)x%,m"'x%‘—hajq (y’Yjan - x’yjaaj)y7j+170j+1"'y7£ao—fHem-,—(c'r,ﬁ) (519)
J:
Using hierarchy (3.7) we estimate (5.18)

(5.18)™ = [[67[Q(y") — Q@) Yss.r-- Yo l1,

Kmr(c‘r,ﬁ) -
< K" Zdégockmﬂ‘(yg - 5’72)(1 + |y2| + ‘xg‘)kykm,ol'-'yk;w,w|m7 <
keZ
T T k T
< K™y = 27 U+ 119 ey + 12° ] ya)) <"

R < Ry
Y 0y Chk;r,3A} H(‘yk§7j70j| 7j) ! <
kez‘ J=1

m, T my km,
< K" Ry = 2177, (4 19 @) + 2 l@)

24



4
-2 1l (Ckﬂjﬁj’yk;%ﬂjlmvj)hﬂ/w <

kez® =1 .
mr T my km,
< K™ Ky =370 (LA 19 sty + 12° 1 ea(a) 11 T IS,
]:
(5.20)
In analogous way we have
(5.19)m7 = H(SUOQ(IO)IM,(H"'x’Yj—hUj—l (y’Yj,Uj T x%‘ﬂj)y%‘ﬂﬁjﬂ"'y’%ffz ZL,;(CT,B) —
mr mer T (K+1)m,
< K (L [QUO))™ KM+ 4 ya) ™ i, — 0,7 (e
{
(H ||x% 0 mT Cﬂ/ s ))( H 1 Hy% 7% (C’Y o )) (521)
1=)+

Estimate (5.17) follovvs from (5.20), (5.21) with Yy, 5, = Ty, 0, = Uy, 4, for j =
n+1,...,¢ and by enlarging (where necessary) the multiplicators and powers.
|

Lemma 5.6. Let vectors {c, 3} C IP fulfill hierarchy (3.7). Then ¥ z° E ls(a)
Vu € Joyy Ve € IR there is a set of unique strong solutions Dﬂfg(t 2V u) in
the scale of spaces {ly, (Cy0)}ycrocs, My =mi/|7|, to system

V18] > 0 zD%i,T(t) = Tpr— [ {(F(€)+ BYD € Yuds — [ o, p(s)ds (5.22)
with 2,3 =0, |8 > 1, Z,9 =2, (2.7), § = g £ (t, 2% u) introduced in (5.1) and

Orrpt) = > S tolge ol e Yy Dogg LD

MMU...Uyw=7 ogU..Uogr=p
Vil >1,4>1 |og| >2—4, |o;| >0

In particular case ate = 0 the process IDEE(t, 20, u)|.—o gives a solution ]Dg%}?(:z,)xo
to (3.5) and there is a connection

D& (12", u,w) = D& (12", w, + < [ ugds) (5.24)

Moreover VR > 0 3Kp € Ny>1 LP(Q, P) and polynomial P such that for all
ZCO,yO S €2<a); ul,u2 S t7cyl

T
sup sup D€, 2°,0) o, (e, < Kn(@)Plen [ lusldds) — (525)

|€‘<50 tE[O T]
sup sup ||[D7E (", ul) — DE )|y, <
le|<eq t€[0,T] by (@™ 2 Me, )
< K _ L2002 )2 p T2 212 4
= R(CU)(H.T Y ”ég +8O/ Hus us”ég(a) S) (80/0 HusHEQ(a)—'_HusHEg(a) 8)

(5.26)
uniformly on max([2°||s,a), 19" ea(a), 1Z10ll0,0, (007 € T7) < R.
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Proof. The strong solvability of linear equation (5.22) for initial data 7,5 €

>1ﬂ ]pr(c) can be easily obtained with application of Kato criterions [20, 21,
p>1l,ce

22, 23, 24, 19]. The similar procedure was already done in [3]. In analogue to
Theorem 3.1 [3] it is sufficient to show that inhomogeneous part

+17n1

"k
wrp € C0,T], b, (crp)) O Loo([0, T, i, (der ) with di = ay, °

It is proved by induction with application of pathwise continuity of process
€ (t,2° u) (Lemma 5.1) and Lemma 5.5 instead of Proposition 3.3 in [3]. As a
result the solutions to system (5.22) fulfill P a.e.

D¢ € C([0,T], b, (¢r,5)) N Loo([0, T, b, (der p)) (5.27)

d
possess strong £, (c.3) derivatives dtlDﬁ £(t, 2% a.e. on [0, 7] and have repre-
sentations [3, (3.12)]

DA (t,2") = — /Ot Ui (t, s)prp(s)ds (5.28)

in the terms of F; adapted evolution system U (t,s), 0 < s < t, generated by
F'(€%(t,2° w)) + B, which fulfills estimate

sup [|Uzo(¢, )|l (e, (e < exp(T[|Bll 2ty (c)) (5.29)
t€[0,T)

FEstimate (5.25) we prove by induction. Using F’ > 0, notation (3.17) and
inequality (3.20) we have

d d

“1IDPEE(t _ < —IDP¢E (IDPesY# <

dtH 5 ( )H -(erp) =m dt 57'7( 57') b (Cr ) =

< (me || Bl +m: = DID DN (o + 1655107 o) (5.30)
Representation of ¢ 5 (5.23) leads to
HSOTBHKW (r0) < 3 t\oo\H(gooF l+]ool) (g&‘)DUlgil Dwgﬁg” tn (e s) §
{70}

<K Y 401+ 5 )< H<1+ ID7E N, (er,0,) (5.31)

{70}
where we used Lemma 5.5 (5.17). The mductlve assumption and property (5.3)
applied to (5.30), (5.31) give the required estimate (5.25). We also used that
IDPEE(0) = #,5 (5.22) and for inductive base 0 = 0.
Estimate (5.26). Introduce notations &8 = £(2% ul), € = £(3° v?). In
analog to (5.30) for 2°,y° € ly(a) and u',u? € J., we have

d
dtHlDﬁi = D &Il i1e, ) < mellBllee WID7E: — DN (e, 1y~

m‘l‘ d 1C‘fﬁ
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—m, < (D¢ — D°E)", F'(&§) D¢} — F'(§)ID°E >y, (a1, —
—m, < (D¢l — DPEYH f 4(a®,ul) — 2 440 u%) >4, (416, )<
< (me|B|| + 2(mr = )D& — D NI} (grc., y+
HILEF' (&) — F'(ENID EN™ + 1l¢55(2", u') — 550" )™ (5.32)
Above we added and substracted term F’(¢3)ID”¢! and used property F' > 0

and inequality (3.20).
Lemma 5.5 (5.16) leads to the estimate on the first term in (5.32)

{F' (&) — F'(&) D M e, (a-1es ) < K1&5 — & lla(a)

X(1+ 18 ey + 168 esia) <D €Ml 0 (5.33)
Lemma 5.5 (5.17) gives an estimate on the second term in (5.32)
% 52", u') = &5 (5", 4 e, (a-16r) < by > tol,

MMU..Uy=T ogU...Ugp=20
il =1, €>1 ool =2—4, |oy| >0

[oT PTG D7, D, = 6 FEN(EHIDNE L DT || <
14
< K;{W — &l + Zl | D€L = D€, (e, )}
e j=

4
k g g
(1185 ea) HIEG Neai@) s TLAFIDZE, Nle, (e, HIDTE Nle, (er,00) (5:34)

7=1
Ny, (d 1 er ) S || Hemr (crp):

Substituting (5.33), (5.34) into (5.32) and using inductive assumption and
properties (5.25) and (5.2), (5.3) we obtain the required estimate (5.26). We
also applied that (IDP¢! — IDP€2)|,_o = 0.

Finally, the property (5.24) is a consequence of uniqueness of solutions to
(5.22) and corresponding relation between £5(t, 2°, u) and £°(¢, %) (Lemma 5.1).
|

Lemma 5.7. Let 2° € (3(a), vectors {c,; 3} C IP be hierarchied by (5.7) and
D¢, denote the strong solutions in Ly, (c.5) to equation (5.22) at € = 0.
Then Yu € J.u there is a set of unique strong solutions Duﬂ?ﬁé}(t,xo) m

k
the scale of spaces £y, (a Termie 8) to system

V1B >0 DD () = — [[(F/(€) + B)DIDE ]y — [ df, 5(s)ds (5.35)

where
Uitr s = F'(E) DD+
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+ 3 o P (E) DY D7 g D7 g (5-36)
{v.0}

¢
+ Y Y timlgro plHool (¢ D7 (DD ,).. D7y,
{770} Jj=1
The summation Y¢ 5 is like in (5.23).
Moreover, VR >0 3 K € Np>1 LP(Q, P) such that

T

sup. DDt g, < Kr@)(] ulZwds)” (5.37)

tef0,7 by (0" 20, )
umformly on maX(HSEOHgQ(a), HJT:%@HEM(C%@), vC71)<R.
Proof. The strong solvability of linear equation (5.35) is obtained with appli-
cation of Kato criterions [20, 21, 22, 23, 24, 19]. Like in Lemma 5.6, following
the scheme of Theorem 3.1 in [3] it is sufficient to show that the inhomogeneous
part

+2

k—m (0.9] m
Uy € C([0,T) b (@ T e ) N LX(0,T), b (a7 Pers))  (538)
As a consequence there is a set of unique F; adapted strong solutions to equation
ki
(5.35) in the scale £,, (a"2 ™ ¢, 3) which fulfill P a.e. property

DuID¥, € C([0, T, by (a5 1 ) 0 L0, T), £, (@ 2er)  (5.39)

possess strong EmT(ak;zmlcT,@) derivatives aDuﬂ?ﬂ & ae. on [0,7] and have
representations like [3, (3.12)]

D, D¢, (t,2°, w) / $)wL (s, 2")ds (5.40)

in terms of F; adapted evolution system 9:0( ,8), 0 < s < t, generated by
F(€(t, 2", w)) + B.

Property (5.38) is proved inductively like in [3, Th.3.1] with additional ap-
plication of inequality

1
Vhe Z' D] S D (6 e (5.41)

and pathwise continuity of D,£" (Lemma 5.2). Indeed, for the first term in
(5.36)

sup ||[F"(£) Dy’ D& |y, (gmree, ) < SUP I DuE N |1 F" (€)Y D o, (0 ) <
te[0.7] tel0, T
k
< K sup D00 (14 1€ KN Ol <0 (2

_ku
where we used (5.41), Lemma 5.5 (5.15), property (5.27) with d = a;, e

and the pathwise continuity of processes £°, D, &Y.
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Property ¢ ; € L> (5.38) follows from (5.42) and analogous estimate on
second and third terms in (5.36), where one should use Lemma 5.5 (5.17) and
inductive assumption (5.40) on D, ID°¢,, o C B, v C 7. A simple modification
with additional use of inequality

VEke Z' D, (t) — Du£(s) < \/HDugO() Du&"(3) |l ea(a)

and pathwise continuity of process D,£° (Lemma 5.2) leads to Uiy € C (5.38)
and finishes the inductive proof of (5.38), because for inductive base ¢, j = 0.
FEstimate (5.37) we prove inductively

d d
LD, D || =m, < —D,D’¢,, (D, D"¢,)*
o 3 IIEm e my < &y ( 3
< (me||Bll + K s) | DD &A™y + IF"(€) D’ D& |™ k.
bpr(a™2 ™Mlc, ) U (a2 ™er )
(5.43)
X e g0 PR (@) D Dme, DT (5.44)
{'V,U}g by (a™ 2 ™erg)
+ Z Zt|00|mTH(SJOFMHUOD(SO)DOlf%...(DuDUjgfyj)...DwaHmT Kk
{ro}i=1 (AN T
(5.45)

Above we used the monotonicity of map F and (3.20).
To estimate (5.43) we remark that property (5.7) implies

1 T
VikeZ* sup |D,E(t )| < —_MT/2 ug||? 0ds 1/2 5.46
JSup [Dugi(ta")] < e TP sl ds) (5.46)

Using (5.46), Lemma 5.5 (5.15) and (5.3), (5.25) at g = 0 we have
sup [|[F(€°(t) D (OD M) k., <

t€[0,7] line(@™2" ™ erg)
< eMT/2(/ HusH&(a)dS)mHFﬁ(ﬁo)ZDﬂﬁTHg WK, =
mr(@” 2 Mlerg
< KM [ 1,0 d) 20+ 1 o) S D 6 g ) <

< Kn(@)([] lluslods)"?

Estimation of (5.44), (5.45) is done by application of (5.46), Lemma 5.5 (5.17),
inductive assumption (5.37) and (5.3), (5.25) at g9 = 0.
Finally (5.43)-(5.45) transforms to

d m m r m
DD |7 < KDLD 6™ + Kr(@) () lluslf, o ds)™ "

which by D,ID’¢.|i—g = 0 leads to (5.37). We used Vg = 0 for inductive
base. H
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Lemma 5.8. Let vectors {c, g} C IP satisfy hierarchy (3.7). Then ¥ u € Ty
the solutions ID°¢2, D, ID"¢, to equations (5.22), (5.35) fulfill estimate: ¥ R >
0 3Ky r € Ny>1 LP(2,P) such that

D¢ — D¢,
sup sup || & S — D, D¢, || Kos <eoKyr(w)  (547)

le|<go t€]0,T] 3 by (@™ 2™, )

uniformly on maX(HxOHgQ(a), Hf%@Hme(cy,@)v vCT1)<R.
Proof. Denote by & = £"(¢,27), & = & (¢,2% u) and

Dﬁﬁf— - Dﬁfr
€

A s(t) = — D, D%

Then

d ’
A O™ 4 =me<

f,,m_(a 2 mlcﬂﬂ) fm,,_(a 2 mlcT,ﬁ)

<me|B| -1 Arp™ gL, —me <TAT > (5.48)

Em'r (CL 2 mlc”ﬂﬁ) ng a 2 167’,5)

where

T iF’(&a)JDﬂ&; (&) DD, — F'(€9)Dug D6+

0

1
+3 t|00\500{7F(5+\00\)(gé)ﬂ)ﬂlch..'Dveg@
v,0 £

3

0
— P (6D, & ID7E,, .. IDE, —

V4
-y F<€+|ao|>(5®)1001§%...(Duﬂ)%gw)...ﬂwgw}

j=1
and summation ¥, , is like in (5.23), (5.35). Using formula

‘
f(os -, ye) = f(@o, ..., we) = Zoajf(f)(yz' —z;)+
j:

32 [0 + MG~ ) = 0, ) = )i

and notation ¢} = & + \(€2 — &) with corresponding sense of derivatives ID”()
we rewrite expression T in the form

T = F'(&)Arp + F" (&) D gD+ (5.49)
ANDBes — DP -
C [ el 8 S [P P50 a0
0 0
+ Zt'UO‘cS"OF Il (&) Ap g D7 D+ (5:51)
~,0
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LYY FOH () DT, (A 0 ) D+ (5.52)

7,0 j=1
1 (€+‘00|+1) . 01 e oy )\5@ g@
+2/ F (GYD7 G, D7, | RN (5.53)
0
DO’j E. _ DO’jg ; . A
+2 Z/ Flnb (YD (0 - )..D7C, (5.54)
o= 0

Using the monotonicity of F': F’ > 0 we continue (5.48)

d
— A5 < (m:||B|| + const) || Az s ()™ +
dt b 25, ) b (25,
HIGA™ 4. NGB (5.55)
b (@251, ) b (@ F 1, )

where notation (5.49); means the second term in (5.49). To estimate (5.49),
we use coordinate form of (5.12)
ki

Vke Z* sup sup |Apg(t)] <eoap > Kur(w) (5.56)

le|<eo t€[0,T]
and Lemma 5.5 (5.15)
1(5-49)2]l = [F" (&) Aop D& . <

b
mi
linp (a2 cr,8)

< coKur(W)|IF" (€D k., <

emT(a’ 2 167’;5
< 20K, (@)1 + [&llesia) D%, (e, ) < 20K (w) (5.57)

where at last step we used (5.3) and (5.25) at g = 0.
Estimation of (5.50); is done in a similar way with application of coordinate
form of (5.2) with 2° = 3° and v* = 0

0 < F'(eNIDRee )\@ <
1(5.50)1]] < sup [[F"(¢*)ID"C [ <
Ae[0,1] 0 by (™2 Mer )
mr/2, (T 2 1/2 . A
< ML 17,0 ds) | P (G D7 N, o, ) <

r k
< KBMT/Q(/O 7, @9)2 (1 + 1€l exiay + 163 Tlesia) <"

A+ D%k, DG )

ém'r(a’ 2 mlcT,ﬁ) ng(a 2 MICT:B)

A6 = Gllew + 1D°C - D%y, } < eolurw) (5.58)

émT a 2 mlCTﬁ)
where we successively used Lemma 5.5 (5.15),(5.16), estimates (5.2), (5.3) and
(5.25), (5.26) with 20 = ¢°.
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Estimate of (5.50); is simple from Lemma 5.5 (5.15)

Aﬂjﬂfs _ Dﬁ&
1(5.50)2]| < sup [[F(¢5) I ke
A€[0,1] 0 € Upr(a™ 27 ™er )

k
< /\Sl[l()pl] K163 — &olleaia) (T + 1163 eaa) + 10l eaia)) ™
€0,

DPee — Db T
i TR N ). (5.59)
€ évnf(aTmlcT,ﬁ)

where at last step we applied (5.2), (5.3) and (5.26) with 20 = ¢°.
To estimate each term in (5.51) we use Lemma 5.5 (5.17) and (5.56)

1(5.51)[| = (|87 FUH () Ag y D7E, . D7 || e, <

EmT a 2 ICT,B

< oKy p(w) |0 FUHO (G D7, D7E | k., <

<

T

m
Emr a 2 10735)

< o)1+ [ L0+ 178, e, < oFun(e) (5:60)
j=
where we also applied ||| k.. < Hgm (ery.0,): (2.5), (5.25) and that

gm,,_ m1 0775)

the weights {a 2‘+ "y o tyerocp fulfills hierarchy (3.7).
The estimate of (5.52) is done by Lemma 5.5 (5.17) and inductive assumption

(5.47) for {~,0} C {7, 5}
1(5.52)]| = [[FUHoV () D7 (A o) DTE ] S

gm/T (a 2 mlCTvﬁ)

k
< KO+ QD" Ayall - e ;
' V5 75095
- I A+[D76] k., ) < g0y r(w) (5.61)
i=1,i#j Em%_ (@~ 2 ™e,,)

where we also applied (2.5) and (5.25).

Expression (5.53) we estimate by Lemma 5.5 (5.17) and coordinate form of
inequality (5.2) with 20 =4 u?> =0

Aéa _ 5
0 0
c H ks <

0 bnp (@™ 27" er )

A

1(5.53)[| < sup [FEHRHD (G D¢ D,
A€[0,1]

T D
< eMT/2</0 HUsHi(a)dS)m )\Sel[lopl] ||F(f+|00|+1)(cé) Ule.yl"'ﬂ )Ueﬁfw HE (a(kﬂ)mlc 5) <
’ o ™ T

T
< KM el )™ e (14 1t + ol

14
. H (1 + Hﬂ)%ﬁwngmj(a(kﬂ)mlcN_ + HDUJC%H ( k+1 mlcv] ])).

j=1
32



— &pllesay + Z |78, — DG, fakrimie, }< eofur(w) (5.62)
We applied (5.2), (5 3) (5.25) and (5.26)

¢ k+1m
Em'y (a 2 10%0)

Finally the estimation of (5.54) follows from Lemma 5.5 (5.17) and inequality
(5.26) with 2° = ¢% and u? = 0

<
em’y (a(k+1)ml C'y7o') -

o o Daj 6' o DUJE j o A
I(5.54)]| < sup [FCD(GDNG, .. = O e
AE[0,1] € 0 ¢

k
< K sup (1+ 16 lles(a) + N€ollesa) <"
A€[0,1]

mr a 2 ! cT»ﬁ

14
° . H (1 + H]DUIC’?ZH 2k+3m + HDJig%‘ 2k+3m )'
1=1,i#£j Em%, a2 ley, o) émvi (a2 Ly, o)
14
.{H(@ — 5@“52(@ + ' Z HDUz Dazg% Koo }.
1= 117&] gmw (CL 2 Llc'yi,cri)
D7 5 Dajgvj
. H Ko < SOKU7R(CU) (563)
€ emryj a 2 1C’yj,oj)

where at the last step we used (5.2), (5.3) and (5.25), (5.26).
Substituting estimates (5.57)-(5.63) into (5.55) and using that A; gl;—g = 0
we have (5.47). ®

Lemma 5.9. Va° € ly(a) Yu € T Yk € Z", 7,8 C Z" the coordinates
of solutions to equation (5.22) satisfy property Dﬂf;”(t 1Y) € Dye(Q), V8| >
0, |[7| > 1, t € [0,T]. MoreoverVj € Z" derivative Dre]Dﬁgk,T in direction

Fej (3.1) coincides with the coordinate of strong solution Dﬁu{j}ﬁm to equation
(5.22) and estimate (3.8) holds.

Proof. Formula (5.47) gives
Df¢s  — DA,
hm E Sup | ék‘,T gk,
el=0 tefo,17] €
By coordinate form of (5.25) and (5.37) we have that D, ID"&, . (t,2°) is deriva-

tive of IDﬂfk’T(t, 2%) in the sense of Definition 2.1 for u € Jyy.
Representations (5.9), (5.36) and inductive use of representation (5.40) give

— DD, P =0, Vp>1, ke Z® (564)

¢
DD g7 (12" w) = [ 30 Vi (t, 9)|ijuods
0 jez?
with some F; adapted function [V;{;ﬁ (t,8)]kj, 0 < s <t. The coordinate form
of estimate (5.37)
Kr(w)
k+2|7_| 1/
" Crrg

Vu € T |DuID Gr(t,2°)] < ([ sl 0yds) 2
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implies that
P Kp(w)

t
V;’ﬁ t,S) |k —_
|V (2, 9) Ko
ay, 7'6

Therefore for D; D¢, (¢, 2°) - i ngt[Ugé/B(ﬂ $)]kjds

%2(a71)d8 S

a;Kg(w)

Ko 1jm,
U Ok

t T
ID, D¢ (12" 15, = [ 11V (8, 8)]i[Pds <

and we have representation (2.10) in the form
D, D¢ .(t,2°) = 3 < Djﬂ)ﬂgm(t,xo),/o. Us jds >y
JEMy
with D; D¢, (¢, 2°) € My>1 LP(Q, P, H). This implies D¢y, - € Dyoe(2).
Choosing u = Te; € T, in (5.64) and using property D, &L (¢, 2°) = t&], (2.16)
in the coefficients of equation (5.35) one has property Dr., D’ Skr = DA }f;”.
Here the strong solutions to (5.22) are understood in any space £, (2"c;p),

ko,
n € N, for z; =a,? ' due to the initial data Z, 45 € >1ﬂ pr(c).
,CE

To obtain estimate (3.8) we use representation (5.28), property (5.29) and
Lemma 5.5 (5.17)

ID7€: (¢, 2°) |,

HémT C‘f'ﬂ) S

mr C"’ﬁ

) < te sup |prp(s, 2°)
s€[0,7]

< M T PN DTG, D,

mr CTB —

< KNS I (1 [0y H(1+HJD"J£%H% cye)  (5.69)

where summation } was introduced in (3.6).
.0

Suppose that for Vo C B, |o| < |B] inequality (3.8) is proved. Then by
estimate (2.5) and inductive assumption we have

Vte[0,T] (5.65) < M Kp(w) S tlroltt ¢ Zomallmsl ) < oMt pep ()l81+1
77

because |og|+ Z lo;| = |B]. To finish the proof it remains to show the inductive

base at |5]| = 1 By Lemma 5.5 (5.15) we have

D Ol e < 1 s 120 M 00 S

<teM sup | X s6MFE(EN)E, 6, + 50 ()6 +

s€[0,T] 71U...uw TA>2

+ X ZF (€8 (D )&l (ery) <

YU Uyp=7,0>2 j=
34



f;tQ}(R(QO E: H§§H£mwgwm)4—t](R(a0 }: Hﬂjkgwuémvga&k” (5,66)

YCT YCT,YF#T
At 7 =1{j}, j € Z% ie. |7| =1, we simply have from (5.66)

HDk&{j}(t’ wo)‘uml(ff{j},{k}) <t Kp(w)
Iterating (5.66) on |7| > 1 we have base of induction (3.8) at || =1. =
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